

Lecture Notes in Computer Science 3654
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sushil Jajodia Duminda Wijesekera (Eds.)

Data and
Applications
Security XIX

19th Annual IFIP WG 11.3 Working Conference on
Data and Applications Security
Storrs, CT, USA, August 7-10, 2005
Proceedings

13

Volume Editors

Sushil Jajodia
Duminda Wijesekera
George Mason University
Center for Secure Information Systems
Fairfax, VA 22030, USA
E-mail: {jajodia,dwijesek}@gmu.edu

Library of Congress Control Number: 2005929872

CR Subject Classification (1998): E.3, D.4.6, C.2, F.2.1, J.1, K.6.5

ISSN 0302-9743
ISBN-10 3-540-28138-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28138-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© IFIP International Federation for Information Processing 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11535706 06/3142 5 4 3 2 1 0

Preface

The 19th Annual IFIP Working Group 11.3 Working Conference on Data and
Applications Security was held August 7–10, 2005 at the University of Con-
necticut in Storrs, Connecticut. The objectives of the working conference were
to discuss in depth the current state of the research and practice in data and ap-
plication security, enable participants to benefit from personal contact with other
researchers and expand their knowledge, support the activities of the Working
Group, and disseminate the research results.

This volume contains the 24 papers that were presented at the working con-
ference. These papers, which had been selected from 54 submissions, were rigor-
ously reviewed by the Working Group members. The volume is offered both to
document progress and to provide researchers with a broad perspective of recent
developments in data and application security.

A special note of thanks goes to the many volunteers whose efforts made the
working conference a success. We wish to thank Divesh Srivastava for agreeing
to deliver the invited talk, Carl Landwehr and David Spooner for organizing the
panel, the authors for their worthy contributions, and the referees for their time
and effort in reviewing the papers. We are grateful to T. C. Ting for serving
as the General Chair, Steven Demurjian and Charles E. Phillips, Jr. for their
hard work as Local Arrangements Chairs, and Pierangela Samarati, Working
Group Chair, for managing the IFIP approval process. We would also like to
acknowledge Sabrina De Capitani di Vimercati for managing the conference’s
Web site.

Last but certainly not least, our thanks go to Alfred Hofmann, Executive
Editor of Springer, for agreeing to include these proceedings in the Lecture Notes
in Computer Science series. This is an exciting development since, in parallel to
the printed copy, each volume in this series is simultaneously published in the
LNCS digital library (www.springerlink.com). As a result, the papers presented
at the Working Conference will be available to many more researchers and may
serve as sources of inspiration for their research. The expanded availability of
these papers should ensure a bright future for our discipline and the working
conference.

August 2005 Sushil Jajodia and Duminda Wijesekera

Organization

General Chair T. C. Ting (University of Connecticut, USA)
Program Chairs Sushil Jajodia and Duminda Wijesekera

(George Mason University, USA)
Organizing Chairs Steven Demurjian and Charles E. Phillips, Jr.

(University of Connecticut, USA)
IFIP WG11.3 Chair Pierangela Samarati (Università degli Studi di

Milano, Italy)

Program Committee

Gail-Joon Ahn University of North Carolina at
Charlotte, USA

Vijay Atluri Rutgers University, USA
Sabrina De Capitani di Vimercati Università degli Studi di Milano, Italy
Steve Demurjian University of Connecticut, USA
Roberto Di Pietro University of Rome “La Sapienza”,

Italy
Csilla Farkas University of South Carolina, USA
Eduardo Fernandez-Medina Univ. of Castilla-La Mancha, Spain
Simon N. Foley University College Cork, Ireland
Ehud Gudes Ben-Gurion University, Israel
Carl Landwehr National Science Foundation, USA
Tsau Young Lin San Jose State University, USA
Peng Liu Pennsylvania State University, USA
Sharad Mehrotra University of California, Irvine
Ravi Mukkamala Old Dominion University, USA
Peng Ning North Carolina State University, USA
Sylvia Osborn University of Western Ontario, Canada
Brajendra Panda University of Arkansas, USA
Joon Park Syracuse University, USA
Charles Phillips U.S. Military Academy, USA
Indrakshi Ray Colorado State University, USA
Indrajit Ray Colorado State University, USA
Pierangela Samarati University of Milan, USA
Sujeet Shenoi University of Tulsa, USA
David Spooner Rennselaer Polytechnic Institute, USA
Bhavani Thuraisingham University of Texas at Dalla, and

The MITRE Corp., USA
T.C. Ting University of Connecticut, USA
Ting Yu North Carolina State University, USA

VIII Organization

Sponsoring Institutions

Center for Secure Information Systems, George Mason University
Department of Computer Science and Engineering, University of Connecticut
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano

Table of Contents

Streams, Security and Scalability
Theodore Johnson, S. Muthukrishnan, Oliver Spatscheck,
Divesh Srivastava . 1

Towards Privacy-Enhanced Authorization Policies and Languages
C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati,
P. Samarati . 16

Revocation of Obligation and Authorisation Policy Objects
Andreas Schaad . 28

Role Slices: A Notation for RBAC Permission Assignment and
Enforcement

J.A. Pavlich-Mariscal, T. Doan, L. Michel, S.A. Demurjian,
T.C. Ting . 40

Designing Secure Indexes for Encrypted Databases
Erez Shmueli, Ronen Waisenberg, Yuval Elovici, Ehud Gudes 54

Efficiency and Security Trade-Off in Supporting Range Queries on
Encrypted Databases

Jun Li, Edward R. Omiecinski . 69

Verified Query Results from Hybrid Authentication Trees
Glen Nuckolls . 84

Multilevel Secure Teleconferencing over Public Switched Telephone
Network

Inja Youn, Csilla Farkas, Bhavani Thuraisingham 99

Secrecy of Two-Party Secure Computation
Yi-Ting Chiang, Da-Wei Wang, Churn-Jung Liau,
Tsan-sheng Hsu . 114

Reliable Scheduling of Advanced Transactions
Tai Xin, Yajie Zhu, Indrakshi Ray . 124

Privacy-Preserving Decision Trees over Vertically Partitioned Data
Jaideep Vaidya, Chris Clifton . 139

Privacy-Preserving Collaborative Association Rule Mining
Justin Zhan, Stan Matwin, LiWu Chang . 153

X Table of Contents

Privacy-Preserving Distributed k -Anonymity
Wei Jiang, Chris Clifton . 166

Towards Database Firewalls
Kun Bai, Hai Wang, Peng Liu . 178

Complete Redundancy Detection in Firewalls
Alex X. Liu, Mohamed G. Gouda . 193

A Comprehensive Approach to Anomaly Detection in Relational
Databases

Adrian Spalka, Jan Lehnhardt . 207

An Authorization Architecture for Web Services
Sarath Indrakanti, Vijay Varadharajan . 222

Secure Model Management Operations for the Web
Guanglei Song, Kang Zhang, Bhavani Thuraisingham, Jun Kong 237

A Credential-Based Approach for Facilitating Automatic Resource
Sharing Among Ad-Hoc Dynamic Coalitions

Janice Warner, Vijayalakshmi Atluri, Ravi Mukkamala 252

Secure Mediation with Mobile Code
Joachim Biskup, Barbara Sprick, Lena Wiese . 267

Security Vulnerabilities in Software Systems: A Quantitative Perspective
Omar Alhazmi, Yashwant Malaiya, Indrajit Ray 281

Trading Off Security in a Service Oriented Architecture
G. Swart, Benjamin Aziz, Simon N. Foley, John Herbert 295

Trusted Identity and Session Management Using Secure Cookies
Joon S. Park, Harish S. Krishnan . 310

Security Issues in Querying Encrypted Data
Murat Kantarcıoǧlu, Chris Clifton . 325

Blind Custodians: A Database Service Architecture That Supports
Privacy Without Encryption

Amihai Motro, Francesco Parisi-Presicce . 338

Author Index . 353

Streams, Security and Scalability

Theodore Johnson1, S. Muthukrishnan2, Oliver Spatscheck1, and Divesh Srivastava1

1 AT&T Labs–Research
{johnsont, spatsch, divesh}@research.att.com

2 Rutgers University
muthu@cs.rutgers.edu

Abstract. Network-based attacks, such as DDoS attacks and worms, are threat-
ening the continued utility of the Internet. As the variety and the sophistication of
attacks grow, early detection of potential attacks will become crucial in mitigat-
ing their impact. We argue that the Gigascope data stream management system
has both the functionality and the performance to serve as the foundation for the
next generation of network intrusion detection systems.

1 Introduction

The phenomenal success of the Internet has revolutionalized our society, providing us,
e.g., the ability to communicate easily with people around the world, and to access
and provide a large variety of information-based services. But this success has also
enabled hostile agents to use the Internet in many malicious ways (see, e.g., [10,9,36]),
and terms like spam, phishing, viruses, worms, DDoS attacks, etc., are now part of the
popular lexicon. As network-based attacks increase, the continued utility of the Internet,
and of our information infrastructure, critically depends on our ability to rapidly identify
these attacks and mitigate their adverse impact.

A variety of tools are now available to help us identify and thwart these attacks, in-
cluding anti-virus software, firewalls, and network intrusion detection systems (NIDS).
Given the difficulty in ensuring that all hosts run the latest version of software, and the
limitations of firewalls (e.g., worms have been known to tunnel through firewalls), NIDS
are becoming increasingly popular among large enterprises and ISPs. Network intrusion
detection systems essentially monitor the traffic entering and/or leaving a protected net-
work, and look for signatures of known types of attacks. In practice, different NIDS use
different mechanisms for the flexible specification of attack signatures. Snort [34], e.g.,
uses open source rules to help detect various attacks (such as port scans) and alert users.
Bro [32], e.g., permits a site’s security policy to be specified in a high-level language,
which is then interpreted by a policy script interpreter.

As the variety and the sophistication of attacks grow, early detection of potential at-
tacks will become crucial in mitigating the subsequent impact of these attacks (see, e.g.,
[16,23,25,26,29,24,33,38]). Thus, intrusion detection systems would need to become
even more sophisticated, in particular for traffic monitored at high speed (Gbit/sec)
links, and it becomes imperative for the next generation of NIDS to:

– provide general analysis over headers and contents of elements in network data
streams (e.g., IP traffic, BGP update messages) to detect potential attack signatures.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 1–15, 2005.
c© IFIP International Federation for Information Processing 2005

2 T. Johnson et al.

– provide highly flexible mechanisms for specifying known attack signatures over
these network data streams.

– provide efficient (wire-speed) mechanisms for checking these signatures, to iden-
tify and mitigate high speed attacks.

In this paper, we explore the utility of a general-purpose data stream management
system (see, e.g., [2,1,4,11]), in particular, Gigascope [13,14,15,12,20], for this purpose
We argue that Gigascope has both the functionality and the performance to serve as the
foundation for the next generation of network intrusion detection systems.

The rest of this paper is structured as follows. Section 2 presents the main features
of Gigascope’s query language in an example driven fashion. Section 3 describes a few
representative network-based attacks, and illustrates how Gigascope can be used to aid
in the detection of these attacks. Finally, Section 4 describes aspects of Gigascope’s
run-time architecture that enables high performance attack detection.

2 Gigascope

Gigascope is a high-performance data stream management system (DSMS) designed
for monitoring of networks with high-speed data streams, which is operationally used
within AT&T’s IP backbone [13,14,15,12,20]. Gigascope is intended to be adaptable
so it can be used as the primary data analysis engine in many settings: traffic analy-
sis, performance monitoring and debugging, protocol analysis and development, router
configuration (e.g., BGP monitoring), network attack and intrusion detection, and var-
ious ad hoc analyses. In this section, we focus on the query aspects of Gigascope, and
defer a discussion of Gigascope’s high-performance implementation until Section 4.

Gigascope’s query language, GSQL, is a pure stream query language with an SQL-
like syntax, i.e., all inputs to a GSQL query are data streams, and the output is a data
stream [20,27]. This choice enables the composition of GSQL queries for complex
query processing, and simplifies the implementation. Here, we present the main features
of GSQL in an example driven fashion. Later, in Section 3, we show how GSQL can be
used to detect various network attacks.

2.1 Data Model

Data from an external source arrives in the form of a sequence of data packets at one or
more interfaces that Gigascope monitors. These data packets can be IP packets, Netflow
packets, BGP updates, etc., and are interpreted by a protocol. The Gigascope run-time
system interprets the data packets as a collection of fields using a library of interpreta-
tion functions. The schema of a protocol stream maps field names to the interpretation
functions to invoke [20].

PROTOCOL packet {
uint time get time (required, increasing);
ullong timestamp get timestamp (required, increasing);
uint caplen get caplen;
unit len get len;

}

Streams, Security and Scalability 3

PROTOCOL Ethernet (packet) {
ullong Eth src addr get eth src addr (required);
ullong Eth dst addr get eth dst addr (required);
. . .

}

PROTOCOL IP (Ethernet) {
uint ipversion get ip version;

}

PROTOCOL IPV4 (IP) {
uint protocol get ipv4 protocol;
IP sourceIP get ipv4 source ip;
IP destIP get ipv4 dest ip;
. . .

}

Network protocols tend to be layered, e.g., an IPV4 packet is delivered via an Ether-
net link. As a convenience, the protocol schemas have a mechanism for field inheritance
(specified in parentheses). For example, the Ethernet protocol contains all the fields
of the packet protocol, as well as a few others.

2.2 Filters

A filter query selects a subset of tuples of its input stream, extracts a set of fields (pos-
sibly transforming them), then outputs the transformed tuples in its output stream. The
following query extracts a set of fields for detailed analysis from all TCP (protocol
= 6) packets.

Qs
1: SELECT time, timestamp, sourceIP, destIP,

source port, dest port, len
FROM TCP
WHERE protocol = 6

Gigascope supports multiple data types (include IP), and multiple operations on
these data types. The following query extracts a few fields from the IPV4 tuples whose
sourceIP matches 128.209.0.0/24, and names the resulting data stream as fq
(this can then be referenced in subsequent GSQL queries).

Qs
2: DEFINE { query name fq; }

SELECT time, sourceIP, destIP
FROM IPV4
WHERE sourceIP & IP VAL‘255.255.255.0’ = IP VAL‘128.209.0.0’

4 T. Johnson et al.

2.3 User-Defined Functions

While GSQL has a wide variety of built-in operators, there are situations where a user-
defined function would be more appropriate. Gigascope permits users to define func-
tions, and reference them in GSQL queries. The following query, for example, uses
longest prefix matching on the sourceIP address against the local prefix table to ex-
tract data about IPV4 packets from local hosts.

Qf
1 : SELECT time/60, sourceIP

FROM IPV4
WHERE getlpmid(sourceIP, ‘localprefix.tbl’) > 0

2.4 Aggregation

The following aggregation query counts the number of IPV4 packets and the sum of
their lengths from each source IP address during 60 second epochs.

Qa
1 : SELECT tb, sourceIP, count(*), sum(len)

FROM IPV4
GROUP BY time/60 as tb, sourceIP

Aggregation can be combined with user-defined functions to create sophisticated
analyses. The following aggregation query uses a group variable computed using a user-
defined function, to count the number of IPV4 packets and the sum of their lengths
from each local host during 60 second epochs.

Qa
2 : SELECT tb, localHost, count(*), sum(len)

FROM IPV4
WHERE getlpmid(sourceIP, ‘localprefix.tbl’) > 0
GROUP BY time/60 as tb,

getlpmid(sourceIP, ‘localprefix.tbl’) as localHost

2.5 Merges and Joins

A GSQL merge query permits the union of streams from multiple sources into a single
stream, while preserving the temporal (ordering) properties of one of the (specified)
attributes. The input streams must have the same number and types of fields, and the
merge fields must be temporal and similarly monotonic (both increasing or both de-
creasing). For example, the following query can be used to merge data packets from
two simplex physical (optical) links to obtain a full view of the traffic on a logical link.
Such merge queries have proven very useful in Gigascope for network data analysis.

Qm
1 : DEFINE { query name logicalPktsLink; }

MERGE O1.timestamp : O2.timestamp
FROM opticalPktsLink1 O1, opticalPktsLink2 O2

Streams, Security and Scalability 5

A GSQL join query supports the join of two data streams, with a temporal join
predicate (possibly along with other predicates), and will emit a tuple for every pair
of tuples from its sources that satisfy the predicate in the GSQL WHERE clause. The
following query, for example, computes the delay between a tcp syn and a tcp ack.

Qj
1: SELECT S.tb, S.sourceIP, S.destIP, S.source port,

S.dest port, (A.timestamp − S.timestamp)
FROM tcp syn S, tcp ack A
WHERE S.sourceIP = A.destIP and S.destIP = A.sourceIP and

S.source port = A.dest port and S.dest port = A.source port
S.tb = A.tb and S.timestamp <= A.timestamp and
(S.sequence number + 1) = A.ack number

Joins can be combined with aggregates for complex GSQL queries.

2.6 User-Defined Aggregation and Sampling

GSQL permits users to define aggregate functions (UDAFs), and reference them in
queries, just like regular aggregates [12]. The specification of the UDAF consists of
multiple functions: INITIALIZE (which initializes the state of a scratchpad space), IT-
ERATE (which inserts a value to the state of the UDAF), OUTPUT (to support multi-
ple return values from the same UDAF computation), and DESTROY (which releases
UDAF resources).1

For example, using GSQL’s UDAF mechanism, approximate quantile streaming al-
gorithms can be coded, and accessed like in the following query, to compute the median
value of len for each source IP address and 60 second epoch:

Qu
1 : SELECT tb, sourceIP, count(*), percentile(len,50)

FROM IPV4
GROUP BY time/60 as tb, sourceIP

The UDAF mechanism is useful to obtain point values (e.g., median packet length),
but it is cumbersome for obtaining set values, such as in returning a sample of the
data stream (e.g., a subset-sums or a reservoir sample). Given the utility of sampling to
analyze high-speed streams, GSQL supports a sampling operator that can be specialized
by users to implement a wide variety of stream sampling algorithms [21]. The key
observation employed is that even though there are many differences between various
stream sampling algorithms, they follow a common pattern. First, a number of items are
collected from the original data stream according to a certain criterion (possibly with
aggregation in the case of duplicates); this is the insert phase. Then, if a condition on
the sample is triggered (e.g., the sample is too large), the size of the sample is reduced
according to another criterion; this is the compress phase. This alternation of insert and
compress phases can be repeated several times in each epoch. At the end of the epoch,
the sample is output; this is the output phase. For example, the following query will
report the 100 most common source IP addresses within a 60 second epoch.

1 Additional functions are needed to deal with Gigascope’s two-level architecture, which we do
not discuss further.

6 T. Johnson et al.

Qu
2 : SELECT tb, sourceIP

FROM IPV4
GROUP BY time/60 as tb, sourceIP
CLEANING WHEN local count(100) = TRUE
CLEANING BY count(*) < current bucket()− first(current bucket())

2.7 Query Set

Complex analyses are best expressed as combinations of simpler pieces. By permitting
GSQL queries to be named, and re-used in the FROM clause of other GSQL queries, a
set of inter-related queries, forming a query DAG, can be defined.

3 Attacks

A large variety of network-based attacks have been discussed in the literature, including
viruses, worms, DDoS attacks, etc. (see, e.g., [10,9,16,23,25,26,29,24,33,36,38]). Here,
we discuss a few representative attacks, and illustrate how Gigascope can be used to aid
in the detection of these attacks.

3.1 Denial of Service

A denial of service (DoS) attack is characterized by an explicit attempt by attackers to
prevent legitimate users of a service from using that service [7]. DoS attacks have been
among the most common form of Internet attacks. The basic form of a DoS attack is to
consume scarce computer and network resources, such as kernel data structures, CPU
time, memory and disk space, and network bandwidth.

Email Bombing: An example DoS attack that attempts to consume system and network
resources is Email Bombing, where attackers send excessively many and large e-
mail messages to one or more accounts at a specific victim site [8]. When the attacker
makes use of a dispersed set of sources to coordinate such an attack, it is referred to as
a distributed DoS (DDoS) attack.

Email Bombing can be detected at the victim site if email is sluggish, possibly
because the mailer is trying to process too many messages. An alternative way of check-
ing for this possibility is to monitor the SMTP traffic entering a protected network using
Gigascope, and check for hosts that show significant deviations in expected traffic at
port 25/SMTP. The following simple GSQL query can track the total SMTP traffic for
individual destination IP addresses. Deviations can be monitored by comparing recent
behavior with more historical trends.

Qdos
1 :DEFINE { query name smtp perhost; }

SELECT tb, destIP, count(*), sum(len)
FROM TCP
WHERE protocol = 6 and dest port = 25
GROUP BY time/60 as tb, destIP

Streams, Security and Scalability 7

Note that, since the number of destination IP addresses in a protected network is
likely to be limited, the number of groups created by this query would not explode, even
under email bombing. This is similar to “semi-streaming” where we maintain statistics
per group or entity [31]. Only the count of the number of packets, and the sum of the
packet lengths, would increase for victim hosts.

If the number of destination IP addresses in a network is very large, one can use
GSQL’s sampling mechanism to keep track of the destination IP addresses, e.g., with
the largest counts, using a variant of query Qu

2 .

TCP SYN Flood: A more complex attack against network connectivity, by consuming
kernel data structures, is the TCP SYN Flood attack [6], which exploits the 3-way
handshake used to establish a TCP connection between a sender and a receiver. In a
normal scenario, a sender initiates a TCP connection by sending a SYN packet, the
receiver responds with a SYN/ACK packet, and the sender completes the 3-way hand-
shake with an ACK packet. After sending the SYN/ACK packet, the receiver allocates
connection resources (kernel data structures) to remember the pending connection for
a pre-specified amount of time. A TCP SYN Flood attack occurs when an attacker
repeatedly sends SYN packets, typically with different source addresses, causing the
receiver to deplete its connection resources, preventing service to legitimate users.

In principle, TCP SYN Flood can be identified by correlating the SYN packets
with matching ACK packets in the stream of TCP packets, and alarming when too many
SYN packets in a specified time interval appear to be unmatched. The GSQL query set
for this purpose, Qdos

2 , makes use of joins, as shown below. The outer join ensures that
output tuples will be computed even when there are no matched SYN packets in an
epoch. Note that this is an estimate since in certain loss conditions, and due to epoch
boundary issues, we might get approximate results.

Qdos
2 :DEFINE { query name toomany syn; }

SELECT A.tb, (A.cnt−M.cnt)
OUTER JOIN FROM all syn count A, matched syn count M
WHERE A.tb = M.tb

DEFINE { query name all syn count; }
SELECT S.tb, count(*) as cnt
FROM tcp syn S
GROUP BY S.tb

DEFINE { query name matched syn count; }
SELECT S.tb, count(*) as cnt
FROM tcp syn S, tcp ack A
WHERE S.sourceIP = A.destIP and S.destIP = A.sourceIP and

S.source port = A.dest port and S.dest port = A.source port
S.tb = A.tb and S.timestamp <= A.timestamp and
(S.sequence number + 1) = A.ack number

GROUP BY S.tb

8 T. Johnson et al.

Over a high-speed (e.g., 1 Gbit/sec) link, one could see up to 3 million SYN packets
per second [29]. In the worst-case, for reasonably large (multi-second) round-trip times,
this may require too much memory to compute the join in matched syn count. In
such cases, one could sample random SYN packets in the incoming stream (see Sec-
tion 4.3), and check if they are matched (see, e.g., [17]). A sampling algorithm like
reservoir sampling [37], which has been instantiated using GSQL’s sampling operator,
would suffice for this task.

Alternatively, one could simply count the number of SYN packets and the number
of ACK packets in specified windows, and declare the possibility of an attack if there
are more of the former than of the latter (as advocated by [38]). The query in Gigascope
for this approach is shown below.

Qdos
2 :DEFINE { query name toomany syn; }

SELECT A.tb, (S.cnt − A.cnt)
OUTER JOIN FROM all syn count S, all ack count A
WHERE S.tb = A.tb and (S.cnt− A.cnt) > 0

DEFINE { query name all syn count; }
SELECT S.tb, count(*) as cnt
FROM tcp syn S
GROUP BY S.tb

DEFINE { query name all ack count; }
SELECT A.tb, count(*) as cnt
FROM tcp ack A
GROUP BY A.tb

3.2 Worms and Viruses

A worm is self-propagating malicious code [9]. Unlike a virus, which requires a user to
do something (such as opening an infected email attachment) for its negative impact, a
worm exploits vulnerabilities in the underlying operating system to inflict its damage,
and to replicate and propagate by itself. They have been widely discussed in the pop-
ular press, because of the significant damage they have caused to the productivity and
infrastructure of users.

Viruses rely on user action for their propagation, and hence tend to spread slowly.
However, the highly automated nature of worms, along with the relatively widespread
nature of the vulnerabilities they exploit allows a large number of systems to be quickly
compromised. For example, the Code Red worm exploited a vulnerability in Mi-
crosoft IIS servers, and infected more than 250,000 systems in about 9 hours on July
19, 2001. As another example, the Slammer worm exploited a vulnerability in Mi-
crosoft’s SQL Server 2000 code, and affected nearly 100,000 hosts in 10 minutes on
January 25, 2003. Some worms include built-in DoS attack payloads, while others have
web site defacement payloads (e.g., Code Red). But, often, their biggest impact is in
the collateral damage they cause as they rapidly propagate through the Internet.

Streams, Security and Scalability 9

Known Worms: Worms can be identified by their payload, and their specific mechanism
of propagation. For example, activity of the Slammerworm is identifiable in a network
by the presence of 376-byte UDP packets, destined for port 1434/UDP of SQL Server,
using the following query.

Qwv
1 :DEFINE { query name slammer worm; }

SELECT tb, destIP, count(*)
FROM UDP
WHERE protocol = 17 and dest port = 1434 and total ipv4 length = 376
GROUP BY time/60 as tb, destIP

A number of such header profiles have been identified by detailed traffic analy-
sis [28], and can be encoded directly as GSQL queries.

Unknown Worms: Since worms are self-replicating, ongoing worm propagation should
be reflected in the presence of higher than expected string similarity among the payloads
of network packets. This similarity is due to the unchanging portions of the worm packet
payload, which is expected to be present even in polymorphic worms. This intuition
has been exploited by various systems like EarlyBird [33] and Autograph [25], which
use the frequency of substrings in packet payloads to generate signatures of sources of
content similarity (which in turn are indicative of potential worms). A GSQL query akin
to Qu

2 could be used to compute heavy hitters on the substring counts of the payload,
for this purpose.

Recent work has also examined the utility of the inverse distribution (for a given
frequency f , the number of substrings that appear with that frequency) to permit faster
detection of potential worms [24]. The following GSQL query can be used for compu-
tation of the inverse distribution.

Qwv
2 :DEFINE { query name inverse distrib; }

SELECT B.tb, B.cnt, COUNT(*) AS invCnt
FROM base distrib B
GROUP BY B.tb, B.cnt

DEFINE { query name base distrib; }
SELECT C.tb, C.SId, COUNT(*) AS cnt
FROM ContentStrings C
GROUP BY C.tb, C.SId

The cost of this query depends on the number of distinct substrings over all pay-
loads, which is independent of the frequency of worm propagation.

3.3 Probing for Vulnerability

Attacks exploit known vulnerabilities in services. A typical precursor to attacks is the
identification of machines that have specific services available, and hence can be po-
tentially exploited. This takes the form of an attacker probing for open ports on a set of
host machines (see, e.g., [23,29]).

10 T. Johnson et al.

Ingress Detection: To determine if a port is open, an attacker sends a packet to a host,
attempting to connect to the specific port. If the target host is listening on that port, it
will respond by opening a connection with the attacker. This implies that during the
probing phase, the attacker would not spoof the sourceIP address. By monitoring
the number of distinct (destIP, dest port) pairs with the same sourceIP,
one can check for anomalous activity using the following GSQL query.

Qpv
1 : SELECT tb, sourceIP, count distinct(PACK(destIP, dest port)) AS cnt

FROM TCP
GROUP BY time/60 as tb, sourceIP

A simpler GSQL query, below, simply tracks the number of distinct targets probed
(potentially from different hosts, as would arise in a distributed vulnerability probe),
and uses an anomalous increase in this number as an indicator of suspicious activity.

Qpv
2 : SELECT tb, count distinct(PACK(destIP, dest port)) AS cnt

FROM TCP
GROUP BY time/60 as tb

Egress Detection: If the target host does not have a listening process on a port, a dif-
ferent kind of response may be generated. For example, a packet sent to such a UDP
port may generate an ICMP “port unreachable” response, while a packet sent to such a
TCP port may generate an RST packet in response. Vulnerability probes (or, port scans)
can hence be also identified by monitoring the number of distinct destination addresses
generating such responses [29]. This can be easily captured by a variant of Qpv

2 , above.

4 Scalability

Gigascope is designed for monitoring very high speed data streams, using inexpen-
sive processors. For example, in [22], non-trivial query sets were run at over 200,000
packets/sec, while using only 38% of one CPU in a two CPU system. To accomplish
this goal, Gigascope uses an architecture optimized for its particular applications, in-
corporating unblocking using timestamps and heartbeats, a two-level architecture, and
sophisticated sampling algorithms, each of which are described below.

4.1 Unblocking, Timestamps and Heartbeats

The Gigascope DSMS evaluates queries over potentially infinite streams of tuples. To
produce useful output, it must be able to unblock operators such as aggregation, join,
and union. In general, this unblocking is done by limiting the scope of output tuples that
an input tuple affects. One unblocking mechanism is to define queries over windows of
the input stream.

Gigascope’s technique for localizing input tuple scope is to require that some fields
of the input data streams be identified as behaving like timestamps, e.g., be monotone
increasing [14]. The locality of input tuples is determined by analyzing how the query
references the timestamp fields. For example, a merge or a join query must relate times-
tamp fields of both inputs, and an aggregation query must have a timestamp field as one

Streams, Security and Scalability 11

of its group-by variables. For example, suppose that time is labeled as monotone in-
creasing in the TCP stream. Then the tb group-by variable in Query Qa

1 (which counts
the packets from each source IP address during 60 second epochs) is inferred also to be
monotone increasing. When this variable changes in value, all existing groups and their
aggregates are flushed to the operator’s output. The values of the group-by variables
thus define epochs in which aggregation occurs, with a flush at the end of each epoch.

The timestamp analysis mechanism is quite effective for unblocking operators as
long as all input streams make progress. However, if one of the input streams stalls,
operators that combine two streams (such as merge, which preserves timestamp order in
the output data stream) can stall, possibly leading to a system failure. This can happen,
for example, when merging traffic from a gigabit primary link and a backup link (which
is used only when the primary link fails, and hence usually carries almost no traffic),
for attack analysis. The main problem is that while the presence of tuples in the stream
carries temporal information, their absence does not. In such situations, heartbeats or
punctuations (see, e.g., [35]) can be used to unblock operators.

Gigascope’s punctuation-carrying heartbeats [22] are generated by source query
operators by regularly injecting the heartbeat messages carrying temporal update tu-
ples into their output streams. A streaming operator in a subsequent query node in the
query DAG emits temporal update tuples whenever it receives a heartbeat from one
of its source streams. Thus, the heartbeats propagate throughout the query DAG. [22]
discusses detailed implementation issues, and demonstrates the effectiveness of these
heartbeats (significant reduction in memory load with a negligible CPU cost), using
experiments with join and merge queries over very high-speed data streams.

4.2 Two-Level Architecture

Gigascope has a two-level query architecture, where the low level is used for data re-
duction and the high level performs more complex processing [14,12]. This approach is
employed for keeping up with high streaming rates in a controlled way. High speed data
streams from, e.g., a Network Interface Card (NIC), are placed in a large ring buffer.
These streams are called source streams to distinguish them from data streams created
by queries. The data volumes of these source streams are far too large to provide a
copy to each query on the stream. Instead, the queries are shipped to the streams. If a
query Q is to be executed over source stream S, then Gigascope creates a subquery q
that directly accesses S, and transforms Q into Q′ which is executed over the output
from q. In general, one subquery is created for every table variable that aliases a source
stream, for every query in the current query set. The subqueries read directly from the
ring buffer. Since their output streams are much smaller than the source stream, this
two-level architecture greatly reduces the amount of copying (simple queries can be
evaluated directly on a source stream).

The subqueries (which are called “LFTAs”, or low-level queries, in Gigascope) are
intended to be fast, lightweight data reduction queries. By deferring expensive pro-
cessing (expensive functions and predicates, joins, large scale aggregation), the high
volume source stream is quickly processed, minimizing buffer requirements. The ex-
pensive processing is performed on the output of the low level queries, but this data
volume is smaller and easily buffered. Depending on the capabilities of the NIC, we

12 T. Johnson et al.

can push some or all of the subquery processing into the NIC itself. In general, the most
appropriate strategy depends on the streaming rate as well as the available processing
resources. Choosing the best strategy is a complex query optimization problem, that
attempts to maximize the amount of data reduction without overburdening the low level
processor and thus causing packet drops.

Gigascope uses a large number of optimizations to lower the LFTA processing costs.
Low-level operators are compiled into C code that are linked directly to the runtime
library to avoid expensive runtime query interpretation. To ensure that aggregation is
fast, the low-level aggregation operator uses a fixed-size hash table for maintaining the
different groups of a GROUP BY. If a hash table collision occurs, the existing group
and its aggregate are ejected (as a tuple), and the new group uses the old group’s slot.
That is, Gigascope computes a partial aggregate at the low level which is completed at
a higher level. The query decomposition of an aggregate query Q is similar to that of
subaggregates and superaggregates in data cube computations.

The Gigascope DSMS has many aspects of a real-time system: for example, if the
system cannot keep up with the offered load, it will drop tuples. To spread out the pro-
cessing load over time and thus improve schedulability, Gigascope implements traffic-
shaping policies in some of its operators. In particular, the aggregation operator uses
a slow flush to emit tuples when the aggregation epoch changes. One output tuple is
emitted for every input tuple which arrives, until all finished groups have been output
(or the epoch changes again, in which case all old groups are flushed immediately).

4.3 Sampling

The complex query set needed to analyze high-speed streams for attacks would often
need to rely on approximations, using streaming algorithms, to keep up with their input.
Many of these streaming algorithms compute samples (i.e., a small-sized representative
of the data suitable for specific queries) in one pass over a high speed data stream.
These stream sampling algorithms include generic sampling methods such as fixed-
size reservoir sampling [37], as well as methods for estimating specific user-defined
aggregates such as heavy hitters [30], distinct counts [18], quantiles [19], and subset-
sums [3].

One approach developed in [21] is to develop a single operator that can be special-
ized to implement a wide variety of stream sampling algorithms. The sampling algo-
rithms that can be implemented as specializations of the sampling operator permit a very
simple communication structure, i.e., only between individual samples and the sample
summary. The process of sampling is in some ways similar to that of aggregation, since
they both collect and output sets of tuples that are representative of the input, while
achieving data reduction. This analogy leads to an efficient implementation, based on
the use of multiple hash tables, of all specializations of the sampling operator.

An alternative, more flexible, approach to implementing individual stream sampling
algorithms in Gigascope is with user-defined aggregate functions (UDAFs). This ap-
proach was explored in [12], where both sampling-based UDAFs and sketch-based
UDAFs were implemented. The added flexibility of the UDAF approach, even for
sampling-based algorithms, is that it permits the specification of algorithms that need
“inter-sample communication”, especially during the compress phase (such as the quan-

Streams, Security and Scalability 13

tile algorithm of [19]). Several key performance lessons were identified. First, early data
reduction is critical for complex querying of very high speed data streams, and Gigas-
cope’s two-level architecture is highly suitable for this purpose. Second, there is often
a range of early data reduction strategies to choose from for processing complex ag-
gregates, including use of appropriate subaggregation. The most appropriate strategy
depends on the streaming rate as well as the available processing resources; choosing
the best strategy is a complex optimization problem, with the goal of maximizing the
amount of data reduction without overburdening the low-level query processor.

5 Conclusion

Network-based attacks, such as DDoS attacks, worms, and viruses are now common-
place, and the variety and sophistication of attacks keeps growing over time. Early de-
tection of potential attacks will become crucial in mitigating the subsequent impact of
these attacks. Thus, it is imperative for the next generation of NIDS to:

– provide general analysis over headers and contents of elements in network data
streams to detect potential attack signatures.

– provide highly flexible mechanisms for specifying known attack signatures over
network data streams.

– provide efficient (wire-speed) mechanisms for checking these signatures, to iden-
tify and mitigate high speed attacks.

We argue that the Gigascope DSMS has both the functionality and the performance
to serve as the foundation for the next generation of network intrusion detection sys-
tems. The functionality is provided by the expressive, yet high-level, GSQL query lan-
guage, which supports a rich variety of features including filters, user-defined functions,
user-defined aggregation and sampling, and joins. Using example GSQL queries, we
have illustrated the utility of these features for discerning and specifying attack signa-
tures. The performance is provided by the Gigascope architecture for monitoring very
high speed data streams, incorporating features like unblocking using timestamps and
heartbeats, a two-level architecture, and sophisticated sampling algorithms.

As network-based attacks evolve, Gigascope will need to evolve as well. Sophisti-
cated cooperation between a distributed set of Gigascope installations will be needed
to identify highly distributed attacks on the network infrastructure. Statistical anomaly
detection algorithms, both parametric and non-parametric, will need to be expressed in
the query language. Sampling and signature computations on the payload, involving re-
assembly of network packets, will prove useful. We think that Gigascope will be able
to meet these challenges.

Acknowledgements

We would like to thank Balachander Krishnamurthy, Morley Mao, Shubho Sen, and
Kobus Van der Merwe, for many helpful discussions.

14 T. Johnson et al.

References

1. D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang, W. Lind-
ner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdonik. The design
of the Borealis stream processing engine. In CIDR, pages 277–289, 2005. http://www-
db.cs.wisc.edu/cidr/papers/P23.pdf.

2. D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, and S. B. Zdonik. Aurora: A new model and architecture for data stream manage-
ment. VLDB J., 12(2):120–139, 2003. http://dx.doi.org/10.1007/s00778-003-0095-z.

3. N. Alon, N. G. Duffield, C. Lund, and M. Thorup. Estimating arbitrary subset sums with few
probes. In PODS, 2005.

4. A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivastava,
D. Thomas, R. Varma, and J. Widom. Stream: The Stanford stream data manager. IEEE
Data Eng. Bull., 26(1):19–26, 2003.

5. V. Atluri, B. Pfitzmann, and P. McDaniel, editors. Proceedings of the 11th ACM Conference
on Computer and Communications Security, CCS 2004, Washington, DC, USA, October 25-
29, 2004. ACM, 2004.

6. CERT. Cert advisory ca-1996-21 TCP SYN flooding and IP spoofing attacks. http://
www.cert.org/advisories/CA-1996-21.html, 2000.

7. CERT. Cert coordination center: Denial of service attacks. http://www.cert.org/tech tips/
denial of service.html, 2001.

8. CERT. Cert coordination center: Email bombing and spamming. http://www.cert.org/
tech tips/email bombing spamming.html, 2002.

9. CERT. Overview of attack trends. http://www.cert.org/archive/pdf/attack trends.pdf, 2002.
10. CERT. Cert/cc advisories. http://www.cert.org/advisories/, 2004.
11. S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. A. Shah. TelegraphCQ:
Continuous dataflow processing for an uncertain world. In CIDR, 2003. http://www-
db.cs.wisc.edu/cidr2003/program/p24.pdf.

12. G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck, and D. Srivastava.
Holistic UDAFs at streaming speeds. In G. Weikum, A. C. König, and S. Deßloch, edi-
tors, SIGMOD Conference, pages 35–46. ACM, 2004. http://doi.acm.org/10.1145/1007568.
1007575.

13. C. D. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gigascope: High
performance network monitoring with an SQL interface. In M. J. Franklin, B. Moon, and
A. Ailamaki, editors, SIGMOD Conference, page 623. ACM, 2002. http://doi.acm.org/
10.1145/564691.564777.

14. C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope: A stream
database for network applications. In A. Y. Halevy, Z. G. Ives, and A. Doan, editors,
SIGMOD Conference, pages 647–651. ACM, 2003. http://www.acm.org/sigmod/sigmod03/
eproceedings/papers/ind03.pdf.

15. C. D. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. The Gigascope stream
database. IEEE Data Eng. Bull., 26(1):27–32, 2003.

16. H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Operational experiences with high-
volume network intrusion detection. In Atluri et al. [5], pages 2–11. http://doi.acm.org/
10.1145/1030086.

17. C. Estan and G. Varghese. New directions in traffic measurement and accounting: Focus-
ing on the elephants, ignoring the mice. ACM Trans. Comput. Syst., 21(3):270–313, 2003.
http://doi.acm.org/10.1145/859716.859719.

Streams, Security and Scalability 15

18. P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct values queries
and event reports. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamo-
hanarao, and R. T. Snodgrass, editors, VLDB, pages 541–550. Morgan Kaufmann, 2001.
http://www.vldb.org/conf/2001/P541.pdf.

19. M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries.
In SIGMOD Conference, 2001. http://www.acm.org/sigs/sigmod/sigmod01/eproceedings/
papers/Research-Greenwald-Khanna.pdf.

20. T. Johnson. GSQL users manual. Accessible from http://www.research.att.com/˜johnsont,
2005.

21. T. Johnson, S. Muthukrishnan, and I. Rozenbaum. Sampling algorithms in a stream operator.
In SIGMOD Conference, 2005.

22. T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O. Spatscheck. A heartbeat mechanism
and its application in Gigascope. In VLDB Conference, 2005.

23. J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast portscan detection using
sequential hypothesis testing. In IEEE Symposium on Security and Privacy, pages 211–
225. IEEE Computer Society, 2004. http://csdl.computer.org/comp/proceedings/sp/2004/
2136/00/21360211abs.htm.

24. V. Karamcheti, D. Geiger, Z. Kedem, and S. Muthukrishnan. Detecting malicious network
traffic using inverse distributions of packet contents. In MineNet, 2005.

25. H.-A. Kim and B. Karp. Autograph: Toward automated, distributed worm signature de-
tection. In USENIX Security Symposium, pages 271–286. USENIX, 2004. http://www.
usenix.org/publications/library/proceedings/sec04/tech/kim. html.

26. R. R. Kompella, S. Singh, and G. Varghese. On scalable attack detection in the network. In
A. Lombardo and J. F. Kurose, editors, Internet Measurement Conference, pages 187–200.
ACM, 2004. http://doi.acm.org/10.1145/1028812.

27. N. Koudas and D. Srivastava. Data stream query processing. In ICDE, page 1145. IEEE
Computer Society, 2005. http://csdl.computer.org/comp/proceedings/icde/2005/2285/00/
22851145abs.htm.

28. A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions.
In SIGCOMM, 2005.

29. K. Levchenko, R. Paturi, and G. Varghese. On the difficulty of scalably detecting network
attacks. In Atluri et al. [5], pages 12–20. http://doi.acm.org/10.1145/1030087.

30. G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In VLDB,
pages 346–357, 2002. http://www.vldb.org/conf/2002/S10P03.pdf.

31. S. Muthukrishnan. Data stream algorithms and applications. http://www.cs.
rutgers.edu/m̃uthu/stream-1-1.ps, 2005.

32. V. Paxson. Bro: A system for detecting network intruders in real-time. Computer Networks,
31(23-24):2435–2463, 1999. http://dx.doi.org/10.1016/S1389-1286(99)00112-7.

33. S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In OSDI,
pages 45–60, 2004. http://www.usenix.org/events/osdi04/tech/singh.html.

34. Snort. The de facto standard for intrusion detection. http://www.snort.org.
35. P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting punctuation seman-

tics in continuous data streams. IEEE Trans. Knowl. Data Eng., 15(3):555–568, 2003.
http://www.computer.org/tkde/tk2003/k0555abs.htm.

36. US-CERT. Technical cyber security alerts. http://www.us-cert.gov/cas/techalerts/index.html,
2005.

37. J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37–57, 1985.
38. H. Wang, D. Zhang, and K. G. Shin. Detecting SYN flooding attacks. In INFOCOM, 2002.

http://www.ieee-infocom.org/2002/papers/800.pdf.

Towards Privacy-Enhanced Authorization

Policies and Languages

C.A. Ardagna, E. Damiani, S. De Capitani di Vimercati, and P. Samarati

Dipartimento di Tecnologie dell’Informazione,
Università di Milano –26013 Crema - Italy

{ardagna, damiani, decapita, samarati}@dti.unimi.it

Abstract. The protection of privacy in today’s global infrastructure
requires the combined application solution from technology (technical
measures), legislation (law and public policy), and organizational and
individual policies and practices. Emerging scenarios of user-service in-
teractions in the digital world are also pushing toward the development
of powerful and flexible privacy-enhanced models and languages.

This paper aims at introducing concepts and features that should
be investigated to fulfill this demand. In particular, the content of this
paper is a result of our ongoing activity in the framework of the PRIME
project (Privacy and Identity Management for Europe), funded by the
European Commission, whose objective is the development of privacy-
aware solutions for enforcing security.

1 Introduction

Traditional access control systems are based on regulations (policies) that es-
tablish who can, or cannot, execute which actions on which resources. How-
ever, in today’s systems the definition of an access control model is compli-
cated by the need to formally represent complex policies, where access deci-
sions depend on the application of different rules coming, for example, from
laws practices, and organizational regulations. Given the complexity of the sce-
nario, these traditional policies are too limiting and do not satisfy all the above
requirements. Although recent advancements allow the specifications of poli-
cies with reference to generic attributes/properties of the parties and the re-
sources involved, they are not designed for enforcing privacy policies. For in-
stance, privacy issues that are not addressed by traditional approaches include
protecting user identities by providing anonymity, pseudonymity, unlinkability,
and unobservability of users at communication level, system level, or applica-
tion level. Therefore, the consideration of privacy issues introduces the need
for rethinking authorization policies and models and the development of new
paradigms for access control and in particular authorization specification and
enforcement.

In this paper, we present our recent research work in the context of the
PRIME project [12]. Our work deals with three main key aspects:

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 16–27, 2005.

c© IFIP International Federation for Information Processing 2005

Towards Privacy-Enhanced Authorization Policies and Languages 17

– Resource representation. Writing access control policies where resources to
be protected are pointed at via data identifiers and access conditions are
evaluated against their attribute values is not sufficient anymore. Rather, it
is important to be able to specify access control requirements about resources
in terms of available metadata describing them.

– Context representation. Distributed environments have increased the amount
of context information available at policy evaluation time (e.g., location-
based one), and this information is achieving a more and more important
role.

– Subject identity. Evaluating conditions on the subject requesting access to
a resource often means accessing personal information either presented by
the requestor as a part of the authentication process or available elsewhere.
Identifying subjects raises a number of privacy issues, since electronic trans-
actions (e.g., purchases) require disclosure of a far greater quantity of infor-
mation than their physical counterparts.

A privacy-enhanced authorization model and language is then described al-
lowing for definition and enforcement of powerful and flexible access restrictions
based on generic properties associated with subjects and objects. We also bring
forward the idea of exploiting the semantic web to allow the definition of access
control rules based on generic assertions defined over concepts in the ontologies
that control metadata content and provide abstract subject domain concepts,
respectively [16]. These rules are then enforced on resources annotated with
metadata regulated by the same ontologies.

The remainder of this paper is organized as follows. Section 2 presents the
different types of privacy policies we have identified. Section 3 and Section 4 illus-
trate our privacy-enhanced model and language, respectively. Section 5 describes
a possible representation of expressing our language by using an XML-based syn-
tax. Finally, Section 6 presents our conclusions.

2 Privacy Policies

To address the requirements mentioned in the previous section, different types
of policies need to be introduced.

– Access control policies. They govern access/release of data/services managed
by the party (as in traditional access control) [4].

– Release policies. They govern release of properties/credentials/PII of the
party and specify under which conditions they can be disclosed [2].

– Data handling policies. They define the personal information release will be
(or should be) deals with at the receiving party [15].

– Sanitized policies. They provide filtering functionalities on the response to be
returned to the counterpart to avoid release of sensitive information related
to the policy itself.

18 C.A. Ardagna et al.

Access Control Policies. Access control policies define authorization rules con-
cerning access to data/services. Authorizations correspond to traditional (pos-
itive) rules usually enforced in access control systems. For instance, an autho-
rization rule can require the proof of majority age and a credit card number
(condition) to read (action) a specific set of data (object). Also, an obligation
can specify that the credit card number must be deleted at the end of the transac-
tion or that the server must log any request. When an access request is submitted
to the party, it is first evaluated against the authorization rules applicable to it.
If the conditions for the required access are evaluated to true, access is permit-
ted. If none of the specified conditions that might grant the requested access
can be fulfilled, then the access is denied. Finally, if the current information is
insufficient to determine whether the access request can be granted or denied,
additional information is needed and the client receives an undefined response
with a list of requests that she must fulfill to gain the access. For instance, if
some of the specified conditions can be fulfilled (e.g., by signing an agreement),
then the party prompts the requester with the actions that would result in the
required access.

Release Policies. Release policies define the party’s preferences regarding the
release/disclosure of its Personal Identifiable Information (PII). More precisely,
these policies specify to which party, for which purpose/action, and under which
conditions/obligations a particular set of PII can be released/disclosed [2]. For
instance, a release policy can state that credit card information can be disclosed
only in the process of a buy action and upon presentation of a nondisclosure
agreement (condition) by the party. The disclosure of PII may only be performed
if the release policies are satisfied.

Data Handling Policies. Data handling policies specify how PII is used and
processed [15]. More precisely, they should regulate how PII will be used (e.g.,
information collected through a service will be combined with information col-
lected from other services and used in aggregation for market research purposes),
how long PII will be retained (e.g., information will be retained as long as neces-
sary to perform the service), and so on. Clients use these policies to define how
her information will be used and processed by the counterpart. In this way, user
can manage the information also after its release.

Sanitized Policies. Sanitized policies provide filtering functionalities on the re-
sponse to be returned to the counterpart to avoid release of sensitive informa-
tion related to the policy itself (or to the status against which the policy has
evaluated). This happens when an undefined decision together with a list of al-
ternatives (policies) that must be fulfilled to gain the access to the data/service
is returned to the counterpart. For instance, suppose that the policy returned
by the access control is “citizenship=EU”. The party can decide to return to
the user either the policy as it is or a modified policy (obtained by applying
the sanitized policies) simply requesting the user to declare its nationality (then
protecting the information that access is restricted to EU citizens).

Towards Privacy-Enhanced Authorization Policies and Languages 19

Resoner

policies
AC

Ontologies

AC module
access request

access decision
Policy editor

...

Portfolio

CLIENT SERVER

Fig. 1. Architecture

In the following, we deal with access control and release policies: data han-
dling and sanitized policies will be added in future work.

3 Scenario and Basic Elements of the Privacy-Enhanced
Model

We consider parties that interact with each other to offer services (see Figure 1).
As in a usual client/server interaction, a client asks for a service and a server
provides for the service. However, each party can be interchangeably as either
a client or a server at different times, with respect to a specific instance of a
service request. The access request is processed by the Access Control module
(AC module). The AC module interacts with the Reasoner that takes the access
control policies together with the subject, object, and credential ontologies as
input and computes the expanded policies including semantically equivalent ad-
ditional conditions. These conditions, specified in disjunction with the original
ones, allow for increasing the original policy’s expressive power. The AC module
returns to the client a yes , no, or undefined decision. In the latter case, it returns
the information about which conditions need to be satisfied for the access to be
granted. In this last case, the problem of communicating such conditions to the
counterpart arises.

The access control policies are based on generic properties (attributes) as-
sociated with the subjects requesting accesses and the resources (data/services)
subjects interact with. In the following, we illustrate these basic elements of our
model in details.

3.1 Portfolio

The set of properties associated with subjects and objects are represented by
means of a portfolio [2]. More precisely, a portfolio includes two types of in-
formation: declarations and credentials. A declaration is a statement issued by

20 C.A. Ardagna et al.

the party while a credential is a statement issued and signed (i.e., certified) by
authorities trusted for making the statement [8]. As an example, the driver li-
cense number maintained as a data value at a party and communicated in a
negotiation is a declaration. A digital copy of the driver license, released by the
public administration to the party, and that the party can submit to a server
to prove that it has a driver license or that the administration certifies some
properties (e.g., address), is a credential. At a practical level, we view a cre-
dential as characterized by two elements: i) a signed content, and ii) the public
digital signature verification key to verify the signature. We can also imagine the
existence of (meta)information associated with a credential, outside the signed
content. Such information cannot however be trusted as being certified by the
authority that signed the credential. In the following, we consider credentials
such a mean to allow query for specific data, such as name or address in a driver
license, number or expiration date in a credit card. To refer to specific data in a
credential we introduce the concept of credential term.

Definition 1. A credential term is an expression of the form
credential name(predicate list), where credential name is the name of
the credential, and predicate list is a possibly empty list of elements of the form
predicate name(arguments).

Intuitively, a credential term can be used to specify a condition on
credentials (we will elaborate more on this in Sect. 4). Some exam-
ples of credential terms are: driver-license(equal(name,“John Doe”))
and identity-card(greater than(age,18)). The first term denotes the
driver-license credential where attribute name should be equal to John. The
second term denotes credential identity-card where attribute age should be
greater than 18. Declarations and credentials in a portfolio may be organized into
a partial order. For instance, an identity-document can be seen as an abstrac-
tion for credentials driver-license, passport, and identity-card. Finally,
the functionalities offered by a server are defined by a set of services. Intuitively,
each service can be seen as an application that clients can execute.

3.2 Ontologies and Abstractions

Our model provides the support for ontologies that allow to make generic as-
sertions on subjects and objects [13,14]. More precisely, we use three ontologies:
a subject ontology , an object ontology, and a credential ontology. The subject
ontology contains terms that can be used to make generic assertions on subjects
(e.g., in a medical scenario possible terms are Physician, Patient, assists).
The object ontology contains domain-specific terms that are used to describe
the resource content such as Video and shows how. Finally, the credential on-
tology represent relationships among attributes and credentials (part-of and
is-a relationships) to establish what kind of credentials can be provided to
fulfill a declaration or credential request. For instance, an ontology can state
that attributes birth date and nationality are part of driver-license,
identity-card, and passport. In this way, the reasoning process can point out

Towards Privacy-Enhanced Authorization Policies and Languages 21

all the credentials that a user, for example, can provide to prove the satisfaction
of a given constraint. To fix ideas and make the discussion clear, suppose that a
user can use an on-line car rental service only if she is an European citizen. The
access is then allowed if the user can prove her nationality and, according to the
credential ontology, this can be done either by showing the driver-license,
identity-card, or passport.

Abstractions can also be defined within the domains of users as well as ob-
jects. Intuitively, abstractions allow to group together users (objects, resp.) with
common characteristics and to refer to the whole group with a name.

4 Privacy-Aware Language

We are now ready to describe the basic constructs of the language used to define
the privacy policies and the syntax of the language.

4.1 Basic Elements of the Language

We have identified the following predicates:

– a predicate declaration where the argument is a list of predicates of the
form predicate name(arguments);

– a binary predicate credential where the first argument is a credential term
(see Definition 1) and the second argument is a public key term. Intuitively,
a ground atom credential(c, K) is evaluated to true if and only if there
exists a credential c verifiable with public key K.

– a set of standard binary built-in mathematic predicates, such as equal(),
greater than(), lesser than(), and so on.

– a set of non predefined predicates that evaluate information stored at the site.

The above predicates constitute the basic literals that can be used in access
control and release policies. Note that predicates declaration and credential
have been introduced to distinguish between conditions on data declarations
and conditions on credentials (we will elaborate more on this in the following
sub-section).

4.2 Policy Components

Syntactically, an access control rule (release rule, resp.) has the following form:

subject with subject-expression can action for purpose on object with
object-expression if conditions follow obligations

where:

– subject (object) identifies the subject (object) to which the rule refers;
– subject-expression (object-expression) is an expression that allows the refer-

ence to a set of subjects (objects) depending on whether they satisfy given
conditions that can be evaluated on the user’s portfolio (object’s profile);

22 C.A. Ardagna et al.

– action is the action to which the rule refers (e.g., read, write, and so on)1

– purpose is the purpose (e.g., scientific) to which the rule refers and rep-
resents how the data is going to be used by the recipient;

– conditions is a boolean expression of generic conditions that an access request
to which the rule applies has to satisfy;

– obligations is a boolean expression of obligations that the server must follow
when manage the information/data/PII.

We now look at the different components in the rule.

Subject Expression. These expressions allow the reference to a set of subjects
depending on whether they satisfy given conditions that can be evaluated on the
subject’s portfolio. Note that the conditions specified through these expressions
are very similar to generic conditions. The difference is that while the subject
expression is evaluated on the user of the request, generic conditions specify
generic constraints that are not evaluated on the requester. More precisely, a
subject expression is a boolean formula of terms of the form:

– declaration(predicate list), where predicate list is a possibly empty list of
elements of the form predicate name(arguments). Intuitively, a declaration
predicate is evaluated to true if each predicate specified in the predicate list
is evaluated to true.

– credential(credential term,K), where credential term is defined as
credential name(predicate list) (see Definition 1). Intuitively, a credential
predicate is evaluated to true if there exists credential credential name for
which each predicate predicate(arguments) in predicate list is evaluated
to true and credential name is verifiable with public key K .

Note that the predicates specified as arguments of the declaration and
credential predicates can be: i) location-based predicates, ii) the standard
built-in mathematic predicates, and iii) the non predefined predicates that eval-
uate information stored at the server.

To make it possible to refer to the user of the request being evaluated without
the need of introducing variables in the language, we introduce the keyword user,
whose appearance in a conditional expression is intended to be substituted with
the actual parameters of the request in the evaluation at access control time.

Example 1. The following are examples of subject expressions:

– declaration(equal(user.name,Bob),greater than(user.age,18)) denot-
ing requests made by a user whose name is Bob with age greater than 18;

– credential(passport(equal(user.job,professor)),K1) denoting requests
made by users who are professors. This property should be certified by show-
ing the passport credential verifiable with public key K1

1 Note that abstractions can also be defined on actions, specializing actions or grouping
them in sets.

Towards Privacy-Enhanced Authorization Policies and Languages 23

Object Expression. These expressions allow the reference to a set of objects
depending on whether they satisfy given conditions that can be evaluated on
the object’s profile. Note that the conditions specified through these expressions
are very similar to generic conditions. The difference is that while the object
expression evaluated on the object (or associated profile) to which the request
being processed refers, generic conditions specify generic constraints that are
not evaluated on the requested object. More precisely, an object expression is a
boolean formula of terms of the form:

– declaration(predicate list), where predicate list is a possibly empty list of
elements of the form predicate name(arguments). Intuitively, a declaration
predicate is evaluated to true if each predicate specified in the predicate list
is evaluated to true.

Note that the predicates specified as arguments of the declaration predicate
can be: i) the standard built-in mathematic predicates, and ii) the non predefined
predicates that evaluate information stored at the server.

Like for subjects, to make it possible to refer to the object to which the
request being processed refers, without need of introducing variables in the lan-
guage, we introduce the keyword object, whose appearance in a conditional
expression is intended to be substituted with the actual parameters of the re-
quest in the evaluation at access control time.

Example 2. The following are examples of object expressions:

– declaration(equal(object.creator,user)) denoting all objects created
by the requester;

– declaration(lesser than(object.creation date,1971)) denoting all
objects created before 1971.

Conditions. We assume that the type of conditions that can be specified in the
conditions element are only conditions that can be brought to satisfactions at
run-time processing of the request. These conditions can be related to agreement
acceptance, payment fulfillment, or registration. Conditions can be associated
with data at different levels (i.e., attribute, credentials’ attributes and creden-
tials) and can be certified or uncertified. More precisely, conditions are boolean
formula of terms of the form:

– predicate name(arguments).

Note that the predicates specified in the conditions element can be: i) trusted-
based conditions stating that, for example, the requester should use a trusted
platform, ii) the standard built-in mathematic predicates, and iii) the non pre-
defined predicates that evaluate information stored at the server.

Example 3. The following is a simple example of condition.

– fill in form(user,form1) checks if the requester has filled in form form1.

24 C.A. Ardagna et al.

Obligations. They establish how the released PII must be managed by the coun-
terpart. For instance, obligations may state that some data should be deleted
after three time accessed, the owner of some data should be notified after every
access to the data, some data should be obfuscated or deleted after 3 months,
and so on. Obligations can be attached to a particular instance of release data
in order to give to the counterpart some rules that must be follow in the PII
management.

5 An Example

We now present an example of policy (other examples are omitted here for space
constraints) and a possible way of expressing policies by using an XML-based
syntax.

We define two namespaces: xmlns:pol is the namespace of the policy and
xmlns:ont is the namespace for the ontology statements. Every policy can con-
tain more than one rule combined through the combine-rule attribute. Each rule
has three main components:

– pol:target is the target of the policy (subject, object, action, purpose);
– pol:condition includes generic conditions (neither related to subject nor

object) such as assurance/trust conditions;
– pol:obligation includes further steps that the party must take in account

when the access is granted.

We now analyze the target component more in details. The target in-
cludes the pol:subject tag corresponding to the subject field described
in Section 4. Associated with the subject, there is the subject expression
(pol:subject-expression) that contains boolean operators (and, or) and a
set of constraints (pol:constraint). Every constraint has a type and is of the
form “left-value operator right-value”. The operator is a matching function, the
left-value (ont:datatype) have to be a class referencing an ontology structure
and the right-value (ont:instanceref) can be another class, an instance class,
or a literal (e.g., in the rule below the constrain is user.job = “doctor”). The
object and object expression have the same structure of the subject and subject
expression, respectively. Finally, the target includes an action (pol:action) and
a purpose (pol:purpose).

When a request is submitted to the system, the AC module selects all the
applicable policies by using the subject, object, action, and purpose specified in
the access request and then checks the (expanded) conditions inside the policies
to determine the access result (yes/no/undefined).

Example 4. Suppose that an access control policy stated that “A registered user
who works as a doctor, can read for research purposes data patientData with
the agreement of the patient”. This policy is expressed as follows.

registeredUsers with declaration (equal(user.work, "doctor")) can read for
research on patientDatawithdeclaration (equal(object.patient agreement,yes))

If no-condition follow no-obligation

Towards Privacy-Enhanced Authorization Policies and Languages 25

<pol:policy type="accessControl" combine-rule="first-grant"

xmlns:pol="http://example.com/policy-namespace"

xmlns:ont="http://example.com/ontology-namespace">

<pol:rule>

<pol:target>

<pol:subject>registeredUsers</pol:subject>

<pol:subject-expression>

<pol:constraint type="declaration">

<pol:function type="equal">

<ont:datatype>

<ont:user/> <ont:job/>

</ont:datatype>

<ont:instanceref>

<ont:user/> <ont:job/>

<ont:value>doctor</ont:value>

</ont:instanceref>

</pol:function>

</pol:constraint>

</pol:subject-expression>

<pol:object>patientData</pol:object>

<pol:object-expression>

<pol:constraint type="declaration">

<pol:function type="equal">

<ont:datatype>

<ont:object/> <ont:patient/> <ont:agreement/>

</ont:datatype>

<ont:value type="xsd:string">yes</ont:value>

</pol:function>

</pol:constraint>

</pol:object-expression>

<pol:action>read</pol:action>

<pol:purpose>research</pol:purpose>

</pol:target>

<pol:condition/>

<pol:obligation> ... </pol:obligation>

</pol:rule>

<pol:rule> ... </pol:rule>

</pol:policy>

Fig. 2. A simple example of policy

Figure 2 illustrates the policy expressed by using the XML syntax described
above. Note that our access control system operates also when the users want
to remain anonymous or disclosure only some attributes about themselves, pro-
tecting users privacy.

6 Conclusions

This paper has presented the preliminary results of our ongoing activity in the
framework of the PRIME project. Issues to be investigated include the filtering

26 C.A. Ardagna et al.

and renaming of policies and the addition of obligations. As discussed previously,
since access control does not return only a “yes” or “no” access decision, but
it returns the information about which conditions need to be satisfied for the
access to be granted (“undefined” decision), the problem of communicating such
conditions to the counterpart arises. The system should then provide meta-
policies for protecting the policy when communication requisites.

Acknowledgments

This work was supported in part by the European Union within the PRIME
Project in the FP6/IST Programme under contract IST-2002-507591 and by the
Italian MIUR within the KIWI and MAPS projects.

References

1. Bonatti, P., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: A Component-
based Architecture for Secure Data Publication. Proc. of the 17th Annual Com-
puter Security Applications Conference (2001), New Orleans, Louisiana.

2. Bonatti, P., Samarati, P.: A Unified Framework for Regulating Access and Infor-
mation Release on the Web. Journal of Computer Security (2002), vol. 10, 241–272.

3. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise
Privacy Authorization Language (EPAL 1.1). IBM Research Report (2003),
http://www.zurich.ibm.com/security/enterprise-privacy/epal.

4. Samarati, P., De Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. Foundations of Security Analysis and Design LNCS 2171 (2001),
Springer-Verlag.

5. eXtensible Access Control Markup Language (XACML) Version 1.1. OASIS,
2003, http://www.oasis-open.org/committees/xacml/repository/cs-xacml-

specification-1.1.pdf.
6. Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: A Web

Service Architecture for Enforcing Access Control Policies. Proc. of the First In-
ternational Workshop on Views On Designing Complex Architectures (VODCA
2004), Bertinoro, Italy.

7. Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Samarati, P.: XML-
based Access Control Languages. Information Security Technical Report, (2004),
vol. 9.

8. Gladman, B., Ellison, C., Bohm, N.: Digital signatures, certificates and electronic
commerce, http://www.clark.net/pub/cme/html/spki.html.

9. Bettini, C., Jajodia, S., Sean Wang, X., Wijesekera, D.: Provisions and
Obligations in Policy Management and Security Applications. In Proc. 28th
Conf. Very Large Data Bases (VLDB’02), (2002), citeseer.ist.psu.edu/

bettini02provisions.html.
10. Park, J., Sandhu, R.: The UCONabc Usage Control Model. ACM Transactions on

Information and System Security (TISSEC), (2004), vol. 7, no. 1.
11. World Wide Web Consortium: Semantic Web. http://www.w3.org/2001/sw/.
12. Privacy and Identity Management for Europe (PRIME). http://www.prime-

project.eu.org/.

Towards Privacy-Enhanced Authorization Policies and Languages 27

13. Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati, P.: Semantics-
aware Privacy and Access Control: Motivation and Preliminary Results. 1st Italian
Semantic Web Workshop, (2004), Ancona, Italy.

14. Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati, P.: Extending
Policy Languages to the Semantic Web. Proc. of the International Conference on
Web Engineering, (2004), Munich, Germany.

15. Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.:
The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. http://www.

w3.org/TR/P3P/.
16. Ardagna, C.A., Damiani, E., De Capitani di Vimercati, S., Fugazza, C., Samarati,

P.: Offline Expansion of XACML Policies Based on P3P Metadata (to appear).
ICWE 2005, 5th International Conference on Web Engineering, Sydney, Australia.

Revocation of Obligation and Authorisation
Policy Objects

Andreas Schaad

SAP Research, 805, Av. Dr. Maurice Donat,
06250 Mougins, France

andreas.schaad@sap.com

Abstract. In [Schaad and Moffett, 2002] we have presented our initial inves-
tigations into the delegation of obligations and the concept of review as one
kind of organisational principle to control such delegation activities. This ini-
tial work led us to a more detailed and refined analysis of organisational con-
trols [Schaad, 2003], [Schaad and Moffett, 2004] with a particular emphasis on
the notion of general and specific obligations [Schaad, 2004]. In particular, this
distinction allowed us to formally capture how a principal may be related to an
obligation; how obligations relate to roles; and how the delegation of specific and
general obligations may be controlled through the concepts of review and super-
vision. This paper complements the delegation of obligation and authorisation
policy objects by discussing their revocation, based on the revocation schemes
suggested in [Hagstrom et al., 2001]. In particular, we will investigate how del-
egated general and specific obligations can be revoked and what effect the pres-
ence of roles has on the revocation process. We use the Alloy language and its
automated analysis facilities [Jackson, 2001] to formally support our discussion.

1 Introduction

Organisational control principles, such as those expressed in the separation of duties,
delegation of obligations, supervision and review, support the main business goals and
activities of an organisation. A framework has been presented in [Schaad, 2003] where
organisational control principles can be formally expressed and analysed using the Al-
loy specification language and its constraint analysis tools [Jackson, 2001]. Specifically
the delegation of obligations and arising review obligations has initially been treated in
[Schaad and Moffett, 2002] and later expanded in [Schaad, 2004]. The delegation of
policy objects must be complemented by their revocation. However, specifying revo-
cation controls may be very complex as, for example, demonstrated in the work of
[Griffiths and Wade, 1976], [Jonscher, 1998] or [Bertino et al., 1997], addressing revo-
cation of permissions in the context of operating and database systems. A more general
framework for revocation has only been proposed recently [Hagstrom et al., 2001]. This
is, however, limited to the revocation of permissions directly assigned to a principal and
does not include a notion of roles. Our paper explores how this revocation framework
can be applied for the revocation of obligation and authorisation policy objects in the
context of our control principle model. Specifically our distinction between general and
specific obligations requires a more detailed discussion of possible revocation schemes.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 28–39, 2005.
c© IFIP International Federation for Information Processing 2005

Revocation of Obligation and Authorisation Policy Objects 29

The rest of this paper is structured as follows. Section 2 provides a summary of the
core static and dynamic concepts of our control principle model, a more detailed for-
mal discussion of which is provided in [Schaad, 2003]. Section 3 will then look at the
revocation of policy objects against the dimensions of resilience, propagation and dom-
inance, in particular focusing on the revocation of obligations. Section 4 summarises
and concludes this paper.

2 Definition of Policy Objects in the Control Principle Model

Within our control principle model [Schaad, 2003], policy objects are either authoriza-
tions or obligations, similar as those defined in Ponder [Damianou et al., 2001]. Princi-
pals, or the roles of which principals are a member of, may be subject to these policy
objects. In other words, a principal is related to a set of policy objects over the roles he
holds or on the basis of a direct assignment. The target of a policy object defines the
objects against which the actions of the policy are executed.

Authorisations state what a principal is permitted to do by using the actions defined
by the authorisation. Authorisations can be shared between principals through roles or
on the basis of direct assignments.

Obligation policies are an abstraction for defining the actions that must be per-
formed by a principal on some target object when some specified event occurs. We
extended the object model of [Damianou et al., 2001] and distinguish between general
obligations that may be assigned to a role or a principle (e.g. a general obligation to
process invoices from supply companies) and their specific instances (e.g. to process
the invoice i1 from supplier x1). To support this distinction we require the following
four rules to hold (these and are formally defined in [Schaad, 2004]):

1. An obligation instance must always relate to exactly one Principal.
2. An obligation instance has always one general obligation.
3. Every specific obligation a principal holds must be an instance of a general obliga-

tion he is a subject of through one of his roles or directly.
4. A general obligation can only have a principal or one of his roles as a subject, but

not both.

The s subject relation captures the assignment of a policy object to an object
(which can be a role, principal or other policy object). Using an approach called ob-
jectification of state [Jackson, 2001], we can model total order relationships of states,
where an expression like (s1.s subject).p1 would result in all the policy objects
principal p1 is a subject of in state s1.

The first rule mentioned above demanding the direct assignment of an obligation
instance to a principal would thus translate as follows. Here & is the set intersection op-
erator and Principal the set of principals, while the expression obl.(s.s subject)
yields all the principals subject to an obligation instance obl:

fact {all s : State | all obl : ObligationInstance |
one (obl.(s.s_subject) & Principal)}

30 A. Schaad

For maintaining a history in such state sequences, we consider the following signa-
ture which maintains a DelegationHistory.

sig DelegationHistory{
delegating_principal : Principal,
receiving_principal : Principal,
based_on_role : option Role,
delegated_policy : PolicyObject
}

We do not maintain the information about which principal delegated which policy
object in the form of an explicit relation, but in an explicit signature with several bi-
nary relations. We can do this because we know that, for example, in the context of
the delegation of a policy, exactly one principal delegates exactly one policy object to
exactly one other principal in between two states. This cardinality is indicated by the
absence of the set keyword. The delegating principal may have chosen to delegate on
the basis of a direct assignment or over a role as indicated by using the option keyword.
Specifically this latter point could not be resolved in a n-ary relation like Principal
-> Principal -> Role -> PolicyObject as there is no kind of null value in Al-
loy that would allow us to express that no role but a direct assignment was used for
the delegation. A RevocationHistory and an AccessHistory signature have been
defined in a similar way in [2] together with a set of rules, that, e.g. define that for any
transition between states there can only be one history entry and other integrity preserv-
ing constraints. In essence, we can use Alloy to model sequences of states and define
and analyse object access, delegation and revocation activities over such sequences. The
history signature is then updated over the lifetime of such a sequence, and maintains,
for example, the changes in the s subject relation when moving from one state to
the next as possibly initiated by a delegation activity. This provides all the information
needed for supporting revocation activities.

3 Revocation of Policy Objects

In general, revocation of an object is based on its previous delegation and thus requires
the following pieces of information [Samarati and Vimercati, 2001]:

– The principals involved in previous delegation(s);
– The time of previous delegation(s);
– The object subject to previous delegation(s)

Our conceptual model provides this information through the defined history signa-
tures and may thus support the various forms of revocation as described in the revoca-
tion framework of [Hagstrom et al., 2001].

In this framework different revocation schemes for delegated access rights are clas-
sified against the dimensions of resilience, propagation and dominance. Since resilience
is based on negative permissions, we do not consider this here, as there is no correspond-
ing concept for the policy objects in our model (unlike Ponder [Damianou et al., 2001]
which does provide negative authorisation policies).

Revocation of Obligation and Authorisation Policy Objects 31

The remaining two within our model dimensions may be informally summarised as
follows:

1. Propagation distinguishes whether the decision to revoke affects
– only the principal directly subject to a revocation (local); or
– also those principals the principal subject to the revocation may have further

delegated the object to be revoked to (global).
2. Dominance addresses conflicts that may arise when a principal subject to a revo-

cation has also been delegated the same object from other principals. If such other
delegations are independent of the revoker then this is outside the scope of revoca-
tion. If, however, such other delegations have been performed by principals who, at
some earlier stage, received the object to be revoked via a delegation path stemming
from the revoker, then the revoking principal may

– only revoke with respect to his delegation (weak);
– revoke all such other delegations that stem from him (strong).

Table 1. Revocation schemes

No Propagation Dominance Name
1 No No Weak local revocation
2 No Yes Strong local revocation
3 Yes No Weak global revocation
4 Yes Yes Strong global revocation

Based on these two dimensions, we established 4 different revocation schemes
which, due to the absence of the resilience property, are a subset of those described
by [Hagstrom et al., 2001]. These are summarised in table 1. We will now investigate
how far these schemes can be expressed and integrated with respect to our control prin-
ciple model and the specific types and characteristics of policy objects. The following
two sections will thus discuss the revocation of delegated policy objects along the lines
of the above revocation schemes.

3.1 Revoking Delegated Authorisations

Since authorisations are similar to the notion of permissions in [Hagstrom et al., 2001],
we will describe the four revocation schemes in terms of a possible delegation scenario.
We use function delegate auth(s1, s2, p1, p2, auth) to state that a principal
p1 delegated an authorisation auth to a principal p2 in state s1. Similarly, auth was
delegated by p1 to p3 in state s2; by p3 to p2 in state s3; by p2 to p4 in state s4;
by p2 to p5 in state s5; and finally by p6 to p4 in state s6. This is summarised in the
graph displayed in figure 1 where the nodes stand for the principals, and the arcs are
labeled with the respective delegation activity. We assume that in this specific above
example the principals always retain the authorisation they delegate. However, it must
be noted that in general a principal might decide to drop an authorisation at the time

32 A. Schaad

he delegates, which increases the complexity of delegation and revocation schemes as
shown in [Schaad, 2003].

A weak local revocation of an authorisation is the simplest case as it does not prop-
agate or dominate any other delegations of the authorisation. For example, if principal
p2 revokes auth from principal p5, then p5 will not hold auth anymore. If, however,
p1 revokes auth from principal p2, then p2 will continue to hold auth due to the dele-
gation of auth by p3 in state s3.

A strong local revocation will address this later scenario, and if p1 strongly revokes
auth from principal p2 locally, then p2 will not continue to hold auth, however, p4
and p5 will. The strong revoke by p1 will only result in p2 losing auth completely,
because p3 had been delegated auth by p1 and then delegated it to p1. All delegations
of auth to p2 stem from p1. If, for example, p2 strongly revokes auth from p4, then
p4 will still hold auth because p2 has no influence on the delegation of auth by p6.

The weak global revocation addresses the revocation of policies which have been
delegated more than once through a cascading revocation. Thus, if p1 globally revokes
auth from principal p2 then this will result in p5 losing auth, but p2 and p4 will still
hold auth due to the delegation of auth by p3 and p6 in s3 and s6 respectively.

Letting p1 revoke auth from principal p2 strongly and globally, auth will then not
be held by p2 and p5 anymore, but p4 will still hold it due to the individual delegation
by p6.

p1 p2

p3

p4

p5

delegate_auth

(s2, s3, p1, p3, auth)

de
le
ga
te
_a
ut
h

(s
3,
 s
4,
 p
3,
 p
2,
 a
ut
h)

de
le
ga
te
_a
ut
h

(s
4,
 s
5,
 p
2,
 p
4,
 a
ut
h)

delegate_auth

(s5, s6, p2, p5, auth)

delegate_auth(s1, s2, p1, p2, auth)

p6
delegate_auth (s6, s7, p6, p4, auth)

Fig. 1. A delegation scenario for delegating an authorisation auth

3.2 Revoking Delegated Obligations

The delegation of obligations should be complemented by revocation mechanisms as
well, and we investigate in the following whether the previously identified four revo-
cation schemes can also be applied in this context. Since we may delegate general and
specific obligations as discussed in [Schaad, 2004], their revocation must also be dis-
cussed separately.

Revocation of Obligation and Authorisation Policy Objects 33

Revocation of Specific Obligations. We formally required an obligation instance to
be assigned to exactly one principal at any time [Schaad, 2004]. It is for this reason that
many of the problems we described for the revocation of authorisations cannot occur.
We illustrate this with respect to the two applicable dimensions of revocation:

– Dominance does not apply as it is not possible for a principal to have been delegated
the same obligation instance from different sources.

– Propagation may apply as a principal is able to delegate a delegated obligation.
However, when he delegates he may not retain this obligation.

With respect to the second point, we consider the example of a principal p1 hav-
ing delegated an obligation instance iob to a principal p2 who in turn delegated it to a
principal p3. Should principal p1 now be able to revoke iob directly from p3 or only
from p2? We believe that a principal should only be able to revoke a delegated obli-
gation from the principal he delegated it to. The order of revocation thus corresponds
to the way the obligation was initially delegated. There may be organisations where a
direct revocation of iob from p3 by p1 may be desirable, e.g. a coercive organisation
with distinct command structures, where decisions may have to be made rapidly like a
hospital or military organisation [Mullins, 1999]. We do, however, not believe that any
further argumentation would contribute to the overall goal of this paper.

Revocation of General Obligations. We have argued in [Schaad, 2004] that the del-
egation of general obligations can be treated almost identically to the delegation of
authorisations. Thus, the underlying question here is whether this also applies to the
revocation of general obligations. To clarify this, we again look at the revocation of
general obligations with respect to the two dimensions of revocation considered in this
context:

– Dominance applies since a general obligation may be held by several principals.
These may independently delegate this obligation, perhaps to the same principal at
different times.

– Propagation applies since a general obligation may be delegated several times be-
tween principals.

Considering the first item, the question is whether the revocation of a multiply del-
egated obligation may override other delegations or not. This has been referred to as
strong and weak revocation respectively. We believe that this issue can be addressed
like the strong and weak revocation of authorisations, as long as the defined constraints
hold. The second item demands to distinguish between local and global revocation.
The latter possibly causes a series of cascading revocations if a general obligation has
been delegated several times. Again, this can be theoretically treated as in the case of
revoking authorisations, but some additional points must be considered.

The delegation of a general obligation may have been followed by the delegation or
creation of some instances of that general obligation. This may influence the revocation
of a general obligation, because of the constraint that a principal may only hold an obli-
gation instance if he has the corresponding general obligation. So if a general obligation
is revoked, then this should result in the revocation of any existing delegated instances

34 A. Schaad

for the principal subject to a revocation. A different situation may, however, be where
an instance has been created on the basis of a delegated general obligation. The ques-
tion is whether the revoking principal should be able to revoke an obligation instance
he did never hold and subsequently never delegated. One approach may be to demand
that the principal holding such instances must first discharge these before a delegated
general obligation can be revoked. Another option may be to allow for the delegation of
such an instance back to the revoking principal by the principal the general obligation is
revoked from. Whatever the decision, we believe that these points present no technical
difficulties with respect to the actual revocation activity. A more detailed discussion on
organisational aspects of revocation is, however, outside this scope.

3.3 Defining Revocation Mechanisms for the CP Model

Several procedural revocation algorithms exist, as for example defined in the papers of
[Griffiths and Wade, 1976], [Jonscher, 1998] or [Fagin, 1978]. However, the definition
of a revocation mechanism in a declarative way is a non-trivial task and the only work
we are aware of is [Bertino et al., 1997], which is unfortunately strictly tied to their spe-
cific authorisation model, and may also be difficult to understand without the possibility
of tool supported analysis.

One main underlying design principle of our model is that a declarative specifi-
cation of delegation and revocation operations should reflect their possible procedural
counterparts. This means that they only cause a change to the s subject relation with
respect to the actual objects involved in the delegation and revocation. This has also
been defined by a set of framing conditions that support each Alloy function. The strong
local and the weak and strong global functions may however also cause changes to the
s subject relation with respect to other objects not explicitly defined when calling a
revocation function, since this only describes what the resulting state should look like.
We thus argue in the following, that the strong local, and weak and strong global re-
vocation can all be modeled in terms of a series of weak local revocations. This weak
local revocation supports revocation of authorisation and obligation policies.

For this reason we only formally outline the function weak local revoke() and
point to the discussion in [Schaad, 2003]. The three remaining types of revocation are
discussed less formally, as they may be understood as a series of weak local revocations.

Weak Local Revocation. Before considering the weak local revocation of a policy
object in more detail, we informally recall some possible delegation scenarios that may
have an effect on the behaviour of a weak revocation. These scenarios consider whether:

1. A policy object may have been delegated by a principal on the basis of a direct or
role-based assignment; or whether

2. The principal a policy object was delegated to may have already been assigned with
the object

– either because he was assigned with the object at the time of system setup or;
– because of a prior (and not yet revoked) delegation from some other principal.

Revocation of Obligation and Authorisation Policy Objects 35

Depending on the situation, a weak local revocation may behave differently with
respect to the changes in the s subject relation. For example, we consider that a prin-
cipal p1 delegates an authorisation policy object auth he directly holds to a principal
p2 in state s1. In this example, as a result of this delegation p1 loses auth. Principal
p2 is also delegated auth by some other principal p3 in state s2. In state s3 principal
p1 revokes auth from p2. Because of the delegation by p3 in state s2, p2 must not
lose auth. Principal p1 must be assigned with auth again and the revocation of auth
from p2 by p1 must be recorded by an update to the revocation history of state s3. A
variation of this scenario may be that principal p1 delegated auth in state s1 on the
basis of a role he is a member of. This would then mean that when he revokes auth
from p2 in s3, the s subject relation would not change at all. This is because of the
delegation by p3 in state s2 and the fact that the initial delegation by p1 in s1 was
based on a role, indirectly demanding the retainment of auth by p1 through his role
membership. Nevertheless, the revocation would still have to be recorded by an update
to the revocation history.

It would not be helpful to provide an exhaustive list of all such possible delegation
scenarios here, and the two above examples only reflect in parts the complexity of a
weak local revocation within our framework. There are, however, four general proper-
ties that need to be evaluated. These concern whether:

– there were multiple delegations of a policy object by and to the same principal;
– whether a role was used for delegation;
– whether there were multiple independent delegations;
– and whether the receiving principal was already subject to the delegated policy

object before any delegations.

Based on these two dimensions and more general above properties, we established
four different revocation schemes which, due to the absence of the resilience property,
are a subset of those described in the revocation framework by [Hagstrom et al., 2001].
This subset is summarised in table 1 and the following four function headers 1-4 outline
the behavior and expected return values.

These four functions are now composed to define the weak local revoke function
5. For reasons of space we only show the first half of this function. The revoking prin-
cipal p1 must have delegated a policy object pol to p2 for any revocation to succeed
(Precondition). If no role was used for the delegation (Case I) and the delegation
was performed on a direct assignment instead, then we check whether there were no
delegations of pol to p2 by other principals (Case I.1). This is sufficient as a prin-
cipal must not delegate the same object twice without an intermediate revocation as
defined in the precondition. If Case I.1 holds, then we check whether principal p2
held pol initially or not (Case I.1.a and I.1.b) and update the revocation history
and s subject relation accordingly.

If there were delegations by other principals (Case I.2) then we do not need to
check for any initial assignments and just update the revocation history and s subject
relation. The second part of the function checks for the case of a role having been
used for the delegation and is not shown here as it is similar in its structure to the first
part. The full function and sequence of delegations and revocations we used to test and
validate this weak local revocation with can be found in [Schaad, 2003].

36 A. Schaad

Alloy Function 1. The precondition of revocation. This function evaluates true if a
revoking principal p1 delegated the policy object pol to a principal p2 in some state
before the current state cstate and did not revoke pol from p2 between that delegation
and cstate.

fun revocation_precondition
(cstate: State, disj p1, p2: Principal, pol: PolicyObject) {...}

Alloy Function 2. A role was used for the delegation. This function evaluates true if
a principal p1 delegated the policy object pol to p2 in a state before the current state
cstate on basis of a role-based assignment to pol.

fun role_was_used_for_del_of_pol
(cstate: State, disj p1, p2: Principal, pol: PolicyObject) {...}

Alloy Function 3. The object to be revoked was delegated by some other principal.
This function evaluates true if some principal p other than p1 delegated the policy
object pol to principal p2 and did not revoke it before the current state cstate.

fun pol_was_delegated_by_other_p
(cstate: State, disj p1, p2: Principal, pol: PolicyObject) {...}

Alloy Function 4. The principal p2 a policy object pol is to be revoked from may have
held pol even before any prior delegation by the revoking principal p1. This function
evaluates true if principal p2 held pol directly in the first state of a state sequence.

fun rev_p_held_pol_initially
(cstate: State, disj p1, p2: Principal, pol: PolicyObject) {...}

Strong Local Revocation. A strong local revocation would be almost identical in its
specification. As in the function weak local revoke() we would have to check whether
a principal was delegated the policy object to be revoked from some other principal. If
this is true, like in the example in figure 1, and all delegations of an authorisation policy
object auth to a principal p2 stem from principal p1 requesting the revocation, then p2
will not be subject to auth anymore. On the other hand a strong local revoke of auth
from p4 by p2 would have no effect on p4’s assignment to auth due to the previous
delegation of auth to p4 by p6.

These scenarios emphasize again the need for not only keeping track of delegated
but revoked policy objects as well. Due to the underlying assumption of our model
that only one revocation may happen at a time, such a strong local revocation function
cannot be used directly, since it may change several relationships which we cannot keep
track of. Nevertheless it may be used to assert that a certain sequence of weak local
revocations would suffice for the definition of a strong local revocation. With respect to
figure 1 this would mean that a sequence of weak local revocations of auth from p2 by
p1 and p3 should be equal to a single strong local revocation of auth from p2 by p1.

Revocation of Obligation and Authorisation Policy Objects 37

Alloy Function 5. Weak local revocation function composed of functions 1-4.

fun weak_local_revoke (disj s1, s2: State,
disj p1, p2: Principal,
pol: PolicyObject){

//Precondition: p1 has delegated pol to p2 before s1
revocation_precondition(s1, p1, p2, pol) &&

//Case I: No role was used for this initial delegation
(!role_was_used_for_del_of_pol(s1, p1, p2, pol) =>
//Case I.1: No other delegations occurred

(!pol_was_delegated_by_other_p(s1, p1, p2, pol) =>
//Case I.1.a: p2 did hold pol initially
(rev_p_held_pol_initially(s1, p1, p2, pol) =>

update_rev_history(s1, p1, p2, pol) &&
s2.s_subject = s1.s_subject + pol -> p1) &&

//Case I.1.b: p2 did not hold pol initially
(!rev_p_held_pol_initially(s1, p1, p2, pol) =>

update_rev_history(s1, p1, p2, pol) &&
s2.s_subject = s1.s_subject + pol -> p1

- pol -> p2)) &&
//Case I.2: Some other delegation occurred

(pol_was_delegated_by_other_p(s1, p1, p2, pol) =>
update_rev_history(s1, p1, p2, pol) &&
s2.s_subject = s1.s_subject + pol -> p1)) &&

...
//The following second part contains the same cases
//if a role was used for the initial delegation.
...

}

Weak and Strong Global Revocation. Alloy has only recently started to support re-
cursion, an indispensable mechanism to support global revocation as we described it
in the previous section. At the time of writing our specification there was no available
documentation or examples for the use of recursion. Nevertheless, we felt that at least
an outline of how to define global revocation must be provided. The constraint analyser
could provide us with a reasonable level of assurance about the working of a global
revocation function as defined in [Schaad, 2003].

Weak and strong global revocations are similar in their effects to their local coun-
terparts, however, they also consider any possible further delegations of the object to be
revoked by the principal this object is revoked from. We have described this in the pre-
vious section and only want to point out some specific issues that need to be considered
when defining such a global revocation.

Since recursion is required to provide for a global revocation, this means that the
weak and strong global revocations functions consist of two parts. In the first part we
check whether the object pol had been initially delegated by the revoking principal
p1 to p2 as previously outlined. In the second part we then need to check whether

38 A. Schaad

there was any further delegation of pol to some other principal p. If this is so, the
global revocation function calls itself, now with p2 being the revoking principal and p
being the principal pol is revoked from. An example of such a recursive revocation is
provided in [Schaad, 2003].

A series of weak local revocations may achieve the same result as weak and strong
global revocations, but we did not investigate this any further considering formal proof,
as there was not immediate need in the context of this paper.

4 Summary and Conclusion

In this paper we have provided a first possible approach to the revocation of policy
objects in the context of our control principle model presented in [Schaad, 2003]. This
approach followed the schemes as proposed in [Hagstrom et al., 2001], but due absence
of negative authorisations and the specific notion of general and specific obligations and
their respective assignment to roles and principals, not all categories of the scheme had
to be considered.

We see our work as particularly useful in the context of workflow systems and their
security, since our understanding of obligations as event-condition-action rules matches
the notion of tasks. Our general obligations then refer to the tasks at the workflow model
level, while specific obligations are the occurring instances at execution time of the
workflow. The delegation of such tasks may then trigger the delegation of the required
permissions.

However, there is remaining work. We need to further analyse the effect of revo-
cation activities on existing review obligations. In particular, we would like to support
revocation of an obligation instance by any principal in a delegation chain. Secondly,
we specified in our framework that an obligation has a set of supporting authorisations.
Although we did not fully investigate this relationship between authorisations and obli-
gations in the context of delegation and revocation activities, we could observe that the
delegation and revocation of authorisation objects may violate existing separation of
duty properties [Schaad, 2003]. In particular, we could show how dynamic separation
properties are "circumvented" by colluding principals with the right to delegate and re-
voke. This is not a new problem [Harrison et al., 1976] but still requires further analysis
from a business process engineering perspective.

Overall, we have now completed the majority of our conceptual work and will
look at the implementation of the concepts of delegation, review, evidence, revoca-
tion of general and specific obligations and the possible schemes and their practical
feasibility in more detail. In fact, the work on collaborative workflows suggested in
[Schulz and Orlowska, 2004] will offer interesting perspectives and SAP Research has
already implemented collaborative workflow prototypes within which our organisa-
tional control principles and delegation and revocation schemes can be implemented.
Together with analysis tools such as described in [Rits et al., 2005], we may then
achieve a tight match between workflow tasks and the required permissions at appli-
cation, middleware and database level.

Revocation of Obligation and Authorisation Policy Objects 39

References

Bertino et al., 1997. Bertino, E., Samarati, P., and Jajodia, S. (1997). An Extended Authorization
Model for Relational Databases. IEEE Transactions on Knowledge and Data Engineering,
9(1):85–101.

Damianou et al., 2001. Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The Ponder
Policy Specification Language. In Policies for Distributed Systems and Networks, volume 1995,
pages 18–38, Bristol. Springer Lecture Notes in Computer Science.

Fagin, 1978. Fagin, R. (1978). On an Authorization Mechansism. volume 3, pages 310–319.
Griffiths and Wade, 1976. Griffiths, P. and Wade, B. (1976). An Authorization Mechanism for a

Relational Database System. ACM Transactions on Database Systems, 1(3):243–255.
Hagstrom et al., 2001. Hagstrom, A., Jajodia, S., Parisi-Presicce, F., and Wijesekera, D. (2001).

Revocations - A Categorization. In Computer Security Foundations Workshop. IEEE Press.
Harrison et al., 1976. Harrison, M., Ruzzo, W., and Ullman, J. (1976). Protection in Operating

Systems. Communications of the ACM, 19(8):461–471.
Jackson, 2001. Jackson, D. (2001). A Micromodularity Mechanism. In 8th Joint Software Engi-

neering Conference, Vienna, Austria.
Jonscher, 1998. Jonscher, D. (1998). Access Control in Object-Oriented Federated Database

Systems. PhD thesis, University of Zurich.
Mullins, 1999. Mullins, L. (1999). Management and Organisational Behaviour. Prentice Hall,

London, 5th edition.
Rits et al., 2005. Rits, M., De Boe, B., and Schaad, A. (2005). Xact: A bridge between resource

management and access control in multi-layered applications. In ACM Software Engineering
Notes of Software Engineering for Secure Systems (ICSE05),, St. Louis, Missouri, USA.

Samarati and Vimercati, 2001. Samarati, P. and Vimercati, S. (2001). Access Control: Polcies,
Models and Mechanisms. In Focardi, R. and Gorrieri, R., editors, Foundations of Security
Analysis and Design, pages 137–196. Springer Lecture Notes 2171.

Schaad, 2003. Schaad, A. (2003). A Framework for Organisational Control Principles, PhD
Thesis. Phd, University of York.

Schaad, 2004. Schaad, A. (2004). Delegating organisational obligations - an extended analysis.
In IFIP WG 11.3 Database and Applications Security XVIII, Sitges, Spain.

Schaad and Moffett, 2002. Schaad, A. and Moffett, J. (2002). Delegation of Obligations. In
3rd International Workshop on Policies for Distributed Systems and Networks (POLICY 2002),
Monterey, CA.

Schaad and Moffett, 2004. Schaad, A. and Moffett, J. (2004). Separation, review and supervision
controls in the context of a credit application process, a case study of organisational control
principles. In ACM Symposium of Applied Computing, Cyprus.

Schulz and Orlowska, 2004. Schulz, K. and Orlowska, M. (2004). Facilitating cross-
organisational workflows with a workflow view approach. Data & Knowledge Engineering,
51(1):109–147.

Role Slices: A Notation for RBAC Permission

Assignment and Enforcement

J.A. Pavlich-Mariscal, T. Doan, L. Michel, S.A. Demurjian, and T.C. Ting

Department of Computer Science & Engineering, The University of Connecticut,
Unit-2155, 371 Fairfield Road, Storrs, CT 06269- 2155

jaime.pavlich@uconn.edu

{thuong, ldm, steve, ting}@engr.uconn.edu

Abstract. During the past decade, there has been an explosion in the
complexity of software applications, with an increasing emphasis on soft-
ware design via model-driven architectures, patterns, and models such as
the unified modeling language (UML). Despite this, the integration of se-
curity concerns throughout the product life cycle has lagged, resulting in
software infrastructures that are untrustworthy in terms of their ability
to authenticate users and to limit them to their authorized application
privileges. To address this issue, we present an approach to integrate
role-based access control (RBAC) into UML at design-time for permis-
sion assignment and enforcement. Specifically, we introduce a new UML
artifact, the role slice, supported via a new UML role-slice diagram, to
capture RBAC privileges at design time within UML. Once captured,
we demonstrate the utilization of aspect-oriented programming (AOP)
techniques for the automatic generation of security enforcement code.
Overall, we believe that our approach is an important step to upgrading
security to be an indispensable part of the software process.

1 Introduction

In recent years, the importance of security in software systems has risen to a high
level. The typical approach of integrating security into software applications at
latter stages of the process can lead to serious security flaws. In order to minimize
this problem, security must be considered as a first-class citizen throughout the
software process. The issues that must be considered when adding security to
a software application include: security policy definition to capture the security
requirements using tools and artifacts to define and check for consistency in the
security rules in order to minimize errors; and, secure application implementation
to automatically generate security enforcement code that realizes and integrates
the security policy with the application code.

In support of security policy definition, we have employed the unified mod-
eling language, UML [17], which is the de facto standard for software modeling.
In UML, while there are parallels between security and UML elements, direct
support for security specification is not provided. Our ongoing work [9,8,7] has
focused on the inclusion of RBAC[12] and MAC[4] by aligning the concept of role

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 40–53, 2005.

c© IFIP International Federation for Information Processing 2005

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 41

with actor, and by adding security properties to use-case, class, and sequence
diagrams to capture MAC and RBAC characteristics as well as lifetimes (i.e.,
the legal time intervals of access to UML elements), and translate them into
constraints. In support of RBAC, an actor represents one organizational role as
defined by the security officer. This organizational role differs from actor-use-
case roles in UML, which are used by actors to communicate with each specific
use-case. Each security requirement constraint is characterized mainly by the
UML elements involved, and the type of the constraints (e.g., Static Mutual
Exclusion between actors and other non-actor elements). Intuitively, when the
designer creates, modifies, or deletes a design element, s/he has changed the
design to a new state with respect to the set of design elements that previously
existed. Over time, a UML design can be characterized as the set of all states
representing a specific design snapshot. Given a point of design time, a state
function returns the information of the design space (UML elements, connec-
tions and security requirements) and whether an element is validly applicable
at that design time. With the state information, we can perform security anal-
ysis to check the validity of the design, thereby providing a degree of security
assurance.

Our work to date distributes security definition across use cases, class and
sequence diagrams. While this has the advantage of closely associating security
with the involved UML elements, it has the disadvantage of having the com-
bination of the security permissions (security policy) not easily understood by
designers and programmers. To complement this effort, and to provide a more
seamless transition from design to code, we introduce a new artifact, the role
slice, to visually represent permissions among roles in RBAC. In addition, our
role-slice approach can separate the security aspect from the non-security as-
pects of code, by defining mappings to aspect-oriented programming (AOP) [15]
for enforcing the access control policies that have been defined. The role-slice
notation uses specialized class diagrams that define permissions and roles, in the
form of UML classes and stereotyped packages, respectively, and employs UML
stereotyped dependency relationships for representing role hierarchies, relying
on model composition [5] for defining the permissions for each role, according
to its position in the hierarchy. Since the role-slice diagram utilizes a structure
akin to a class diagram, in concept, this security extension to UML occurs at the
design level rather than analysis; however, MAC and RBAC defined for actors,
use-cases, etc., can all be leveraged as part of the process of defining role slices.

In support of secure application implementation, once the policy has been
defined and checked for consistency, the integration of security into an appli-
cation’s code can be greatly improved by an adequate modularization of the
security-enforcement code. Using AOP, our intent is to separate application’s
security and non-security code, providing the means to more easily identify and
locate security definitions when changes are required, thereby lessening the im-
pact of these changes on the application. Object-oriented design/programming
is centered around the ability to decompose a problem into a solution that cap-
tures only one concern (perspective) of an application. AOP addresses this limit
by providing the ability to independently specify multiple orthogonal concerns.

42 J.A. Pavlich-Mariscal et al.

To support this, AOP provides abstractions to define concerns with aspects, and
a compilation technique, aspect weaving, that integrates aspects with the main
application code via an AOP compiler. In this paper, we present the role-slice
artifact and its mapping to access-control enforcement code via aspects.

The remainder of this paper is organized into four sections. Section 2 explains
background concepts on RBAC, model composition, and AOP. Using this as a
basis, our presentation on a model for secure design is divided into two parts:
Section 3 details the definition of role slices; and, Section 4 describes techniques
for mapping these definitions to AOP enforcement code. Section 5 reviews other
related research efforts efforts, highlighting the influence to our work, and de-
tailing the commonalities and differences. Section 6 contains the conclusions and
reviews ongoing research.

2 Background Concepts

In this section, we review background concepts on role-based access control,
model composition, and aspect-oriented programming. Our objective is to pro-
vide the necessary material to set the context of our work for subsequent sections.

2.1 Role-Based Access Control (RBAC)

Role-based access control, RBAC [12], is a security policy schema that assumes
that the owner of the information in a software system is not the users, but the
organization to which they belong. Moreover, RBAC states that the access to
that information must be constrained according to the role that each user has
been authorized and activated to interact with the system. User-role authoriza-
tion is based on a set of tasks that the user performs inside the organization [11].
Users are authorized to access the system via a specific role, which holds the set
of privileges that the user will have when interacting with the system.

There are several different interpretations for privileges or permissions, (we
use both terms interchangeably). Depending on the specific application in which
privileges/permissions are used, they can represent different concepts, such as:
file access permissions in filesystems; query executions, table access, column or
tuple access in database systems; or, instance access, class access, method access
or attribute access in object-oriented systems. When using the object-oriented
paradigm, there is a class model that represents the main structure and function-
ality of an application. Our assumption for incorporating RBAC into these kinds
of applications, is that permissions are defined over the set of public methods
present in the class model. For the purposes of the work on role slices presented
herein, we define a permission as the ability to invoke the method of a class. We
also consider negative permissions, which explicitly deny the right to invoke a
method.

2.2 Aspect-Oriented Programming (AOP)

Software systems are inherently complex, and as information technologies evolve
(e.g., faster CPUs, more memory, etc.), their complexity continues to increase.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 43

Software developers faced challenges in the past when trying to manage that
complexity, which they solved via abstraction and modularization mechanisms
in programming languages, which has evolved into object-oriented design (UML)
and programming (Java, C++, etc). As complexity of software applications con-
tinues to increase, there has been an emphasis on providing techniques that
reduce complexity while still promoting the ability to construct large-scale ap-
plications. One classic technique is separation of concerns that focuses on dis-
tinguishing all of the important concerns of an application in modular units,
allowing them to be managed independently. According to Tarr et al. [19], in
order to achieve this goal, software formalisms may be required to provide: de-
composition mechanisms that can partition the software into simpler pieces that
are easier to manage; and, composition mechanisms to join all of the component
elements into a complete system.

In the object-oriented paradigm, the main composition and decomposition
mechanism is the class, which while offering a degree of separation of concerns,
is limited in its ability to support crosscutting concerns, which are requirements
of an application that have two common problems:

Scattering: Many concerns, which are specified in the requirements, tend to
be implemented by using different classes both in the design specification
and in the source code. For instance, the code for implementing persistence
(e.g., connecting to a database via ODBC/JDBC and issuing queries) in a
banking application can be scattered among multiple classes.

Tangling: One class can implement several different requirements simultane-
ously. Using the example above, each class that has code to access the
database may also have code which is related to business requirements, such
as cash flow calculations, mortage rates, etc.

There are several approaches that address crosscutting concerns [15,19,13]. The
key idea for most of them consists of a new form of modularization that decom-
poses a model into pieces that, if defined and chosen carefully, can be mapped
easily from requirements specification into design artifacts and code. Each piece
may represent a particular view of the system (the crosscutting concern) con-
sisting of sets of code that (ideally) are designable and implementable separately
by independent developers.

One such alternative is aspect-oriented programming (AOP). AOP defines
a unit of decomposition, called an aspect, in order to isolate each crosscutting
concern code into one location, and a weaving mechanism, to compose the aspect
code with the rest of the application as part of the compilation process. Each
aspect specifies the way to integrate its code with the rest of the application by
using:

Join Points, which are points in the execution of the program where the oc-
curence of events of interest to the crosscutting concerns can be observed,
and where an aspect advice that reacts to such events is inserted.

Pointcuts, which are sets of join points that are defined through static syntactic
and semantic conditions on the context surrounding the joint point. For

44 J.A. Pavlich-Mariscal et al.

example, in AspectJ, pointcuts can be defined as all of the call sites to a
polymorphic method within a class hierarchy.

Advices, which contain the code that is intended to be woven at specific join
points specified within a pointcut.

Another approach to separation of concerns that complements AOP is model
composition [5], which has its roots in subject-oriented programming, SOP, [13]
and multidimensional separation of concerns [19]. Model composition is an ex-
tension to UML that decomposes a class model into pieces, called subjects, that
represent a particular view of the system. Subjects are essentially class models
that can be used to represent crosscutting concerns. Later, they are composed
into larger class models until the system is finished and has all of the required
functionality.

3 Role Slices and Secure Design

Role slices are intended to allow a software designer to capture security infor-
mation in parallel with class design. The role slice provides an abstraction to
collect information on the security of a role that cuts across all of the classes in
an application, and to organize this information into a role-slice diagram, simi-
lar in concept to a UML class diagram. In this section, we introduce role slices,
and their placement within the security design process. Specifically, Section 3.1,
presents an example used throughout this paper. Next, Section 3.2 explores the
role-slice artifact, including both positive and negative permissions. Lastly, Sec-
tion 3.3 considers other issues related to the usage of role slices for real-world
applications.

3.1 A Survey Institution Example

To serve as a basis for illustrating the concepts related to role slices and the
generation of aspect-oriented enforcement code, we define an example application
based on the following scenario:

A Survey Institution performs and manages public surveys. After the
raw data of the survey is collected, the senior staff person adds a survey
header into the database. Then, a senior or junior staff adds questions
into that survey, may categorize questions, or add a new question cat-
egory. Special questions with sensitive content are restricted to senior
staff, who are the only ones who can modify them. Every staff person
can search for surveys in the system, and, according to their privileges,
access them for modification. Some survey results are public, so they can
be accessed by anybody who is intersted in viewing the results.

For simplicity and space limits, we utilize a simple design model that is better
suited to explaining the concepts rather than a real-world design.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 45

Given this scenario, Fig. 1 shows the class diagram where: Public Survey
Results holds public data about statistics and questions; Survey List and Sur-
vey Header provide an interface to access and modify the information about
surveys. Since the class Public Survey Results holds only public data, we decide
to control access only to the subsystem defined by the classes Survey List and
Survey Header. We call this set of classes a secure subsystem.

Survey_List

+Add_Survey_Header()

+Survey_Title_Search()

+Update_Survey_List()

+Delete_Survey_Header()

Survey_Header

+Create_Survey_Header()

+Add_Question()

+Add_Special_Question()

+Categorize_Question()

+Add_Question_Category()

Public_Survey_Results

+Get_General_Statistics()

+Get_Questions()

Fig. 1. Class Model of a Survey Management Application

3.2 Role Slices

A role slice is a structure that denotes the set of class methods that a given
role can access in an application. Since we may not want to apply security to
every class in the class model of the application, we define role-slice permission
assignment with respect to a secure subsystem; the classes Survey List and Sur-
vey Header in Fig. 1. Visually, we represent a role slice as a UML stereotyped
package containing a specialized class diagram, which is a subset of the class
model of the application. Fig. 2 contains a diagram with roles slices for: Staff
that contains common privileges; Senior Staff for users that have the ability to
add a survey header and survey questions; and, Junior Staff with more limited
access. Each class present in the role slice will have only methods that are as-
signed to the corresponding role as positive or negative permissions. An abstract
role slice, Staff in Fig. 2, is tagged with the value abstract, cannot be assigned to
a user, and is intended to be used as a mean to classify roles that have common
permissions.

To represent role hierarchies, we define the role-slice composition relationship,
which represents a hierarchical relationship between a child role slice and a
parent role slice. The child role slice inherits the permissions from the parent
role slice. Visually, we represent this relationship as a stereotyped dependency
arrow that starts in the child and points to the parent. This relationship is shown
in Fig. 2 with Senior Staff and Junior Staff as children of Staff. To obtain the
complete set of permissions for a role in a hierarchy, we utilize the composition
with override integration defined in [5], which composes two class diagrams by
unifying their classes and methods into one diagram. For role slices, we match

46 J.A. Pavlich-Mariscal et al.

<<RoleSlice>>

Senior Staff

Survey_List

+<<pos>> Add_Survey_Header()

Survey_Header

+<<pos>> Create_Survey_Header()
+<<pos>> Add_Special_Question()

<<RoleSlice>>

Junior Staff

Survey_List

+<<neg>> Update_Survey_List()

<<RoleSliceComposition>>
<<RoleSliceComposition>>

Survey_List

+<<pos>> Survey_Title_Search()
+<<pos>> Update_Survey_List()

Survey_Header

+<<pos>> Add_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

<<RoleSlice>>

Staff

{abstract}

Fig. 2. Role-Slice Diagram

<<RoleSlice>>

Junior Staff

Survey_List

+<<pos>> Survey_Title_Search()
+<<neg>> Update_Survey_List()

Survey_Header

+<<pos>> Add_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

<<RoleSlice>>

Senior Staff

Survey_List

+<<pos>> Add_Survey_Header()
+<<pos>> Survey_Title_Search()
+<<pos>> Update_Survey_List()

Survey_Header

+<<pos>> Create_Survey_Header()
+<<pos>> Add_Question()
+<<pos>> Add_Special_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

Fig. 3. Composed Role-Slice Diagram

the names of the classes (i.e., classes with the same name in both role slices
compose into one class in the final diagram), and make the child override any
permission definition in the parent.

We define permissions for the roles in Fig. 2 as follows: Staff is abstract and
cannot be assigned to a user; and, Senior Staff and Junior Staff, which are non-
abstract roles and assignable to users. The Staff role defines a set of common
permissions: Survey Title Search, Update Survey List, Add Question, Catego-
rize Question and Add Question Category. For Senior Staff, the assigned meth-
ods are: Add Survey Header, Create Survey Header, and Add Special Question.
For Junior Staff, no permissions are directly assigned, but the permission to
call Update Survey List is explicitly denied. Note that the method stereotypes
� pos � and � neg � are used in the UML role-slice diagram for representing
positive and negative permissions, respectively. The final set of permissions for
each non-abstract role is defined through the composition of every non-abstract
role slice with their ancestors, as shown in Fig. 3. Each final role slice has the
union of all of the permissions from the ancestors (in this case, the parent Staff)
and the respective child (Senior Staff or Junior Staff), with the exception of Up-
date Survey List, which was overriden and restricted (negative) by Junior Staff.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 47

3.3 Considerations for Real-World Scenarios

The main objective of the role-slice model is to represent a complex access control
policy in a diagram that is easy to modify by security officers, and easy to
understand by software designers and developers. From a practical standpoint,
some issues must be taken into account:

– Any reasonably-sized application contains hundreds of classes, and the first
critical decision in the security-policy definition process is to determine the
subset of these classes to be included in the secure subsystem. A good ap-
proach is to only include the classes in the domain model that require access
control and to exclude classes related to other concerns (e.g., I/O libraries,
GUI components, etc.), since their presence would clutter the definition of
role slices.

– The conceptualization of permissions during software development must be
both be comprehensive and easy to understand by security officers and de-
signers. To facilitate this, the composition relationship can be used to not
only generate the final set of permissions for a security policy, but also to
represent the permissions of each role at any point during the software pro-
cess. This is especially useful when designing large role hierarchies, since the
permissions of a concrete role can be difficult to visualize when spread across
a significant portion of the role hierarchy.

Overall, issues related to the definition of security policies, their realization
via role-slice diagrams, and the interplay of role-slice diagrams and application
classes, are all critical to fully integrate the approach into the software process.

4 Mapping Role Slices to an Aspect-Oriented Application

This section details the transformation of role-slice definitions (as given in Sec-
tion 3) into the application’s code using aspect-oriented programming (AOP).
Recall that the main purpose of a role slice is to define the access-control policy
of an application regarding the authorized or prohibited methods (permissions)
for each user (playing that role) interacting with the application. To map this
information to aspect-oriented code and control the access to a method, it is
necessary to check whether that method is denied for the active role (the role
that the current user has when logged in) and raise an exception if that occurrs;
otherwise, the method is allowed to execute. This process is achievable with a set
of AOP advices. All of the information for security permissions (role slices) are
stored in a database. When a user logs into the system, an access-control aspect
obtains its role-slice permissions by intercepting the login method in the class
model and retrieves from the database the pertinent role slice for the user based
on his/her credentials. For method permissions, an advice intercepts every call
to methods in the secure subsystem (the classes Survey List and Survey Header
in Fig. 1), made from methods external to the subsystem (every call that orig-
inates from Public Survey Results in Fig. 1), and allow their execution if and
only if they are defined as a positive permission in the corresponding role slice.

48 J.A. Pavlich-Mariscal et al.

The process of mapping from a role-slice diagram to aspect-oriented enforce-
ment code will ultimately be automated with a code generator as shown in Fig. 4.
This tool, currently under development at UConn, takes a role-slice specification
(diagram and composed slices) as input, and outputs:

– A policy database that contains all of the information on roles and permis-
sions (as defined in the composed role slices), and an authorization schema
to store user instances and their assigned roles. We assume that a user is
only permitted to play a single role at any given time (but can switch roles).

– An access-control aspect with the following characteristics:
• The role-slice specification, particularly the secure subsystem definition,

identifies the method invocations subject to access control. From this
information, pointcut definitions for the access-control aspect are ob-
tained.

• The advice code that is woven at the pointcuts defined previously, must
have access to the policy database, and be able to grant or deny access
to a user invoking access controlled methods, based on his/her active
role, and the call site.

Code
Generator

Policy Database

Access-Control
Aspect

Role Slice
Specification

Fig. 4. Code Generator Scheme

We now explore an example aspect code, generated by our prototype, that en-
forces access control for the survey management application. Different portions
of this aspect, implemented in AspectJ, are shown in Figs. 5, and 6.

Fig. 5 illustrates the portion of the access-control aspect that obtains the
current active user. The login pointcut references a call to a method in the
class SecurityAdmin, which returns the authenticated user. In this example,
assume a multi-threading environment where each thread serves only one user.
The advice using the pointcut stores the active user identification in a thread’s
local storage area.

Fig. 6 illustrates the code of the aspect that controls the access to methods
from call sites outside the secure subsystem. The externalCall pointcut iden-
tifies all of the calls made to classes in the secure subsystem (i.e., Survey List
and Survey Header), that originate from exogenous call sites. The advice code
associated to this pointcut definition obtains the user’s active role, and checks
if s/he has a positive permission for to the intercepted method call. If not, an

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 49

public aspect AccessControl {
...
pointcut login() : call(User SecurityAdmin.logIn(..));

User around():login() {
User u = proceed();
activeUser.set(u);
return u;

}

private ThreadLocal activeUser = new ThreadLocal() {
protected Object initialValue() {

return null;
}

};

private User getActiveUser() {
return (User)activeUser.get();

}
...

}

Fig. 5. Obtaining Active User

exception is raised. Due to Java’s semantics for exception handling, only runtime
exceptions can be raised from this aspect. In summary, this example as given
in Figs. 5 and 6, clearly illustrates the basic elements of the mapping from role
slices to AOP enforcement code. Note that we are currently in the process of
formalizing and implementing the role-slice code generator, as part of our overall
prototyping work using Borland’s UML tool Together Control Center [9,8,7].

public aspect AccessControl {
...
pointcut externalCall() : (call(* Survey_List.*(..)) || call(* Survey_Header.*(..)))

&& !within(Survey_List) && !within(Survey_Header);
before() : externalCall() {

Role r = getActiveUser().getActiveRole();
if (!r.hasPosPermission(thisJoinPointStaticPart)) {

throw new org.aspectj.lang.SoftException(new PermissionDeniedException());
}

}
...

}

Fig. 6. Checking of Permissions from Outside Calls

5 Related Work

In terms of related research, role slices are based on [10], which proposes a
Network Enterprise Framework using UML to represent RBAC requirements for
a specific framework given in [20]. Permissions are represented as methods of an
interface-like artifact called object handle. Object handles are grouped in keys,
which are stereotyped UML packages; role hierarchies are achieved by interface
inheritance. In our approach, permissions are also represented as methods but, in
contrast, they are grouped in role slices, which define specific rules of composition

50 J.A. Pavlich-Mariscal et al.

for them. Role slices also add negative permissions and permission overriding by
descendent role slices. Our approach aims to be implementation-independent for
object-oriented systems.

Another effort that relates to role slices is [3], which defines a metamodel
to generate security definition languages. SecureUML [3,16] is an instance de-
fined by this approach; a platform-independent security definition language for
RBAC. The syntax of SecureUML has two parts: an abstract syntax indepen-
dent from the modeling notation; and, a concrete syntax which can be used as
an extension to a modeling language, such as UML. The abstract syntax de-
fines basic elements to represent RBAC: roles, which can be assigned to users
or groups of users; permissions, which are assigned to roles based on specific as-
sociated constraints ; and, actions, which are associated with permissions, where
a role can have a permission to execute one or more actions. Actions can be
atomic, which means that they can be mapped directly to an action in the tar-
get platform, or composite actions, which are higher-level actions that may not
be mapped directly to the target platform, and may contain lower-level actions
within them. SecureUML’s concrete syntax is defined by mapping elements in
the abstract syntax to concrete UML elements [3]. We note that our role-slice
diagram and associated concepts can be an instance of the concrete-syntax of
the SecureUML notation, and that our syntax and associated mappings to UML
elements differ from their approach. We also note that the role-slice diagram is
only one component of our overall research. Specifically, our usage of compo-
sition in the role-slice diagram and the subsequent transition of the composed
diagram into AOP enforcement code, is significantly different than the approach
in SecureUML.

Another related approach, AuthUML [1,2] focuses on a process and a mod-
eling language to express RBAC policies using only use cases. Permissions are
defined by allowing or denying to actors the execution of use cases, and at a
lower level, the execution of finer-grained conceptual operations that describe
use-case behavior. Prolog-like predicates are used to represent the information
and to check its consistency. In contrast, our approach uses classes to group
permissions (methods), and role slices to group the entire set of permissions for
a role. We do not define a specific process to develop software, so the decision
of the way to utilize role slices to represent security information depends on the
designers and developers. If the design of a particular application mapped each
use case to a class, and each conceptual operation of a use case to a method,
then both approaches would represent the same information about permissions.

The UMLsec approach [14] is another effort in security modeling related to
our research. UMLsec is an extension to UML that defines several new stereo-
types towards formal security verification of elements such as: fair exchange to
avoid cheating for any party in a 2-party transaction; secrecy/confidentiality of
information (accessible only to the intended people); secure information flow to
avoid partial leaking of sensitive information; and, secure communication links
like encryption. As currently structured, the UMLSec model is not tightly tied
to RBAC, but the information it represents can be used to outline access control
policies.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 51

Regarding the aspect-oriented paradigm, [18] contains an example of com-
position of access-control behavior into an application by using aspect-oriented
modeling techniques, with the aim of integrating security into a class model that
allows designers to verify its access-control properties. Their approach takes a
generic security design and instantiates it in a model tied to the domain of the
application. In contrast, our code generation also requires the instantiation of
the design, but only the access control aspect has dependencies with the domain
class model. In addition, the role-slice notation provides a language to represent
the policy that can be implemented using the aspect-oriented paradigm.

Another similar effort [6], provides a general framework to incorporate secu-
rity into software using AOP. Similarities to our work include: the management of
authentication; and, the interception of method invocations to constrain them
based on permissions. The main difference is related to permissions. In their
work, each permission is represented as a specific method tied to a framework of
server objects that define them, and a set of client objects that invoke them. In
contrast, in our role-slice approach, permissions are definable over any method
in the class diagram, regardless of its structure.

6 Conclusions and Future Work

This paper has presented our efforts to define a new UML artifact to capture
RBAC, the role slice and an associated diagram, and has detailed the transition
from a role-slice diagram to security enforcement code, based on aspect-oriented
programming (AOP). We believe that the role-slice notation, as presented in this
paper, can assist designers and developers in the conceptualization of security
policy, and facilitate its evolution throughout the design process. In addition, the
automated mapping from a role-slice diagram (composed) to AOP enforcement
code can provide a seamless transition from a security specification to code, and
greatly facilitate the separation of concerns at the implementation level.

Ongoing and future research is focusing on achieving security policy com-
position via AOP, with the potential to also consider other, similar paradigms.
We are interested in enhancing our model with additional security concerns, in-
cluding: mandatory access control for security of methods based on classification
and clearance; and, delegation for the ability to pass on authority (role) from
one user to another. With three separate concerns (RBAC, MAC, and delega-
tion), we must have the ability to compose any combination, which may require
dynamic weaving of more than one set of constraints for access control, and the
definition of different policies for separated secure subsystems. To facilitate this
work on analysis and security extensions, we are formalizing role slices and their
mapping to access-control aspects.

Another planned topic of research is to refine the definition of permissions, so
they can support a wider-range of requirements. Specifically, we are interested in
defining instance-based permissions, where roles would be authorized to invoke
a method based on the instance of its class, and the value of their parameters.
For example, different Senior Staff members in our example might be in charge

52 J.A. Pavlich-Mariscal et al.

of different surveys; even if their roles are the same, we would want the role
parameterizable by instance so that they are restricted to particular survey in-
stances. This research is related to aspect compilers, since it needs an aspect
language that could support dynamic (runtime) join points that can be selected
according to instance data (class instances, parameters), so that access control
can be implemented seamlessly.

Lastly, we continue our joint implementation effort, focusing on integrating
the work described herein with our other UML research [9,8,7]. Our objective
is to provide a complete modeling framework from analysis and design through
coding, which will also include the implementation of a role-slice diagramming
tool, and the mapping from role slices to AOP security enforcement code. We are
utilizing Borland’s UML tool Together Control Center in support of this effort.

References

1. K. Alghathbar and D. Wijesekera. authUML: a three-phased framework to analyze
access control specifications in use cases. In FMSE ’03: Proceedings of the 2003
ACM workshop on Formal methods in security engineering, pages 77–86. ACM
Press, 2003.

2. K. Alghathbar and D. Wijeskera. Consistent and complete access control policies
in use cases. In Perdita Stevens, Jon Whittle, and Grady Booch, editors, UML
2003 - The Unified Modeling Language. Model Languages and Applications. 6th
International Conference, San Francisco, CA, USA, October 2003, Proceedings,
volume 2863 of LNCS, pages 373–387. Springer, 2003.

3. D. Basin, J. Doser, and T. Lodderstedt. Model driven security, Engineering The-
ories of Software Intensive Systems. 2004.

4. D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations
model. Technical report, Mitre Corporation, 1975.

5. S. Clarke. Composition of object-oriented software design models. PhD thesis,
Dublin City University, January 2001.

6. B. De Win, B. Vanhaute, and B. De Decker. Security through aspect-oriented
programming. In Proceedings of the IFIP TC11 WG11.4 First Annual Working
Conference on Network Security, pages 125–138. Kluwer, B.V., 2001.

7. T. Doan, S. Demurjian, R. Ammar, and T.C. Ting. UML design with security
integration as a first class citizen. In Proc. of 3rd Intl. Conf. on Computer Sci-
ence, Software Engineering, Information Technology, e-Business, and Applications
(CSITeA’04), Cairo, December 2004.

8. T. Doan, S. Demurjian, T.C. Ting, and A. Ketterl. MAC and UML for secure
software design. In Proc. of 2nd ACM Wksp. on Formal Methods in Security
Engineering, Washington D.C., October 2004.

9. T. Doan, S. Demurjian, T.C. Ting, and C. Phillips. RBAC/MAC security for
UML. In C. Farkas and P. Samarati, editors, Research Directions in Data and
Applications Security XVIII, July 2004.

10. P. Epstein and R. Sandhu. Towards a UML based approach to role engineering.
In Proceedings of the fourth ACM workshop on Role-based access control, pages
135–143, 1999.

11. D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC Na-
tional Computer Security Conference, pages 554–563, 1992.

Role Slices: A Notation for RBAC Permission Assignment and Enforcement 53

12. D. Ferraiolo, R. Sandhu, S. Gavrila, R. Kuhn, and R. Chandramouli. Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur.,
4(3):224–274, 2001.

13. W. Harrison and H. Ossher. Subject-oriented programming: a critique of pure
objects. In Proceedings of the eighth annual conference on Object-oriented pro-
gramming systems, languages, and applications, pages 411–428, 1993.

14. J. Jürjens. UMLsec: Extending UML for secure systems development. In Proceed-
ings of the 5th International Conference on The Unified Modeling Language, pages
412–425. Springer-Verlag, 2002.

15. G. Kiczales. Aspect-oriented programming. ACM Comput. Surv., 28(4es):154,
1996.

16. T. Lodderstedt, D.A. Basin, and J. Doser. SecureUML: A UML-based modeling
language for model-driven security. In Proceedings of the 5th International Con-
ference on The Unified Modeling Language, pages 426–441. Springer-Verlag, 2002.

17. OMG. OMG-unified modeling language, v.1.5. UML Resource Page
http://www.omg.org/uml, March 2003.

18. E. Song, R. Reddy, R. France, I. Ray, G. Georg, and R. Alexander. Verifiable
composition of access control features and applications. In Proceedings of 10th
ACM Symposium on Access Control Models and Technologies (SACMAT 2005),
2005.

19. P. Tarr, H. Ossher, W. Harrison, and M. Sutton, Jr. Stanley. N degrees of separa-
tion: multi-dimensional separation of concerns. In Proceedings of the 21st interna-
tional conference on Software engineering, pages 107–119. IEEE Computer Society
Press, 1999.

20. D. Thomsen, D. O’Brien, and J. Bogle. Role based access control framework for
network enterprises. In Proceedings of 14th Annual Computer Security Application
Conference, pages 50–58, Phoenix, AZ, December 7-11 1998.

Designing Secure Indexes for

Encrypted Databases

Erez Shmueli1, Ronen Waisenberg1, Yuval Elovici1, and Ehud Gudes2

1 Ben-Gurion University of the Negev, Faculty of Engineering,
Department of Information Systems Engineering,

Postfach 653, 84105 Beer-Sheva, Israel
{erezshmu, ronenwai, elovici}@bgu.ac.il

2 Ben-Gurion University of the Negev, Department of Computer Science,
Postfach 653, 84105 Beer-Sheva, Israel

ehud@cs.bgu.ac.il

Abstract. The conventional way to speedup queries execution is by
using indexes. Designing secure indexes for an encrypted database envi-
ronment raises the question of how to construct the index so that no in-
formation about the database content is exposed. In this paper, the chal-
lenges raised when designing a secure index for an encrypted database
are outlined; the attacker model is described; possible attacks against se-
cure indexes are discussed; the difficulty posed by multiple users sharing
the same index are presented; and the design considerations regarding
keys storage and encryption granularity are illustrated. Finally, a secure
database-indexing scheme is suggested. In this scheme, protection against
information leakage and unauthorized modifications is provided by us-
ing encryption, dummy values and pooling. Furthermore, the new scheme
supports discretionary access control in a multi-user environment.

1 Introduction

Increasingly, organizations prefer to outsource their data center operations to
external application providers. As a consequence of this trend toward outsourc-
ing, highly sensitive data is now stored on systems that are not under the data
owners’ control. While data owners may not entirely trust providers’ discretion,
preventing a provider from inspecting data stored on their own machines is dif-
ficult. For this kind of service to work successfully, it is of primary importance
to provide means of protecting the secrecy of the information remotely stored,
while guaranteeing its availability to legitimate clients [1].

Communication between the client and the database service provider can be
secured through standard means of encryption protocols, such as SSL (Secure
Socket Layer), and is therefore ignored in the remainder of this paper. With
regard to the security of stored data, access control has proved to be useful, on
condition that data is accessed using the intended system interfaces. However,
access control is useless if the attacker simply gains access to the raw database
data, thus bypassing the traditional mechanisms [2]. This kind of access can

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 54–68, 2005.

c© IFIP International Federation for Information Processing 2005

Designing Secure Indexes for Encrypted Databases 55

easily be gained by insiders, such as the system administrator and the database
administrator (DBA).

Database encryption introduces an additional layer to conventional network
and application security solutions and prevents exposure of sensitive information
even if the raw data is compromised [3]. Database encryption prevents unautho-
rized users from viewing sensitive data in the database and, it allows database
administrators to perform their tasks without having access to sensitive infor-
mation. Furthermore, it protects data integrity, as unauthorized modifications
can easily be detected [4].

A common technique to speed up the execution of queries in databases is
to use a pre-computed index [5]. However, once the data is encrypted, the use
of standard indexes is not trivial and depends on the encryption function used.
Most encryption functions preserve equality, thus, ”Hash” indexes can be used,
however information such as the frequencies of indexed values is revealed. Most
encryption functions do not preserve order, so ”B-Tree” indexes, can no longer
be used once the data is encrypted.

Moreover, if several users with different access rights use the same index,
each one of them needs access to the entire index, possibly including indexed
elements that are beyond his access rights. For example, Google Desktop, allows
the indexing and searching of personal computers data. Using this tool, a legit-
imate user is able to bypass user names and passwords and view personal data
belonging to others who use the same computer, since it is stored in the same
index [6].

The contribution of this paper is threefold. First, we describe the challenges
arising when designing a secure index for an encrypted database. Second, we
outline design considerations regarding keys storage and encryption granularity.
Third, we present a new indexing scheme that answers most of these challenges.

The remainder of the paper is structured as follows: in section 2, related
works are outlined; in section 3, the problem statement is defined; in section 4,
design considerations regarding database encryption are described; in section 5,
we present a new secure database index; and section 6 presents our conclusions.

2 Related Work

The indexing scheme proposed in [7] suggests encrypting the whole database
row and assigning a set identifier to each value in this row. When searching a
specific value, its set identifier is calculated and then passed to the server, who,
in turn, returns to the client a collection of all rows with values assigned to the
same set. Finally, the client searches the specific value in the returned collection
and retrieves the desired rows. In this scheme, equal values are always assigned
to the same set, so some information is revealed when statistical attacks are
applied, as stated in [1].

The indexing scheme in [1] suggests building a B-Tree index over the table
plaintext values and then encrypting the table at the row level and the B-Tree at
the node level. The main advantage of this approach is that the B-Tree content

56 E. Shmueli et al.

is not visible to the untrusted database server. However, only the client can now
perform the B-Tree traversal, by executing a sequence of queries. Each query
retrieves a node located at a deeper level of the B-Tree.

The indexing scheme provided in [2] is based on constructing the index on
the plaintext values and encrypting each page of the index separately. Whenever
a specific page of the index is needed for processing a query, it is loaded into
memory and decrypted. Since the uniform encryption of all pages is likely to
provide many cipher breaking clues, the indexing scheme provided in [8] pro-
poses encrypting each index page using a different key depending on the page
number. However, these schemes, which are implemented at the level of the op-
erating system, are not satisfactory, since in most cases it is not possible to
modify the operating system implementation. Moreover, in these schemes, it is
not possible to encrypt different portions of the database using different keys.
The disadvantage of using only one key is discussed in subsection 3.6.

The database encryption scheme in [4] suggests encrypting each database cell
with its unique cell coordinates μ (T, R, C) and each index value concatenated
with its unique row identifier, as illustrated in Fig. 1.

Figure 1 illustrates the database and index encryption as described in [4].
The use of cell coordinates for the encryption of the database table and of row
identifiers for the index entries, ensures that there is no correlation between

Fig. 1. Database and index encryption as described in [4]

Designing Secure Indexes for Encrypted Databases 57

the indexed values and the database ciphertext values. However, this indexing
scheme is not resistant to tampering attacks.

The encryption function suggested in [9] preserves order, and thus allows
range queries to be directly applied to the encrypted data without decrypting
it. In addition it enables the construction of standard indexes on the ciphertext
values. However, the order of values is sensitive information in most cases and
should not be revealed.

In [10], a smart card with encryption and query processing capabilities is
used to ensure the authorized and secure retrieval of encrypted data stored on
untrusted servers. Encryption keys are maintained on the smart card. The smart
card can translate exact match queries into equivalent queries over encrypted
data.

In [11], the security of databases stored on smart cards is explored. However,
retrieval performance is not the focus of their work and it is not clear how much
of their techniques applies to general-purpose databases not stored on smart
cards, as stated in [9].

3 The Problem Statement

3.1 The Attacker Model

The attacker can be categorized into three classes: Intruder - A person who gains
access to a computer system and tries to extract valuable information. Insider -
A person who belongs to the group of trusted users and tries to get information
beyond his own access rights. Administrator - A person who has privileges to
administer a computer system, but uses his administration rights in order to
extract valuable information [10].

All of the above attackers can use different attack strategies: Direct storage
attacks - Attacks against storage may be performed by accessing database files
following a path other than through the database software, by physical removal
of the storage media or by access to the database backup disks. Indirect Storage
attacks - An adversary can access schema information, such as table and column
names, metadata, such as column statistics, and values written to recovery logs in
order to guess data distributions. Memory attacks - An adversary can access the
memory of the database software directly [9] (The last one is usually protected
by the Hardware/OS level).

3.2 Information Leakage

According to [4], a secure index in an encrypted database should not reveal any
information on the database plaintext values. We extend this requirement, by
categorizing the possible information leaks:

Static leakage - Gaining information on the database plaintext values by
observing a snapshot of the database at a certain time. For example, if the
index is encrypted in a way that equal plaintext values are encrypted to equal

58 E. Shmueli et al.

ciphertext values, statistics about the plaintext values, such as their frequencies
can easily be learned.

Linkage leakage - Gaining information on the database plaintext values by
linking a database value to its position in the index. For example, if the database
value and the index value are encrypted in the same way (both ciphertext values
are equal), an observer can search the database ciphertext value in the index,
determine its position and estimate its plaintext value.

Dynamic leakage - Gaining information about the database plaintext values
by observing and analyzing the changes performed in the database over a period
of time. For example, if a user monitors the index for a period of time, and if in
this period of time only one value is inserted (no values are updated or deleted),
the observer can estimate its plaintext value based on its position in the index.

3.3 Unauthorized Modification

In addition to the passive attacks that monitor the index, active attacks that
modify the index should also be considered. Active attacks are more problematic,
in the sense that they may mislead the user. For example, modifying index
references to the database rows may result in queries returning erroneous set of
rows, possibly benefiting the adversary.

Unauthorized modifications can be made in several ways: Spoofing - Replac-
ing a ciphertext value with a generated value. Splicing - Replacing a ciphertext
value with a different ciphertext value. Replay - Replacing a ciphertext value
with an old version previously updated or deleted [11].

3.4 Structure Perseverance

When applying encryption to an existing database, it would be desirable that
the structure of the database tables and indexes is not modified during the
encryption. This ensures that the database tables and indexes can be managed
in their encrypted form by a database administrator as usual, while keeping the
database contents hidden. For example, if a hash index is used and the values
therein do not distribute equally, performance might be undermined, and the
DBA might wish to replace the hash function. In such a case, the DBA needs to
know structure information, such as the number of values in each list, but does
not need to know the values themselves.

3.5 Performance

Indexes are used in order to speed up queries execution. However, in most cases,
using encrypted indexes causes performance degradation due to the overhead of
decryption. Indexes in an encrypted database raise the question of how to con-
struct the index so that no information about the database content is revealed,
while performance in terms of time and storage is not significantly affected.

Designing Secure Indexes for Encrypted Databases 59

3.6 Discretionary Access Control (DAC)

In a multi-user (discretionary) database environment each user only needs access
to the database objects (e.g., group of cells, rows and columns) needed to perform
his job.

Encrypting the whole database using the same key, even if access control
mechanisms are used, is not enough. For example, an insider who has the en-
cryption key and bypasses the access control mechanism can access data that
are beyond his security group. Encrypting objects from different security groups
using different keys ensures that a user who owns a specific key can decrypt only
those objects within his security group [15]. Following this approach, different
portions of the same database column might be encrypted using different keys.
However, a fundamental problem arises when an index is used for that column
as illustrated in Fig. 2.

Fig. 2. An Indexed Column Encrypted using Different Keys

Figure 2 illustrates an index that is queried by users who belong to different
security groups. Each one of them needs access to the entire index, possibly to
indexed elements, which are beyond their access rights. The same problem arises
when the index is updated.

4 Design Considerations

4.1 Key Storage

One important issue in any encrypted database is that of keys storage [1,2,12].
Several alternatives were proposed in the literature:

Storing the encryption keys at the server side - The server has full access to
the encryption keys. All computations are performed at the server side.

Storing encryption keys at the client side - The client never transfers the
keys to the server and is solely responsible for performing all encryption and

60 E. Shmueli et al.

decryption operations. When the database server has no access to the encryption
keys, most computations cannot be performed at the server side, since they
require decryption.

Keys per session - The database server has full access to the encryption keys
during the session but does not store them on disk. This ensures that during the
session, the user transaction can be performed entirely at the server side.

Table 1 summarizes the dependency between the trust in the server and the
keys storage. If we have no trust in the database server, we would prefer to keep
the encryption keys at the client side only. In cases where the database server
itself is fully trusted, but its physical storage is not, we can store the keys at the
server side in some protected region.

Table 1. Keys Storage vs. Trust in Server

Server Side Keys per Session Client Side

Absolute + + +
Partial - + +
None - - +

4.2 Encryption Granularity

Index encryption can be performed at various levels of granularity: single values,
nodes, pages or whole index. When choosing the level of granularity, the following
should be considered (see Table 2):

Information Leakage - The higher the level of encryption granularity, the
less information is revealed. Single values level encryption of the index reveals
sensitive information, such as frequencies of the index values. Whole Index level
encryption ensures that information about the indexed data cannot be leaked,
since the index is encrypted as one unit.

Unauthorized Modifications - Encryption at higher levels of granularity makes
it harder for the attacker to tamper with the data. Single values level encryption
of the index allows an attacker to switch two ciphertext values without being
noticed. Whole Index level encryption implies that a minor modification to the
encrypted index has a major effect on the plaintext index and can easily be
detected.

Structure Perseverance - Higher levels of encryption granularity conceal the
index structure. Whole Index level encryption changes the structure of the index
since the basic element of reference is changed from a single value to the entire
index. Single values level encryption of the index preserves its structure.

Performance - Finer encryption granularity affords more flexibility in allow-
ing the server to choose what data to encrypt or decrypt. Whole Index level
encryption requires the whole index to be decrypted, even if a small number of
index nodes are involved in the query. Single values level encryption of the index
enables decryption of values of interest only.

Designing Secure Indexes for Encrypted Databases 61

Table 2. Comparing Different Levels of Encryption Granularity

Information Unauthorized Structures Performance
Leakage Modifications Perseverance

Single values Worst Worst Best Best
Nodes Low Low Medium Medium
Pages Medium Medium Low Low

Whole Index Best Best Worst Worst

Better performance and preserving the structure of the database cannot be
achieved using pages or whole index encryption granularity. However, special
techniques can be used in order to cope with unauthorized modifications and
information leakage, when single values or nodes granularity encryption are used.

In our scheme, which is presented in the remainder of this paper, we assume
that the encryption keys are kept per session and that the index is encrypted at
the single values level of granularity.

5 A New Secure Database Index

In this section, a secure database index, encrypted at the single values level
of granularity is suggested. Best performance and structure perseverance are
simply obtained since single values granularity encryption is used. Information
leakage and unauthorized modifications are protected against using encryption,
dummy values and pooling. Finally, a technique that supports discretionary
access control in a multi-user environment is presented.

5.1 Encryption

Let us assume that a standard index entry is of the form:

(Vtrc, IRs, ER) (1)

Where:
Vtrc - An indexed value in table t, row r and column c.
IRs - The internal reference (references between index entries)
ER - The external reference (reference to the database row).

An entry in the proposed secure index is defined as follows:

(Ek (Vtrc) , IRs, E′
k (ER) , MACk (Vtrc ‖ IRs ‖ ER ‖ SR)) (2)

Where:
k - An encryption key.
Ek - A nondeterministic encryption function.
E′

k - An ordinary encryption function.
SR - The entry self reference.
MACk - A message authentication code function.

62 E. Shmueli et al.

The Ek Function. The implementation of Ek introduces a tradeoff between
static leakage and performance (see Table 3). If Ek is a non-deterministic encryp-
tion function (that is, equal plaintext values are encrypted to different ciphertext
values), statistics such as the frequencies and distribution of values are concealed,
but comparing index values requires their decryption. On the other hand, if Ek

is an order preserving encryption function, some information about the index
values is revealed (e.g., their order) but it is possible to compare values without
the need to decrypt them.

Table 3. The Tradeoff between Security and Performance for Ek implementation

Security Performance

Nondeterministic High Worst
Equality Preserving Medium Low
Order Preserving Low Medium
No Encryption Worst High

We suggest using a non-deterministic Ek. A possible implementation of Ek

follows:
Ek(x) = E′′

k (x||r) (3)

Where:
k - An encryption key.
E′′

k - An ordinary encryption function.
r - A random number with a fixed number of bits.

Using the above implementation of Ek there is no correlation between
Ek(Vtrc) and the corresponding column ciphertext value (random numbers are
used before encryption) and thus linkage leakage attacks are eliminated.

The MACk Function. Most commercial databases implement indexes like
tables (as heap files). In this implementation, index entries are uniquely identified
using the pair: page id and slot number [5] (in our notations SR and IR).

Message authentication codes (MAC) are used to protect against unautho-
rized modifications of messages. They mix the message cryptographically under
a secret key, and the result is appended to the message. The receiver can then
recompute the MAC and verify its correctness. It should be impossible for an at-
tacker to forge a message and still be able to compute the correct MAC without
knowing the secret key.

In our scheme, we use a MACk function to protect the index entries against
unauthorized modifications. Spoofing attacks are eliminated, since the MAC
value depends on Vtrc, and once Ek(Vtrc) is tampered with, Vtrc will not match
the Vtrc used in the MAC. Splicing attacks are eliminated since the MAC value
depends on SR and trying to substitute two encrypted index entries will be
detected, since SR would not match the SR used in the MAC. Replay attacks

Designing Secure Indexes for Encrypted Databases 63

can be eliminated by adding a new dimension, that of time, to each index node.
This enables the validity of the node version to be verified, just as SR was used
in order to verify its logical location.

The MAC value added to each index entry causes data expansion and thus,
its size introduces a tradeoff between security and data expansion.

Evaluating a Query. The following pseudo code illustrates a query evaluation
using the encrypted index 1:

INPUT:

A table: T

A column: C

A value: V

A query: SELECT * FROM T WHERE T.C>=V

OUTPUT:

A collection of row-ids.

X := getIndex(T, C).getRootNode();

While (not X.isLeaf()) Do

If (not x.isValid())

Throw IllegalStateException();

Else

If X.getValue()<V Then

X := X.getRightSonNode();

Else

X := X.getLeftSonNode();

End If;

End If;

End While;

RESULT := {};

While X.getValue()<V Do

X := X.getRightSiblingNode();

End While;

While X is not null Do

RESULT := RESULT union {X.getRowId()};

X := X.getRightSiblingNode();

End While;

Return RESULT;

While isLeaf, getRightSonNode, getLeftSonNode and getRightSiblingNode
methods relate to the index structure and their implementation does not change,

1 The encrypted index is assumed to be implemented as a binary tree. However, the
pseudo code can be easily be generalized to handle a B-Tree implementation.

64 E. Shmueli et al.

getValue and getRowId are implemented differently so that encryption and de-
cryption support is added. The new method, isValid, verifies the index entry
integrity using the MAC value.

Performance can be furthermore improved, if entries’ verification is performed
periodically on the entire index and not as part of each index operation.

5.2 Using Dummy Values and Pooling

In order to cope with dynamic leakage attacks, we need to reduce the level of
confidence an adversary has about the effect of new inserted data on the database
indexes. There is a trade-off between how much of the index is updated and
how much information an adversary is able to learn [13]. In this subsection, we
propose two techniques for reducing the adversary level of confidence:

Dummy values - We can insert dummy values to the index with each insertion
made by the user, and thus reduce the level of confidence. However, inserting
dummy values with each insertion results in data expansion. The number of
dummy values added in each insertion determines the level of confidence an
adversary has about the position of a value within the index.

Pooling - The use of pooling in order to improve performance of insertions
to database indexes was suggested by [14]. We suggest the use of pooling for
security reasons. We define a fixed size pool for each index holding the new
inserted values. Only when the pool is full, will the indexes be updated with
these values. Furthermore, the extraction of values from the pool should be
done in a random order, since it makes it difficult to link the extracted values
and their corresponding inserted values. When a query is to be executed, we
first need to search the pool, and then to search the rest of the index. The pool
size determines the level of confidence an adversary has about the position of a
value within the index. Note that a full scan has to be performed on the pool
whenever the index is used. Thus, the size of the pool is a privacy-performance
trade-off. Using a pool size that has space complexity of O(log |table size|) will
not affect the time complexity of the queries.

Figure 3 illustrates a database index using pooling. Figure 3a illustrates the
database table, index and pool after the insertion of three values: 17,5,24 where
the pool size is four values. Figure 3b illustrates the database table, index and
pool after the insertion of a fourth value: 36, that fills the pool. The values in the
pool are then extracted in random order and inserted into the database table
and index.

5.3 Supporting DAC

If indexes are used only by one user or if they are never updated, it is possible to
maintain a local index for each user. Securing indexes stored locally is relatively
easy. However, such local indexes do not work well in a multi-user environment,
since synchronizing them is difficult. Thus, it is necessary to store the indexes
in one site, such as the database server, and share them between users.

As mentioned in subsection 3.6, a fundamental problem arises when multiple
users share the same encrypted index and each user has different access rights.

Designing Secure Indexes for Encrypted Databases 65

Fig. 3. A Database Index Using Pooling

Fig. 4. An Encrypted Database Column and its Corresponding Sub-Indexes

Fig. 5. Query Execution Using Sub-Indexes

66 E. Shmueli et al.

We suggest a simple but elegant solution to this problem: split the index into sev-
eral sub-indexes where each sub-index relates to values in the column encrypted
using the same key. A similar approach for disseminating XML documents was
proposed in [15].

Figure 4 illustrates sub-indexes where each sub-index relates to values in
the column encrypted using the same key. In order to evaluate a query, only
ciphertext values with the same access right are queried. All the values in a sub-
index belong to the same security group, and thus the problem that is illustrated
in Fig. 2 is eliminated.

Figure 5 illustrates how a query is executed using sub-indexes. A secure
session between the user and the database server is created (step 1). The user
supplies his encryption keys2 (step 2). During the secure session, the user submits
queries to the server (step 3). The server uses the encryption keys in order to
find the set of indexes that the current user is entitled to access3 (step 4). The
query is executed on the set of indexes found (step 5). The result set is returned
to the user (step 6).

6 Conclusions

In this paper, we outlined the challenges raised when designing a secure index
for an encrypted database. The challenges include: prevention of information
leakage; detection of unauthorized modifications; preserving the structure of the
index; and supporting discretionary access control; while performance in terms
of time and storage is not significantly affected. In addition, two design consid-
erations, keys storage and encryption granularity, were discussed. For each design

Table 4. Summary of Challenges and Solutions

Challenge Solution

Static Leakage Ek is nondeterministic
Linkage Leakage Different encryption functions for the index and the table

Dynamic Leakage Dummy Values and Pooling

Spoofing MAC (Vtrc - the indexed value)
Splicing MAC (SR - the node self reference)
Replay MAC (Version)

Structure Perseverance Single values granularity; Structure data is not encrypted

Performance Single values granularity; Periodic verification

DAC Sub-Indexes

2 The encryption keys can be supplied using smart card architecture.
3 The database server can maintain a directory that maps the hash of a given encryp-

tion key to the corresponding sub-index.

Designing Secure Indexes for Encrypted Databases 67

consideration, we proposed several alternatives and elaborated on the tradeoffs
between them.

A secure database index encrypted at the single values level of granularity
was suggested. Performance and structure perseverance are simply obtained since
single values granularity encryption is used. We used encryption, dummy values
and pooling in order to prevent information leakage and unauthorized modifi-
cations. Finally, in order to support discretionary access control in a multi-user
environment, we suggested splitting the index into several sub-indexes, where
each sub-index relates to values in the column encrypted using the same key.

Table 4 summarizes the challenges and solutions that were suggested through-
out this paper.

References

1. Damiani, E., De Capitani diVimercati, S., Jajodia, S., Paraboschi, S. and Sama-
rati, P.: Balancing Confidentiality and Efficiency in Untrusted Relational DBMSs.
CCS 03, Washington (2003) 27-31.

2. Iyer, B., Mehrotra, S., Mykletun, E., Tsudik, G. and Wu, Y.: A Framework for
Efficient Storage Security in RDBMS. E. Bertino et al. (Eds.): EDBT 2004, LNCS
2992 (2004) 147-164.

3. Davida, G.I., Wells, D.L., and Kam, J.B.: A Database Encryption System with
subkeys. ACM Trans. Database Syst. 6 (1981) 312-328.

4. Elovici, Y., Waisenberg, R., Shmueli, E., Gudes, E.: A Structure Preserving
Database Encryption Scheme. SDM 2004, Workshop on Secure Data Management,
Toronto, Canada, August, (2004).

5. Ramakrishnan, R and Gehrke, J.:Database Management Systems. McGraw-Hill
(2000).

6. Spring, T.: Google Desktop Search: Security Threat?
http://blogs.pcworld.com/staffblog/archives/000264.html, October, (2004);

7. Hacigümüs, H., Iyer, B., Li, C., and Mehrotra, S.: Executing SQL over encrypted
data in the database-service-provider model. In Proc. of the ACM SIGMOD’2002,
Madison, USA (2002).

8. Bayer, R. and Metzger, J.K.: On the Encipherment of Search Trees and Random
Access Files. ACM Trans Database Systems, Vol. 1 (1976) 37-52.

9. Agrawal, R., Kiernan, J., Srikant, R. and Xu, Y.: Order Preserving Encryption for
Numeric Data. In Proc. of the ACM SIGMOD’2004, Paris, France (2004).

10. Bouganim, L. and Pucheral, P.: Chip-secured data access: confidential data on
untrusted servers. In Proc. of the 28th Int. Conference on Very Large Data Bases,
Hong Kong, China (2002) 131-142.

11. Vingralek, R.: Gnatdb: A small-footprint, secure database system. In Proc. of the
28th Int’l Conference on Very Large Databases, Hong Kong, China, August (2002)
884-893.

12. Hore, B., Mehrotra, S. and Tsudik, G.: A Privacy Preserving Index for Range
Queries. In Proc. of the 30th International Conference on Very Large Data Bases,
Toronto, Canada(2004) 720-731.

13. Song, D.X., Wagner, D. and Perrig, A.: Practical Techniques for Searches on En-
crypted Data. In Proc. of the 2000 IEEE Security and Privacy Symposium, May
(2000).

-

68 E. Shmueli et al.

14. Jermine, C. Datta, A. and Omiecinski, E.: A Novel Index Supporting High Volume
Data Warehouse Insertions. In Proc. of the 25th Int. Conference on Very Large
Data Bases, Edinburgh, Scotland (1999) 235-245.

15. Bertino, E. and Ferrari, E.: Secure and Selective Dissemination of XML Documents.
ACM Transactions on Information and System Security Vol. 5 No. 3 (2002) 290-
331.

16. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Massachusetts
(1982).

17. Menezes, A., Van Oorschot, P. and Vanstone, S.: Handbook of Applied Cryptog-
raphy. CRC Press (1996).

18. National Bureau of Standards. Data Encryption Standard. FIPS, NBS (1977).
19. Database Encryption in Oracle9iTM. An Oracle Technical White Paper (2001).

Efficiency and Security Trade-Off in Supporting

Range Queries on Encrypted Databases�

Jun Li and Edward R. Omiecinski

College of Computing,
Georgia Insitute of Technology,

801 Atlantic Drive, Atlanta, GA 30332
{junli, edwardo}@cc.gatech.edu

Abstract. The database-as-a-service (DAS) model is a newly emerging
computing paradigm, where the DBMS functions are outsourced. It is de-
sirable to store data on database servers in encrypted form to reduce se-
curity and privacy risks since the server may not be fully trusted. But this
usually implies that one has to sacrifice functionality and efficiency for
security. Several approaches have been proposed in recent literature for
efficiently supporting queries on encrypted databases. These approaches
differ from each other in how the index of attribute values is created.
Random one-to-one mapping and order-preserving are two examples. In
this paper we will adapt a prefix-preserving encryption scheme to create
the index. Certainly, all these approaches look for a convenient trade-off
between efficiency and security. In this paper we will discuss the security
issues and efficiency of these approaches for supporting range queries on
encrypted numeric data.

1 Introduction

The database-as-a-service (DAS) model [1] is a new computing paradigm that
has emerged recently. To save cost, data storage and management are outsourced
to database service providers. In other words, highly sensitive data are now stored
in locations that are not under the data owner’s control, such as leased space and
partners’ sites. This can put data confidentiality at risk. Therefore, it is desirable
to store data in encrypted form to protect sensitive information. Also queries
may reveal private information about the user [2]. In this paper, we discuss
how to efficiently support searching functionality, in particular, range queries,
while preserving data confidentiality and user privacy. The motivation within
this model of processing is to provide security and privacy but also have the
database service provider do most of the query processing. Several approaches
have been proposed to generate the index that enables queries to be processed
against encrypted data with different levels of efficiency and security [3,4,5,6].
In this paper, we will adapt a prefix-preserving encryption scheme to create the

� This work has been supported in part by National Science Fundation Grant CCR-
0121643.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 69–83, 2005.

c© IFIP International Federation for Information Processing 2005

70 J. Li and E.R. Omiecinski

index. We will also discuss the security issues and efficiency of these approaches
for supporting range queries on encrypted data.

One simple way to preserve the confidentiality is to decrypt the data when
performing search. There are several drawbacks with this approach. First, all
the data stored in the database needs to be decrypted for every query. Second,
this approach assumes the server is secure and fully trusted. This assumption is
less justified in the DAS paradigm.

A major type of database queries is range-based, composed of intervals in
the underlying domain of the attributes. Attributes such as name, not typi-
cally thought of as numerical, can be indexed and therefore linearized in some
fashion. In this paper we will mainly be concerned with interval-matching or
exact-matching as query conditions. Interval-matching is defined as a boolean
function f[a,b](x), which returns true if and only if x ∈ [a, b]. Because computers
can handle only inherently finite and discrete attribute values, one can assume
without loss of generality x, a and b are all nonnegative integers. Exact-matching
is a special case of interval-matching in which a is equal to b.

The paper is organized as the follows, in Sect. 2, we survey the related work
and discuss possible solutions based on well-known mechanisms. Section 3 shows
how a relation is encrypted and stored on the server. In Sect. 4, we present
a scheme that efficiently supports interval-matching as query conditions. First
we show how an interval-matching problem can be transformed into a set of
prefix-matching problems. Then the prefix-preserving encryption algorithm is
presented. At the end of the section, we describe that with prefix-preserving
encryption how a condition in a range query is translated to a condition over
server-side representation and how select operations are implemented. Section 5
analyzes one possible attack against the random one-to-one mapping scheme and
the prefix-preserving scheme, while in Sect. 6 we have some additional discussion
on the security of the prefix-preserving scheme. Section 7 compares the prefix-
preserving scheme with the random one-to-one mapping scheme in the aspects
of client side cost, server side cost and communication cost for supporting range
queries. We then conclude the paper in Sect. 8.

2 Related Work

Recently providing security and privacy in DAS has drawn considerable atten-
tion [3,4,5,6]. The bucket index technique proposed in [3,6] relies on partitioning
attribute domains of a client’s table into sets of buckets. The index value of
each remote table attribute value is the bucket number to which the corre-
sponding plain value belongs. This representation supports efficient evaluation
of both exact-matching and interval-matching predicates on the database service
provider; however, it makes it awkward to manage the correspondence between
bucket numbers and the actual attribute values present in the database. For
the convenience of comparison, in the rest of this paper, when we discuss about
this approach, we will assume that the size of each bucket is 1 and the bucket
number is generated by a random one-to-one mapping of the plaintext value. In

Efficiency and Security Trade-Off in Supporting Range Queries 71

this case, the server will not return any redundant data to the client. Therefore,
the client does not need any database functionality to filter out unsolicited data.
This fulfills the goal of the DAS model, i.e., outsourcing database management
and having the database server do most of the work.

In [4], the authors quantitatively evaluate the level of inference exposure as-
sociated with the publication of attribute indexes generated by a random one-to-
one mapping. In the solution they propose for supporting interval-based queries,
the task of determining B+-tree information is left to the customer. The advan-
tage of their solution is that the content of B+-tree is not visible to an untrusted
database service provider. The disadvantage is that a lot of data processing has
to occur on client machines. This mitigates the advantage of the DAS model.

In [7], a sequence of strictly increasing polynomial functions is used for
encrypting integer values while preserving their order. In [5], another form of
order-preserving encryption is provided for computing the index. It takes a user-
provided target distribution as input and transform the plaintext values in such
a way that the transformation preserves the order while the transformed values
follow the target distribution. The authors assume an application environment
where the goal is safety from an adversary who has access to all (but only) en-
crypted values (the so called ciphertext only attack [8]). In this paper, we will
not only examine the prefix-preserving scheme under ciphertext only attack, but
also examine it under known plaintext attack [8] (i.e., an adversary is assumed
to gain full knowledge to certain number of 〈plaintext, ciphertext〉 pairs through
means other than compromising the key).

All of the aforementioned schemes including the scheme proposed in this
paper suffer from a same problem, i.e., they preserve statistics. That is, an ad-
versary may know exactly how many entries each value has, even though the
plaintexts of the indexes themselves are unknown. This can lead the adversary
into an easier inference. Elovici et al. proposed an index scheme that does not
reveal database statistics [9]. However, it assumes that the cell coordinates (in-
cluding Table ID, Row ID, and Column ID) are stable. That is, insert, update
and delete operations do not change the coordinates of existing cells. This puts
additional restrictions to the implementation of the DBMS.

A potential technique that can support searching on encrypted data is com-
puting with encrypted data [10]. However, an expensive protocol between clients
and database service providers is needed. A closely related topic is Private In-
formation Retrieval (PIR) [2]. PIR mechanisms allow clients to query databases
without revealing which entries are of interest. PIR schemes often require mul-
tiple non-colluding servers, consume large amounts of bandwidth, and do not
guarantee the confidentiality of the data.

3 Data Organization

In a relational DBMS, data are organized in tables (e.g., the Employee data
in Table 1, where the underlined attribute represents the key of the table). The
database can be encrypted with regard to different units, which can be individual

72 J. Li and E.R. Omiecinski

Table 1. Employee

FNAME LNAME SSN ADDRESS SALARY DNO

John Smith 123456789 731 Fondren, Storrs, CT 30000 5

Franklin Wong 333445555 638 Voss, Storrs, CT 40000 5

Alicia Zelaya 999887777 3321 Castle, Storrs, CT 25000 4

Ahmad Jabbar 987987987 980 Dallas, Storrs, CT 25000 5

James Borg 888665555 450 Stone, Storrs, CT 55000 1

Table 2. Encrypted Employee

Enc tuple ISSN ISALARY IDNO

fjftejcCcWsGqfChXcHuRzoriODCRxvD 068764019 6488 250

tprJMmfjXJNs74fZZfL1TridemjZnWvY 277737042 45639 250

edVI8JvVSjmzXsrmDIiosZabdFnnorwy 080581877 53798 224

z4tzGJUdsyy7Eb0puESatLCXOXckVTWA 203690710 53798 250

zzdqGlqngQgwJurSqsyFrejiia6KCNMk 929644962 20577 59

table, a column of a table, a row (tuple) of a table or a given column within
each row (i.e., the data item value). Encrypting at a coarser level of granularity
such as a table implies that the entire table must be returned as the result
of a query, although encryption/decryption will be more efficient. Encrypting
at a finer level such as a data item allows for more efficient query processing
but requires increased overhead for encryption/decryption [1]. As in [3,4,5,6],
we assume encryption to be performed at the tuple level. To provide the server
with the ability to select a set of tuples to be returned in response to a query, we
associate each encrypted tuple with a number of indexing attributes. An index
can be associated with each attribute in the original relation on which conditions
need to be evaluated for query processing.

Each plaintext relation will be stored as a relation with one attribute repre-
senting the encrypted tuple and additional attributes representing the indexes.
Each plaintext tuple t(A1, ..., An) is mapped onto a tuple t′(E(t), I1, ..., Im)
where m ≤ n. The attribute E(t) stores an encrypted string that corresponds
to the entire plaintext tuple, and each Ii corresponds to the index over some
Aj . The encryption function E is treated as a black box in our discussion. Any
block cipher such as AES [11], DES [12] etc., can be used to encrypt the tuples.
Table 2 illustrates an example of the corresponding encrypted/indexed rela-
tion Encrypted Employee where Enc tuple contains the encrypted tuples, while
ISSN , ISALARY , and IDNO are indexes over attributes SSN, SALARY, and DNO
respectively.

4 A Prefix-Preserving Encryption Based Scheme

4.1 Transforming Interval-Matching into Prefix-Matching

In this section, we will transform interval-matching into prefix-matching. Prefix-
matching has been used widely in databases and networks. The transformation

Efficiency and Security Trade-Off in Supporting Range Queries 73

is based on the fact that an arbitrary interval can be converted into a union of
prefix ranges, where a prefix range is one that can be expressed by a prefix [13].
For example, the interval [32, 111], the 8-bit binary representation of which is
[00100000, 01101111], can be represented by a set of prefixes {001∗, 010∗, 0110∗}.
Throughout this paper, the notation ∗ is used to denote an arbitrary suffix. To
verify that a number is in the interval is equivalent to check that the number
matches any of those prefixes in the set. For example, 37 (00100101 in binary) is
in the interval as it matches prefix 001∗, while 128 (10000000 in binary) is not
in the interval since it matches none of those three prefixes.

Let n denote the length of the binary representation of the data, and let
pn denote the number of prefixes needed to represent an interval. We have the
following theorem on the upper bound of pn.

Theorem 1. For any interval [a1a2 · · ·an, b1b2 · · · bn] (n ≥ 2), pn ≤ 2(n− 1).

The proof of this theorem is omitted here due to the lack of space and can
be found in our technical report [14]. Note that for interval [1, 2n− 2], it can be
easily verified that pn is equal to 2(n− 1). Therefore, the upper bound is tight.

Theorem 2. For a given n, considering all possible intervals [a1a2 · · · an,
b1b2 · · · bn], if we assume all the intervals appear with the same probability, i.e.,
all queries are equi-probable, the average number of pn is equal to
(n−2)22n−1+(n+1)2n+1

22n−1+2n−1 , which is approximately equal to n− 2, when n is large.

The proof of this theorem is omitted here due to the lack of space and can
be found in our technical report [14]. From these two theorems we see that the
upper bound of pn is a linear function of n and the average number of pn is
approximately a linear function of n. This is a very nice feature.

In Fig. 1 we present a recursive algorithm to generate the set of prefixes for
a given interval [a1a2 · · · an, b1b2 · · · bn].

1. Starting from k = 1, find the most significant bit, numbered k, for which
ak < bk.
2. If k is not found, i.e., for all 1 ≤ i ≤ n, ai = bi, then the interval can be
denoted by prefix a1a2 · · · an. Return a1a2 · · · an.
3. If for all k ≤ i ≤ n, ai = 0 and bi = 1, then return a1a2ak−1∗ (return ∗ if
k = 1).
4. Transform interval [a1a2 · · · an, b1b2 · · · bn]
into [a1 · · · ak−10ak+1 · · · an, a1 · · · ak−1011 · · · 1] ∪
[a1 · · · ak−1100 · · · 0, a1 · · · ak−11bk+1 · · · bn].
5. Run this algorithm with interval [ak+1 · · · an, 11 · · · 1] as input, concate-
nate a1 · · · ak−10 before all the returned prefixes. Then run this algorithm
with interval [00 · · · 0, bk+1 · · · bn] as input, concatenate a1 · · · ak−11 before all
the returned prefixes. Return all the prefixes.

Fig. 1. The algorithm for transforming interval [a1a2 · · · an, b1b2 · · · bn] into prefixes

74 J. Li and E.R. Omiecinski

We have seen that matching an interval based on a set of prefix-matchings
is both simple and efficient. Therefore prefix-preserving encryption algorithm
can be used to efficiently support interval-matching as a query condition while
preserving the confidentiality of data and queries.

4.2 Prefix-Preserving Encryption

After transforming interval-matching into prefix-matching, we need a prefix-
preserving encryption scheme to generate the index, so that the database system
will be able to answer the queries based on encrypted data and queries. We apply
an encryption scheme proposed by Xu et al. [15] for prefix-preserving IP address
anonymization.

Definition 1. (Prefix-preserving encryption) ([15]) We say that two n-bit
numbers a = a1a2 · · ·an and b = b1b2 · · · bn share a k-bit prefix (0 ≤ k ≤ n), if
a1a2 · · · ak = b1b2 · · · bk, and ak+1 �= bk+1 when k < n. An encryption function
Ep is defined as a one-to-one function from {0, 1}n to {0, 1}n. An encryption
function Ep is said to be prefix-preserving, if, given two numbers a and b that
share a k-bit prefix, Ep(a) and Ep(b) also share a k-bit prefix.

0
1

1
1

0
0 1

1
0 1

0 1
1

1
10 0

0 0

1
0

1
1

0
0 1

1
0

1
1

0 1
1

1 0 0
1

00

1 1 1 11 0 1

0 0 0 01 1 1

10

0 1

1

1

0
0

0

0 1
0 0

0

0

1

1

0 1 0 0 0 0 0

0
0 0 0 0 0 1 1 1 1 1 11 1

0
1

0

Flip

0

Leaf Node
Do Not Flip

0
0

1
0

0 1
1

0 1
1 0

1
1

11 0
0

0 01
1

0
0

0 1
0

0
0

1
0 1

0
1 1 1

1
0

1
0

0 1 01 1 0

0 0 1 01 0 1

10

1 0

1

1

1
0

0

1 0
1 1

1

0

0

1

0 1 0 0 1 0 11

1
1 1 1 1 1 0 0 0 0 0 00 0

1
1

0

(a) plaintext tree (b) encryption function (c) ciphertext tree

Fig. 2. An example of prefix-preserving encryption

It is helpful to consider a geometric interpretation of prefix-preserving en-
cryption [15]. If a plaintext can take any value of a n-bit number, the entire
set of plaintexts can be represented by a complete binary tree of height n. This
is called the plaintext tree. Each node in the plaintext tree (excluding the root
node) corresponds to a bit position, indicated by the height of the node, and a bit
value, indicated by the direction of the branch from its parent node. Figure 2(a)
shows a plaintext tree (using 4-bit plaintexts for simplicity).

A prefix-preserving encryption function can be viewed as specifying a binary
variable for each non-leaf node (including the root node) of the plaintext tree.
This variable specifies whether the encryption function “flips” this bit or not.
Applying the encryption function results in the rearrangement of the plaintext
tree into a ciphertext tree. Figure 2(c) shows the ciphertext tree resulting from

Efficiency and Security Trade-Off in Supporting Range Queries 75

the encryption function shown in Fig. 2(b). Note that an encryption function
will, therefore, consist of 2n − 1 binary variables, where n is the length of a
plaintext.

A general form of prefix-preserving encryption function is presented in [15].
Let fi be a function from {0, 1}i to {0, 1}, for i = 1, 2, · · · , n− 1 and f0 is a con-
stant function. Given a plaintext a = a1a2 · · · an, the ciphertext a′

1a
′
2 · · · a′

n will
be computed by the algorithm given in Fig. 3. According to Theorem 1 (canon-
ical form theorem) in [15], the algorithm given in Fig. 3 is a prefix-preserving
encryption algorithm.

1. Compute a′
i as ai⊕fi−1(a1a2 · · · ai−1), where ⊕ stands for the exclusive-or

operation, for i = 1, 2, · · · , n.
2. Return a′

1a
′
2 · · · a′

n.

Fig. 3. Prefix-preserving encryption algorithm

In [15], the prefix-preserving encryption scheme is defined as instantiating
functions fi with cryptographically strong stream ciphers or block ciphers as
follows:

fi(a1a2 · · · ai) := L(R(a1a2 · · ·ai, κ)) (1)

where i = 1, · · · , n − 1 and L returns the “least significant bit”. Here R is a
pseudorandom function or a pseudorandom permutation (i.e., a block cipher). κ
is the cryptographic key used in the pseudorandom function R. Its length should
follow the guideline specified for the pseudorandom function that is actually
adopted.

The encryption function can be performed quickly as it only involves n − 1
symmetric key cryptographic operations, and these n−1 operations can be done
in parallel. A prefix expresses a prefix range, thus a prefix-matching query can
be efficiently processed as a range query with a B+-tree index structure. We
will compare the performance of the prefix-preserving scheme with the random
one-to-one mapping scheme in Sect. 7.

4.3 Implementing Range Queries over Encrypted Relations

With the prefix-preserving encryption algorithm, denoted by Ep, we can trans-
late specific query conditions in operations (such as selects and joins) to corre-
sponding conditions over server-side representation. This translation function is
called Mapcond. Since this paper is mainly focused on supporting range queries,
we will only consider select operations in this paper. This scheme can handle
other relational operations as well. The discussion is omitted here due to the
lack of space and can be found in our technical report [14].

A select query condition is a boolean expression specified on relation at-
tributes. It can be made up of a number of clauses of the form
<attribute> <comparison op> <value>,

76 J. Li and E.R. Omiecinski

where <attribute> is the name of an attribute, <comparison op> is one of the
operations {=,≤,≥}, and <value> is a constant value from the attribute do-
main. Clauses can be arbitrarily connected by the boolean operators AND, OR,
and NOT to form a general query condition. It has been discussed in [3] how
to translate a composite condition to the corresponding condition over server-
side representation after each clause is translated. Hereafter we discuss how to
translate a single clause.

attribute = value: Since the prefix-preserving encryption is a one-to-one
mapping, the mapping is simply defined as follows:
Mapcond(Ai = v) ⇒ Ep(Ai) = Ep(v).

attribute ≤ value (attribute ≥ value): A query condition Ai ≤ v (Ai ≥
v) is equivalent to an interval-matching of f[vmin,v](Ai) (f[v,vmax](Ai)), where
vmin (vmax) is the lower (upper) bound of the attribute domain. The interval
[vmin, v] ([v, vmax]) can be converted into a union of prefix ranges, {P1, P2, · · · ,
Pl}, with Algorithm 1. Therefore, interval-matching f[vmin,v](Ai) can be trans-
formed to a set of prefix-matchings {MP1(Ai), MP2(Ai), · · · , MPl

(Ai)} (MPk
(Ai)

denotes the boolean function, which returns true if and only if the value of Ai

matches prefix Pk). Then the prefix-preserving encryption can be applied on the
prefixes. Therefore, the mapping is defined as follows:
Mapcond(Ai ≤ v) ⇒
{MEp(P1)(Ep(Ai)) OR MEp(P2)(Ep(Ai)) OR · · · OR MEp(Pl)(Ep(Ai))}.

Consider a select operation σC(R) on a relation R, where C is a condition
specified on one or more of the attributes A1, A2, · · · , An of R. The operation
can be rewritten as follows:
σC(R) = D(σMapcond(C)(E(R)),
where E(R) is the encrypted relational table (e.g., the Encrypted Employee table
presented in Table 2), and D is the corresponding decryption function of E. The
operation σMapcond(C)(E(R)) will be executed at the server. The results will be
transmitted to the client. The client then can get the query results by applying
decryption function D.

5 Attack with a Set of Queries

In this section, we will discuss the security issues of the prefix-preserving scheme
proposed in this paper and the schemes proposed in the literature, i.e., ran-
dom one-to-one mapping and order-preserving. There are many possible attacks
against these schemes [4,5]. We are not going to examine all the possible at-
tacks, instead we will discuss a particular one, which can be applied to both the
random one-to-one mapping scheme and the prefix-preserving scheme.

An adversary may compromise the confidential information by gathering
query predicate conditions. Sometimes it is reasonable for an adversary to as-
sume that the index set against one attribute from each query may be derived
from a single interval. In other words, each index set, though contains multiple
indexes, represents only a single interval. Based on this assumption, the encryp-
tion mapping may be revealed partially, i.e., the adversary can figure out a coarse
order of a set of indexes. This will be further explained in the rest of this section.

Efficiency and Security Trade-Off in Supporting Range Queries 77

The feasibility of this attack is constrained by the ability of adversaries to
collect enough queries. Furthermore, clients may not obey the assumption, i.e.,
they may not always submit a single interval-matching for each predicate against
one index attribute in a query. This will complicate the attack as well.

To alleviate this problem, clients may specify different keys to generate in-
dexes for different attributes, thus preventing an adversary from aggregating
information from different attributes. Also, clients can inject some noise into
their queries to undermine the adversary’s assumption. But the price paid is
that the clients will receive some data that are not of interest. This compro-
mises the purpose of the DAS model, since the clients still need certain database
functionality to be able to filter out redundant results.

The order-preserving encryption preserves the order of plaintexts, so it is
trivial for the adversary to figure out the order of any set of indexes generated
from the order-preserving scheme. In the remainder of this section we will analyze
possible attacks against the random one-to-one mapping scheme and the prefix-
preserving scheme.

5.1 Against the Random One-to-one Mapping Scheme

An adversary is assumed to be able to collect a set of queries. In each query
there is a tuple of index sets. Based on our assumption, the indexes in a set
should represent a single interval. Assume the size of the index domain is 2n. If
the adversary is able to collect all the 2n − 1 two-index sets which contain two
consecutive indexes, then he/she will be able to figure out an order of all the
indexes, but without knowing whether it is an ascending or descending order.
If the adversary knows at least one plaintext/ciphertext pair, then he/she will
be able to decrypt any index. For example, when n = 2, if the adversary is
able to collect 3 index sets, {a, b}, {b, c}, {c, d}, the he/she will be able to figure
out an order of the indexes, a, b, c, d, without knowing if it is an ascending or
descending order.

An algorithm to collect two-index sets from a list of index sets is given in
Fig. 4.

1. Discard one-index sets.
2. For any two sets A, B in the list of index sets, if none of A ∩ B, A ∩ B,
A∩B is an empty set, then add these sets into the new list of index sets (Note
that any of these resulted sets still represents a single interval).
3. If any new set is added, go to step 1. Otherwise, collect all two-index sets.

Fig. 4. The algorithm for attacking queries against the random one-to-one mapping

5.2 Against the Prefix-Preserving Scheme

To better illustrate the attack against the prefix-preserving scheme, we introduce
a definition as follows.

78 J. Li and E.R. Omiecinski

Definition 2. Given two k-bit (k ≥ 2) encrypted prefixes a = a1a2 · · ·ak∗ and
b = b1b2 · · · bk∗, if there exists an i, 1 ≤ i ≤ k−1 such that ai �= bi and the range
of a and b can be merged into a single interval, then we call the set of prefixes
{a, b} a non-trivial two-prefix set with length k. We call an encrypted
two-prefix set {a1a2 · · · ak−1ak∗, a1a2 · · ·ak−1ak∗} a trivial two-prefix set.

It is easy to see that if an adversary has all (2k−1 − 1) non-trivial two-
prefix sets of length k, then he/she will be able to create an order for all en-
crypted k-bit prefixes without knowing if it is an ascending or descending order.
If the adversary knows at least one plaintext/ciphertext pair, then he/she will
be able to decrypt any encrypted k-bit prefix. For example, if an adversary has
the following three non-trivial two-prefix sets of length 3, {a1a2a3∗, a1a2b3∗},
{a1a2b3∗, a1b2c3∗}, {a1b2c3∗, a1b2d3∗}, then he/she will be able to figure out the
following order for all 3-bit prefixes: a1a2a3, a1a2a3∗, a1a2b3∗, a1a2b3∗, a1b2c3∗,
a1b2c3∗, a1b2d3∗, a1b2d3∗ without knowing whether it is an ascending or de-
scending order. If the plaintext of a1a2a3∗ is known to be 001∗, the adversary
will be able to decrypt any encrypted 3-bit prefix.

An adversary is assumed to be able to collect a set of queries. In each query
there is a tuple of encrypted prefix sets. Based on our assumption, the encrypted
prefixes in a set should represent a single interval. An algorithm to collect non-
trivial two-prefix sets of length k from a list of encrypted prefix sets is given in
Fig. 5.

1. Preprocess the encrypted prefix sets.

– For any prefix longer than k-bit, a1a2 · · · akak+1 · · · al∗ (l > k), replace it
by a1a2 · · · ak∗.

– For any prefix shorter than k-bit, a1a2 · · · al∗ (l < k), replace it by all the
k-bit prefixes which share the l-bit prefix.
(Note that after the preprocessing, the encrypted prefixes in a set still
represent a single interval)

2. Discard trivial two-prefix sets and one-prefix sets.
3. For any two sets A, B in the list of prefix sets, if none of A ∩ B, A ∩ B,
A ∩ B is an empty set, then add these sets into the new list of prefix sets
(Note that any of these resulted sets still represents a single interval).
4. If any new set is added, go to step 2. Otherwise, collect all non-trivial
two-prefix sets.

Fig. 5. The algorithm for attacking queries against the prefix-preserving scheme

Hereafter we give a simple example of this attack. Suppose an adversary
wants to attack the 3-bit prefixes, and he/she has the following encrypted pre-
fix sets from the queries. A = {a1a2a3∗, a1a2∗, a1b2∗, a1b2b3∗}, B = {a1a2c3∗,
a1b2∗, a1b2b3∗}, C = {a1b2d3a4∗, a1b2∗}. The adversary can get the following 3-
bit prefix sets. A′ = {a1a2a3∗, a1a2c3∗, a1a2c3∗, a1b2d3∗, a1b2d3∗, a1b2b3∗}, B′ =

Efficiency and Security Trade-Off in Supporting Range Queries 79

{a1a2c3∗, a1b2d3∗, a1b2d3∗, a1b2b3∗}, C′ = {a1b2d3∗, a1b2b3∗, a1b2b3∗}. Then he/
she will get the following non-trivial two-prefix sets: A′∩B′={a1a2a3∗, a1a2c3∗},
A′ ∩ C′ = {a1b2d3∗, a1b2b3∗}, B′ ∩ C′ = {a1a2c3∗, a1b2d3∗}. Finally the adver-
sary will be able to figure out the following order of the 3-bit prefixes: a1a2a3∗,
a1a2a3∗, a1a2c3∗, a1a2c3∗, a1b2d3, a1b2d3∗, a1b2b3∗, a1b2b3∗, without knowing
whether it is an ascending or descending order.

6 Additional Security Analysis for Prefix-Preserving
Encryption

In this section we will have more discussion about the security of the prefix-
preserving encryption scheme. It has been proved that with the instantiating
functions as (1) the prefix-preserving encryption scheme is indistinguishable from
a random prefix-preserving function, a function uniformly chosen from the set of
all prefix-preserving functions when the adversaries are assumed to be computa-
tionally bounded. This is elaborated in [15]. Moreover, as mentioned in Sect. 4.2,
when plaintexts can take any value of a n-bit number, the prefix-preserving en-
cryption function consists of 2n−1 binary variables. Therefore, we have a key of
22n−1 possibilities. For example, when n is only 16, the number of possible keys is
265535. Therefore, the key κ in (1) can be sufficiently long such that it is imprac-
tical for adversaries to try each possible key to compromise the prefix-preserving
scheme.

In the remainder of this section, we discuss another possible way in which the
prefix-preserving scheme may be attacked. An adversary is assumed to have com-
promised (gain full knowledge to) certain number of 〈plaintext, ciphertext〉 pairs
through means other than compromising the key, i.e., the known plaintext attack
model [8]. Then he/she will be able to infer information from other ciphertexts
by prefix-matching, because the encryption is prefix-preserving. For example,
if an adversary knows 〈plaintext, ciphertext〉 pair 〈a1a2 · · · an, a′

1a
′
2 · · · a′

n〉, then
given another ciphertext a′

1a
′
2 · · ·a′

k−1a
′
kb′k+1 · · · b′n, he/she knows the k-bit pre-

fix of the plaintext should be a1a2 · · ·ak−1ak. Note that if an adversary knows
one 〈plaintext, ciphertext〉 pair 〈a1a2 · · ·an, a′

1a
′
2 · · · a′

n〉, then he/she should also
know the 〈plaintext, ciphtertext〉 pair 〈a1a2 · · · an, a′

1a
′
2 · · · a′

n〉. Therefore, an ad-
versary always knows an even number of 〈plaintext, ciphertext〉 pairs.

Suppose an adversary knows 2 pairs of 〈plaintext, ciphertext〉. Given a ran-
dom ciphertext, let A(n) denote the average length of the prefix that can be
inferred by prefix-matching, where n is the length of the binary representation
of the data. The probability that the k-bit prefix of the plaintext can be inferred
is 1

2k , for 1 ≤ k ≤ n − 1, while for k = n, the probability is 2
2n . Therefore,

A(n) =
∑n−1

i=1
i
2i + 2n

2n =
∑n−1

i=0
1
2i = 2 − 1

2n−1 < 2. In other words, on the av-
erage an adversary can infer no more than 2 bits from a random ciphertext, if
he/she knowns 2 pairs of 〈plaintext, ciphertext〉 1.
1 We are assuming the plaintext is uniformly distributed. The information leaked

by the known-plaintext attack can be significantly higher, if we consider that the
possible values are not uniformly distributed.

80 J. Li and E.R. Omiecinski

We also analyze the situation that an adversary knows 2k (k > 1) pairs
of 〈plaintext, ciphertext〉 in our technical report [14]. In summary, when n →
∞, given a ciphertext, the average length of the prefix that can be inferred is
bounded by log2 k + 2 based on numerical results. So the prefix information an
adversary can obtain by comparing a ciphtertext against a few pairs of 〈plaintext,
ciphertext〉 is limited. Therefore, we claim that the prefix-preserving scheme is
secure even if a few pairs of 〈plaintext, ciphertext〉 are known by an adversary.
To make the system even more secure, the data owner may specify different keys
to generate indexes for different attributes, thus preventing an adversary from
aggregating information from different attributes.

7 Performance Comparison

7.1 Communication Cost

With the prefix-preserving scheme, the total length of the indexes for an interval-
matching query condition is less than 2n(n − 1) bits. With random one-to-one
mapping, the total length is l · n, where l is the length of the interval. So when
l is larger than 2(n − 1), the prefix-preserving scheme is more efficient. If we
assume all the intervals appear with the same probability, the average length of

the interval is
∑ 2n

i=1
i(i+1)

2∑ 2n

i=1 i
= 23n−1+3·22n−1+2n

3(22n−1+2n−1) , which is approximately equal to

2n/3, when n is large. Therefore, the average number of bits of the indexes is
about n · 2n/3, which is much greater than 2n(n− 1), when n is large.

7.2 Client Side Cost

During the encryption of the database, it costs more to use the prefix-preserving
scheme to compute the indexes for the records. Since normally the length of
the index attribute is smaller than the block size of a typical block cipher, to
compute one index, the prefix-preserving encryption will require n − 1 block
cipher encryptions. In contrast, the random one-to-one mapping will require
only 1 encryption. Similarly, to encrypt an exact matching query condition, it
costs more with prefix-preserving encryption. However, to encrypt an interval-
matching query condition, with prefix-preserving, at most 2(n− 1)2 encryptions
are needed. With random one-to-one mapping, the number of encryptions needed
is equal to the length of the interval l. So when l is larger than 2(n − 1)2, the
prefix-preserving scheme is more efficient. If we assume all intervals appear with
same probability, then the average length of the interval is about 2n/3, which is
larger than 2(n− 1)2, when n is larger than 8.

7.3 Server Side Cost

As for the server side cost, we will be mainly concerned about the cost of disk
accesses for executing an interval-matching query, since in most cases it is the
bottleneck. To estimate the cost of disk accesses, we must know the number of the
records (r), and the number of blocks (b) (or close estimates of them). Also, we

Efficiency and Security Trade-Off in Supporting Range Queries 81

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

of
 d

is
k

ac
ce

ss
es

Interval length

prefix-preserving
random one-to-one mapping

Fig. 6. Number of disk accesses by varying the length of the interval

need to know the number of levels (h) of B+-tree, which is the typical database
storage structure for indexes. Another important parameter is the selectivity
(sl) of an attribute, which is the fraction of records satisfying an exact-matching
condition on the attribute.

Without any index structure, to do a sequential scan of the whole database
table, the cost of disk accesses is b·ts, where ts is the time needed for a sequential
disk block access. In the random one-to-one mapping scheme, with a B+-tree
index structure the number of disk accesses needed for retrieving the indexes
is l · h, where l is the length of the interval, and the number of disk accesses
needed for retrieving the actual records is l · f · sl · b, where f is the percentage
of the values in the interval that actually exist in the table. Therefore, the total
timing cost of disk accesses is l(h+ f · sl · b) · tr, where tr is the time needed for a
random disk block access. As mentioned in Sect. 4.2, a prefix-matching query can
be processed as a range query. In the prefix-preserving scheme, with a B+-tree
index structure the number of disk accesses needed for retrieving the indexes
is less than 2(n − 1)(h − 1) + l, and the number of disk accesses for accessing
the actual records is l · f · sl · b. So the timing cost of disk accesses is less than
(2(n − 1)(h − 1) + l + l · f · sl · b)tr. Therefore, when l > 2(n − 1), the prefix-
preserving scheme is more efficient then the random one-to-one mapping scheme,
if sequential scan is not needed. A typical value of n could be 32. Then when
l > 62, the prefix-preserving scheme is more efficient. A typical disk block size is
32K bits. A typical size of a pointer to a disk block is 32 bits. Assume the number
of records r in the database is 1 M, i.e., 220. Then the order of the B+-tree should
be 32K/(32+32) = 29, and the height h should be log29 220 = 3. Figure 6 shows
the number of disk accesses with random one-to-one mapping/prefix-preserving,
assuming f to be 100%, sl = 1/r = 2−20, and the total number of disk blocks
in the database b is 256K. Note that, assuming tr = 64 · ts, for the random
one-to-one mapping scheme, it will be more efficient to do a sequential scan of

82 J. Li and E.R. Omiecinski

Table 3. Performance comparison of prefix-preserving and random one-to-one mapping

for supporting an interval-matching query

Average communication
cost (length of indexes)

Average client side cost
(number of encryptions)

Server side cost (num-
ber of disk accesses)

Prefix-preserving ≤ 2n(n − 1) bits ≤ 2(n − 1)2 ≤ 2(n− 1)(h− 1)+ l+
l · f · sl · b

Random mapping n · 2n/3 bits 2n/3 l(h + f · sl · b)

the whole database table when l > 1260. With the prefix preserving scheme, it
might be more efficient to do a sequential scan when l > 3177.

In summary, we present the communication cost, client side and server side
cost for supporting an interval-matching query with random one-to-one mapping
/prefix-preserving in Table 3.

8 Conclusions

This paper discusses concerns about protecting sensitive information of data
and queries from adversaries in the DAS model. Data and queries need to be en-
crypted, while the database service provider should be able to efficiently answer
queries based on encrypted data and queries. Several approaches are studied in
this paper, random one-to-one mapping and prefix-preserving. Possible attacks
against these approaches and the performance of these approaches are investi-
gated. The prefix-preserving scheme is more efficient than the random one-to-one
mapping scheme for supporting interval-matching queries. In terms of commu-
nication cost, with prefix-preserving the length of indexes for an interval is less
than 2n(n−1) bits, while with random one-to-one mapping the average is about
n · 2n/3 bits. In terms of client side cost, with prefix-preserving the number of
encryptions needed is less than 2(n − 1)2, while with random one-to-one map-
ping the average is about 2n/3. In terms of server side cost, the number of disk
accesses with the prefix-preserving scheme is smaller than the random one-to-
one mapping scheme, when the length of the interval is larger than 2(n − 1).
However, the prefix-preserving scheme is less secure than the random one-to-one
mapping scheme, because of the constraint of prefix-preserving. For example,
with the prefix-preserving encryption a coarse ordering of the encrypted data
can be determined by a grouping based on a k-bit prefix, but not with a random
one-to-one mapping.

Acknowledgement. The authors would like to thank the anonymous refer-
ees for their insightful and constructive comments, and Professor Alexandra
Boldyreva for her technical comments.

Efficiency and Security Trade-Off in Supporting Range Queries 83

References

1. Hacigumus, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Pro-
ceedings of ICDE’02. (2002) 29–38

2. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science.
(1995) 41–50

3. Hacigumus, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data. (2002) 216–227

4. Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational dbmss. In: Proceedings of
CCS’03. (2003) 93–102

5. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data. (2004) 563–574

6. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: Proceedings of VLDB’04. (2004) 720–731

7. Ozsoyoglu, S.C.G., Singer, D., Chung, S.S.: Anti-tamper databases: Querying en-
crypted databases. In: Proceedings of the 17th Annunal IFIP WG11.3 Working
Conference on Database and Application Security. (2003)

8. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press (2002)
9. Elovici, Y., Waisenberg, R., Shmueli, E., Gudes, E.: A structure preserving

database encryption scheme. In: Secure Data Management. (2004) 28–40
10. Feigenbaum, J.: Encrypting problem instances, or ..., can you take advantage of

someone without having to trust him? In: Proceedings of CRYPTO’85. (1986)
477–488

11. AES: Advanced encryption standard. FIPS 197, Computer Security Resource
Center, National Institute of Standards and Technology (2001)

12. DES: Data encryption standard. FIPS PUB 46, Federal Information Processing
Standards Publication (1977)

13. Srinivasan, V., Varghese, G., Suri, S., Waldvogel, M.: Fast and scalable layer four
switching. In: Proceedings of ACM SIGCOMM’98. (1998) 191–202

14. Li, J., Omiecinski, E.R.: Efficiency and security trade-off in supporting
range queries on encrypted databases. Technical Report GIT-CC-05-01,
College of Computing, Georgia Institute of Technology (2005) Available at
ftp://ftp.cc.gatech.edu/pub/coc/tech reports/2005/GIT-CC-05-01.pdf.

15. Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: Prefix-preserving IP address
anonymization: measurement-based security evaluation and a new cryptography-
based scheme. In: Proceedings of the 10th IEEE International Conference on Net-
work Protocols. (2002) 280–289

Verified Query Results from Hybrid

Authentication Trees

Glen Nuckolls

Department of Computer Sciences, University of Texas at Austin,
Austin, TX 78712-0233 USA
nuckolls@cs.utexas.edu

http://www.cs.utexas.edu/ nuckolls/

Abstract. We address the problem of verifying the accuracy of query
results provided by an untrusted third party Publisher on behalf of a
trusted data Owner. We propose a flexible database verification struc-
ture, the Hybrid Authentication Tree (HAT), based on fast cryptographic
hashing and careful use of a more expensive one-way accumulator. This
eliminates the dependence on tree height of earlier Merkle tree based pro-
posals and improves on the VB tree, a recent proposal to reduce proof
sizes, by eliminating a trust assumption and reliance on signatures. An
evaluation of the Hybrid Authentication Tree against the VB tree and
Authentic Publication showing that a HAT provides the smallest proofs
and faster verification than the VB tree. With moderate bandwidth lim-
itations, the HATs low proof overhead reduces transfer time to signif-
icantly outweigh the faster verification time of Authentic Publication.
A HAT supports two verification modes that can vary per query and
per Client to match Client resources and applications. This flexibility
allows the HAT to match the best performance of both hash based and
accumulator based methods.

1 Introduction

An increasing number and variety of applications and systems require access to
data over a network. Third party architectures offer one way to address availabil-
ity when the data source may have limited resources, by relying on a dedicated
third party Publisher to provide responses. The related Edge Server model in-
creases the availability of data services defined by a central server by replicating
them at edge servers closer to clients. Maintaining data integrity along with high
availability is a significant challenge. Providing database access introduces more
complications. Typically, the number of different responses that can be gener-
ated from queries on a single data set is much larger than the data set itself.
The integrity of query response involves showing that the response was correct,
meaning the returned data was from the correct data set, and that the response
is complete, meaning all matching data was returned.

We address the problem of verifying the accuracy of query results provided by
an untrusted third party in the third party Publisher model. The Owner relies

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 84–98, 2005.

c© IFIP International Federation for Information Processing 2005

Verified Query Results from Hybrid Authentication Trees 85

on the untrusted Publisher to process Client database queries. In the related
Authentic Publication model [6], the Publisher is assumed to be untrusted, but
the Owner is trusted, so Clients use a small digest value computed over the
database by the Owner, to verify the query results. The same digest verifies
many different queries on the same database. This allows the Owner to rely on,
presumably cheaper, untrusted resources to handle Client requests. Authentic
Publication [6] uses the organization of a tree digest, based on Merkle trees, to
provide efficient verification for Clients.

Proof overhead can be significant when bandwidth is limited relative to pro-
cessing power. In the original Authentic Publication method, proof size depends
on the number of data points in the answer and the tree height, O(log N) ad-
ditional hash values for a tree over N data points. Pang and Tan [17] proposed
to eliminate this dependence on tree height with the verifiable B-tree (VB tree).
This requires some degree of trust in the Publisher, relies heavily on Owner
signatures and a proposed one-way digest function based on modular exponen-
tiation. The trust assumption is problematic and the use of expensive primitives
adds excessive overhead to both proof size and verification time.

In this paper we propose a flexible verification method, the Hybrid Authenti-
cation Tree (HAT), that eliminates the dependence on the tree height. Our novel
method carefully incorporates fast hash functions with a more expensive cryp-
tographic primitive, a one-way accumulator. The accumulator helps break the
dependence on tree height without relying on Owner signatures and the lighter
weight hash function speeds up the Client verification process. The design finds
an efficient balance between the two primitives, using the heavier accumulators
sparingly. Using the same one-time digest value, the HAT design allows the ver-
ification method to vary per query and per Client according to Client bandwidth
and application requirements. One verification mode relies on both fast hash
operations and the accumulator. The other mode bypasses the expensive accu-
mulator operations, relying only on fast hash operations in a Merkle tree like
method similar to Authentic Publication. In effect, we design a digest that gives
us two verification schemes in one. Our analysis shows that, even for reasonable
bandwidths of 1 mbps or more, the low proof overhead of the HAT improves
significantly over the VB-tree and the original Authentic Publication method.

1.1 Outline of the Paper

Section 2 gives some useful background. Section 3 presents the details of the
HAT construction and digest, explaining the motivation for using accumulator
functions to break the dependence on tree height in Section 3.1, describing how
completeness is verified in Section 3.2, and then defining the digest and verifica-
tion in 3.3 and 3.4. We establish parameters for evaluation in Section 4 and give
a detailed evaluation and comparison of the HAT with Authentic Publication
and the VB-tree in Section 5, looking at proof overhead in 5.1, verification cost
in 5.2, and bandwidth considerations in 5.3.

Section 6 describes how a HAT can bypass the use of the accumulator when
advantageous. We discuss related research in 7, discuss future directions in 8 and
conclude in 9.

86 G. Nuckolls

2 Preliminary Building Blocks

We briefly describe the hash functions, one-way accumulators, Merkle trees and
Authentic Publication.

2.1 Collision Intractable Hash Function

Hash functions such as MD5 or SHA-1 can be used to detect modifications
in files by recomputing the MD5 or SHA-1 checksum on the file in question
and comparing to the original checksum value. It is assumed to be difficult to
produce another file with the same MD5 checksum or the original. This property
is known as collision resistance or collision intractability. Though not formal
in the cryptographic sense, we can reasonably rely on the following notion of
collision resistance.

Definition 1. A function f mapping the set of all binary strings to the set
of strings of some fixed length is collision resistant if, given a ”random” input
value x, and the image f(x), it is computationally infeasible for an adversary to
compute x′ �= x such that f(x′) = f(x).

One informality evident is the reference to a random input. Since the size of
the input is not specified, the domain cannot be uniformly sampled. The formal
cryptographic definition of collision resistance handles this, and the function we
rely on, SHA-1, is widely relied on for collision resistance.

When f is a hash function, we write f(x1, x2) to denote the application of
f to a single string constructed by concatenating x1 and x2 and some unique
delimiter between them. The hash can apply to any number of strings with no
ambiguity about the value and number of inputs.

2.2 Merkle Trees and Authentic Publication

We review the basic Merkle tree construction [13] since it is a common thread
to many recent efforts in efficient query answer verification. The structure is a
binary search tree, over a data set D of size N , with the key key(d) and data for
each item d ∈ D stored at the leaves. The key is simply a unique identifier for
d e.g. the primary key for a relational tuple. Our example, shown on the left in
Figure 2.2, uses a set of integer keys and ignores any associated data attributes.
The tree is digested using a collision-resistant hash function h to produce a value
f(v) at each node v as follows: Starting at the leaves, the value of a leaf is its key
value and the value of an internal node is the hash of the child values. Alternately
we can hash the associated attributes with the key to produce the leaf value.
The overall digest value of the tree, denoted Σ, is just the digest value at the
root. With this digest value, an efficient proof, of size O(log N) can be given
that a data item is or is not in the set. The proof consists of the intermediate
hash value for each sibling of a node along the search path.

We follow the general Authentic Publication model [6]: a trusted data Owner
relies on an untrusted third party Publisher to respond to Client queries on

Verified Query Results from Hybrid Authentication Trees 87

= f()=h(f(),f())

v Rv

vLRvLL vRL vRR
vLL vLR

vLL vLRLv

Lv Rv

2 5 6 8 11 14 19 23

v

f()=h(6,8)f()=h(2,5)

f()=h(f(),f())

Σ v

L

Computed by Client

Answer data

Proof values proved
by Publisher

Fig. 1. Merkle hashing, left, and range query verification, right

a data set. First, a trusted Owner computes a digest of the data set (e.g. as
in the binary search tree example). Next, the data is given to one or more
untrusted Publishers and the digest is distributed to Clients. Publishers send
additional proof values with each Client query response. Clients verify the answer
by partially recomputing the root digest. Clients can send any number of queries
on the data set to an untrusted Publisher and verify that the answers are the
same as the Owner used to compute Σ. This approach scales well, with no
security assumptions on Publishers.

2.3 An Efficient RSA Based One-Way Accumulator

Benaloh and de Mare [2] define an accumulator as a family of one-way, quasi-
commutative hash functions. A hash function f is one-way if, given x ∈ X and
y, y′ ∈ Y it is hard to find x′ ∈ X such that f(x, y) = f(x′, y′). The function f
is quasi-commutative if

f(f(x, y1), y2) = f(f(x, y2), y1) ∀x ∈ Xk, yi ∈ Y

We define f(x, y1, y2, . . . , yN) to be f(. . . f(f(x, y1), y2) . . . , yN) for convenience.
Given an initial value x, if z = f(x, y1, y2, . . . , yN), the yi values can be input
into the accumulator in any order and still produce z. Now, given a value yi ∈ Y ,
let zi be the result of applying f to all the values in Y − {yi} with initial value
x. Then f(zi, yi) = z and, zi serves as a proof that yi was used to compute z.

The one-way property is weaker than strict collision resistance since the ad-
versary can not choose y′. However, quasi-commutativity directly provides the
means to break collision-resistance, and one-way is often sufficient since the val-
ues yi ∈ Yk used as input to the accumulator are themselves often the result of
a cryptographic collision resistant hash function. In fact, the domain set Yk can
be restricted to the result of a hash on some input. In order to forge a proof for
a value that hashes to ỹ with respect to a collection {yi}N

1 , an adversary would
need to find an alternate proof z̃j for a value ỹ that can be changed, by choosing
a different value to hash, but not chosen, since the hash output is unpredictable.
We restrict input to accumulators to be the output of a collision resistant hash
function.

Benaloh and de Mare propose a one-way quasi-commutative accumulator
based on an RSA modulus and prove it’s security in [2]. Given n we define Hn

by Hn(x, y) = xy mod n. Hn is quasi-commutative by the laws of exponents:
(xy1)y2 = (xy2)y1 . To ensure Hn is one-way, the modulus n is chosen to be a

88 G. Nuckolls

rigid integer, meaning n = p · q where p and q are safe primes of the same bit
size. A prime p is safe if p = 2p′ + 1 and p′ is an odd prime. The factorization
of n is considered trapdoor knowledge and in our model is known only by the
Owner. Efficient methods for choosing rigid moduli are discussed in [2] and [12].

For a set Y = {y1, . . . yN} and z = Hn(x, y1, . . . , yN), zi = xy1y2···yi−1yi+1···yN

serves as a proof for yi ∈ Y . The value of x is also chosen by the Owner, but is not
trapdoor knowledge. The Owner, knowing p, q, and thus φ(n) = (p−1)(q−1), can
exponentiate by first reducing the exponent mod φ(n). This is an advantage we
cannot give the Publisher and Client since φ(n) easily reveals p and q. However,
the Publisher can still compute a proof by exponentiating.

3 The Hybrid Authentication Tree

We combine an accumulator function with Merkle hashing to providing proofs
for answer correctness and completeness that are independent of tree height is
fairly straightforward. However, since accumulator operations are so much more
expensive than hashing, minimizing their use requires special consideration. We
then describe how completeness is verified and then present the complete digest
and verification processes.

3.1 Breaking the Dependence on Tree Height

A HAT is just a binary search tree with data stored at the leaves, along with
a digest procedure that incorporates a fast collision intractable hash function
h and an accumulator H . We want to take advantage of the input reordering
allowed by an accumulator to avoid checking the entire hash path to the root
as done when using Merkle trees as in Authentic Publication [6] and related
schemes. However, accumulators have larger output, typically near the 1024 bits
of an RSA modulus compared to the 160 bit output of SHA-1, and take longer
to verify a value yi against a proof zi for a set value z. For example, suppose
our range returned exactly one leaf w. Instead of the client verifying that w is
the correct answer by hashing from w up to the root of the tree, the client could
simply verify that w was included in a final accumulation value, requiring only a
constant size proof. Answer completeness would need to be addressed, but could
still be done with a constant size proof. This method breaks the dependence on
the height of a Merkle tree but does not scale well to larger answer sizes.

Our approach uses Merkle hashing to certain nodes of the tree and then use
the accumulator to verify the values of those nodes, eliminating the hashing
along remaining path to the root. One natural set of nodes to consider for a
range query is the set of canonical covering roots (CCRs) for the range in the
tree as shown in Figure 2. The set of CCRs in a search tree for a range query is
the set of nodes with disjoint subtrees whose leaves are the exact answer to the
range query. For a range returning T leaves, is not hard to show that there are
O(log T) CCRs and they have height O(log T).

The CCRs seem like good nodes to switch from Merkle hashing to accumu-
lation. Their size and number depend only on the answer size so they break the

Verified Query Results from Hybrid Authentication Trees 89

CCRs

Cover node

L

vR

v

Fig. 2. The range, left, associated CCRs, center, and Covering Nodes vL, vR

dependence on the tree height. In fact, using CCRs provides smaller proofs than
the scheme we present, but the number of accumulator computations required is
still high. In order to further reduce the number of accumulator computations,
we rely on the following.

Given a full binary search tree and range with T satisfying leaves, there are
at most two nodes of height O(log T) whose leaves contain all the leaves in the
range.

The pair with the smallest subtree is the covering pair for the range, or
covering node in case there is only one. The verification switches from Merkle
hashing to accumulator computations at the covering nodes (see Figure 2). This
reduces the accumulator verification to one or two values.

3.2 Completeness and Covering Node Adjacency

The previous section only addressed verification that data is from the correct
data set. We have not addressed how we can provide a proof that the answer is
complete, containing all values within the range. The client will be able to verify
that data matches the range, but not that all data matching the range has been
returned.

First, note that Merkle hashing does much of this implicitly. Nodes in the
middle of the range can’t be left out without changing the root hash value
without breaking the hash function. Verifying that no leaves were left off either
end is the only requirement. Authentic publication includes the next highest
and next lowest leaves in order to prove range completeness. It is easy to avoid
revealing the data not in the range by providing only the data key and a hash of
the data itself. However, they key, or at least some part of it, must be revealed.
One alternate approach includes the split values in the hash at each node. These
are checked in the verification and ensure range completeness. This approach
is described in [11]. The additional split values would introduce a significant
amount of additional proof overhead and it is not clear that much privacy can
be gained over the inclusion of boundary key values. Privacy with completeness
is an important concern, but is left to future research.

Given that we stop hashing at two covering nodes, and that the quasi-
commutative property of accumulators makes completeness harder, we have two
tasks. Prove that the ends are complete, and prove that the leaves of the two
covering nodes form a continuous range in the tree. Two nodes are adjacent if
their subtrees are disjoint and have adjacent leaves (see Figure 3). If we can show

90 G. Nuckolls

i

w

i

i

w

3w

1

4

right adjacent node to v
LCA of v and for anyra(v) = la(w)

2v

leaf pair
adjacent

right adjacent to v w
w

w

LCA of

leaf pair
adjacent

adjacent pairs

Fig. 3. Node v’s right adjacent nodes and all adjacent pairs with same LCA

that our two covering nodes are adjacent, the Merkle hashing scheme used in
each subtree will ensure that the range is complete. A fact about trees provides
a simple and efficient way to show that any two adjacent nodes are, in fact,
adjacent.

Looking at any tree, it is clear that all adjacent node pairs defined by the
same adjacent leaf pair have the same least common ancestor, and that for any
single node v all of the left adjacent nodes to v produce the same lca. The
same holds for the right. We use la(v) and ra(v) to denote this single lca of v
with all left and right adjacent nodes respectively (see Figure 3). The fact that
ra(v) = la(wi) serves as a compact proof that v and wi are adjacent in the tree.
These left and right adjacency values are hashed in with the f1 value at each node
after the standard Merkle hash and are given to Clients to use in verification.
After this, the resulting f2 values at each node (see Section 3.3) will then be
used to compute a single value using the accumulator. The final digest value is
the hash of the root value of the Merkle hash and the accumulated value.

The Owner could achieve more or less the same effect as using the lca adja-
cency hash value by assigning some random value instead to serve as this proof,
but this has a number of potential disadvantages. In particular, it prevents the
Publishers from computing the digest on their own from the data and knowledge
of the general digesting scheme. The hash of this lca node is computed directly
from the structure and data set just as the root digest. Requiring that these ran-
dom number be sent for each adjacent leaf pair adds unnecessary complication.

3.3 Digest

For each data item d ∈ D, key(d) and the hash output h(d) are both computed
in a way known to all parties from the attributes of d. Each leaf node of the
binary search tree corresponds to some d ∈ D and they appear in the tree sorted
by key() value. Internal nodes v have left lc(v) and right lc(v) child fields, and
every node has a left la(v) and right ra(v) adjacent lca node field as defined in
section 3.2. If no such node exists, the field is assigned some fixed value indicating
the left or right end. The digest uses a publicly known collision resistant hash
function h and accumulator H to compute the final digest value Σ that the
Owner provides to Clients.

1. f1 is a standard Merkle hash using h.

f1(v) =
{

h(f1(lc(v))), f1(rc(v))) v internal
h(key(d), h(d)) v is a leaf with associated data d

Verified Query Results from Hybrid Authentication Trees 91

2. f2 incorporates the hash values from adjacency lca nodes.

f2(v) = h(f1(v), f1(la(v)), f1(ra(v)))

3. A value A is computed using the accumulator H with some initial value x.
If v1, v2, . . . vm are thee nodes of the tree,

A = H(x, f2(v1), f2(v2), . . . , f2(ym))

H is quasi-commutative so the node order will not affect the result.
4. Let root denote the root of the tree. The final digest value Σ is computed as

Σ = h(A, f2(root))

3.4 Proof and Client Verification

The Client submits a range query [a, b] that returns T satisfying leaf nodes. We
assume that the Client has key(d) and h(d) for data item d associated with each
returned leaf v and the two boundary leaves. The Client can compute key(d)
and h(d) from the answer data except for the boundary leaves. We assume there
are exactly two covering nodes denoted vL and vR. For a node v, zv denotes
the proof that f2(v) was used to compute the value A using accumulator H as
described in Section 2.3. Verification proceeds as follows:

1. Compute f1(vL) and f1(vR)
In addition to the key(d) and h(d) values the Client already has, the bound-
ary values are required and the 2 logT supporting hash values for each of
the covering nodes as in the Authentic Publication method.

2. Compute f2(vL) and f2(vR) values and check that vL and vR are adjacent.
Check that f1(ra(vL)) = f1(la(vR)), and thus vL and vR are adjacent.
Requires f1(ra(vL)) = f1(la(vR)), f1(la(vL)) and f1(ra(vR))

3. Check that H(zvL , f2(vL)), H(zvR , f2(vR)) both equal A.
Requires accumulator proofs zvL and zvR and value A.

4. Check that h(f2(root), A) = Σ. Requires f2(root).

4 Proof Size and Verification Cost

We derive expressions for the proof overhead and verification in this section. In
Section 5 we instantiate the hash and accumulator functions and give a detailed
analysis of realistic overhead and cost values in order to compare our protocol
with related proposals.

We assume that any node of the tree with M leaves has height at most
2 logM . We also assume that the key size is negligible. The expression proofHAT

is in bits and and verifyHAT is in bit operation per second. They are derived from
Section 3 and the balance assumption.

proofHAT = (4 log T)Shash + 2Sacc

verifyHAT = (T + 2 logT)Thash + 2Tacc(160)

Hashing to the cover nodes takes at most 2T hashes. We assume here that
the few value comparisons involved are not significant.

Verified Query Results from Hybrid Authentication Trees 93

We take our VB tree analysis from [17] and use a branching factor of 2 since
larger factors add significantly to proof size. We conservatively ignore overhead
from projections. Projections with VB trees do not handle duplicate elimination
and the other schemes produce smaller proofs in this case.

Figure 4 shows results for returned answer set sizes up to 108 and data set
sizes up to 109 for Authentic Publication. We assumed a tree balanced within
a factor of two at each subtree. The HAT has smallest overhead of any of the
schemes and is close to AP only when T is near N . HATs have roughly 3 to 4
times smaller proofs for small answer sizes.

5.2 Verification Cost

We use values derived from a detailed analysis, omitted here, and round con-
servatively. As before, these expressions were derived from a detailed analysis
omitted due to space considerations.

verifyHAT = 28, 500 · T + 6.5× 108

verifyAP = 57, 000 · log N + 28, 500 · T
verifyVBtree = 4× 109 · T + 1010 · log T − 4× 109

We assume a 1024 bit modulus for the one-way hash used in the VB tree
and the same modulus for the Owner RSA signatures. We also choose a low 16
bit public exponent for efficiency. As before, a binary branching factor is the
most efficient instantiation of a VB tree, and projection does not improve the
comparison. For Authentic Publication, Clients simply hash to the root using,
for our comparison, SHA-1. Verification depends on N in this case.

The Authentic Publication verification is only has faster than a HAT for
answer sizes up to 105. The VB tree is the slowest and is nearly infeasible for
answer sizes more than 100,000. For answers of size less than 10,000, a HAT
remains roughly constant, dominated by the modular exponentiation on the two
160 bit hash values to check against the accumulator proof value. Only one
exponentiation may be required. Clearly our method is more practical than the
VB tree. For answer sizes above 105, a HAT is as efficient as the Authentic
Publication, yet has smaller proof size.

5.3 Bandwidth Versus CPU

When bandwidth is limited in comparison to processing resources, proof over-
head is a larger factor. We compare the total time to transfer and verify proofs
with and without full data transfer for HATs and Authentic Publication. Both
comparisons are of interest since the Client may obtain data and proof from
different sources or channels. The Client may also want a proof without needing
all data sent. For an expired result similar to the current version, transmitting
changes may be much smaller than the data set.

However, we still compare transmission including data as well. We assume
that the data size per item is small, only 1024 bits, or 128 bytes. Clearly for
much larger data sizes, this transmission cost will dominate, but it is useful to
consider smaller, but reasonable sizes.

Verified Query Results from Hybrid Authentication Trees 95

nodes the same as any other node. The only difference is that the Client hashes
in the accumulated value A with the root f2 value at the end. This option is
available per query and effectively produces a hybrid scheme able to bypass the
accumulator step if advantageous.

The analysis and comparisons of Section 5 demonstrate one advantage of
this flexibility. It also allows Publishers responding to a heterogeneous Client
set to choose and adapt a verification strategy tailored to the Client’s (possibly
changing) resources, bandwidth, and application requirements.

7 Related Work

As discussed in Section 2.2 the proposed techniques are based on the original
work by Merkle [13]. Naor and Nissim [15] made refinements in the context of
certificate revocation. Goodrich and Tamassia [7] and Anagnostopoulos et al. [1]
developed authenticated dictionaries. Authentic Publication was introduced in
[6] where they showed how to securely answer some types of relational database
queries. Devanbu, et al. described authentication for queries on XML document
collections in [5]. Bertino, et al. focus in detail on XML documents in [3] and
leverage access control mechanisms as a means of providing client proofs of com-
pleteness. They also expand supported query types and provide a detailed inves-
tigation of XML authentication issues including updates, and address important
implementation issues.

Martel, et al. [11] establish a general model, Search DAGs, and provide se-
curity proofs for authenticating a broad class of data structures. Goodrich et al.
[8] show that a broad class of geometric data structures fit the general model
in [11] and thus have efficient authenticated versions. Similar Merkle hash tree
based techniques have been used by Maniatis and Baker [10] and most recently
Li, et al. [9] for secure storage. Buldas, et al. [4] describe methods that support
certificate attestation when there is no trusted Owner. Nuckolls, et al. show how
to extend the techniques in [6] to a distributed setting, allowing a collection of
Owners to rely on an untrusted Publisher or other untrusted resources to achieve
the same effect as a single trusted Owner while distributing the costs among the
trusted parties.

Pang and Tang [17] proposed the VB tree as a way of eliminating dependence
of proof size on the tree height, but require some trust of the Publisher since
they only ensure that answer data is a subset of the original set. They also
incorporate more expensive signatures and a proposed one-way function based
on modular exponentiation. We discuss the VB tree in our performance analysis
section and compare it to our proposed method.

Proving that values are not excluded in set membership queries, Micali, et al.
[14] have shown how to construct zero-knowledge databases that preserve pri-
vacy, in addition to authentication. Ostrovsky, et al. [18] tackle the same problem
for multi-attribute queries using a multidimensional range tree (MDRT).

Accumulators were proposed by Benaloh and de Mare [2] more constructions
followed in [16]. Many of the RSA based accumulators contain a trap door and
a proposal for accumulators without trapdoors has been given by Sander in [19].

96 G. Nuckolls

8 Future Directions

We’d like to extend the methods here to a wider range of structures. So far, no
systematic approach has been suggested for extending query verification tech-
niques to the relational model. Devanbu et al. [6] discuss projection and joins,
Martel et al. [11] present a solution for multidimensional range trees that sup-
port multi-attribute queries, and [17] suggest an approach to projections, but do
not address the issue of duplicate values. There are many remaining issues with
integrity on all types of relational queries.

The HAT relies on an accumulator with trapdoor information that must be
kept secret by the Owner. Accumulators without trapdoors exist [19] but are not
efficient enough for our purposes. An efficient quasi-commutative accumulator
without a trapdoor would speed up our verification time.

Efficiently eliminating the dependence on the tree size lends increased flexibil-
ity to the verification process. This improves support for different types of Client
applications and is worth exploring in the short term. One example is supporting
Client verification of data in an order appropriate to the end application. The
proposal in this paper easily adapts to provide priority verification for subranges
of a query and then subsequently, if required, full query verification, and should
also support incremental verification for small changes to previous requests.

We are also hopeful about the prospect of incorporating privacy in efficient
database query authentication. Another promising goal is to bridge the differ-
ences between the work started in [14,18] and the current state of the more
efficient authentication only methods, including the proposals of this paper. In
addition to privacy, we hope to see progress on the longer term goal of ensuring
that databases operated entirely by an untrusted and possibly distributed third
party, satisfy arbitrary and general security requirements.

9 Conclusion

We carefully evaluated three methods: 1) fast hashing, specifically Authentic
Publication over a binary search tree, 2) our hybrid authentication tree in accu-
mulator mode, and 3) the VB tree. We show that both Authentic Publication
and our accumulator based method significantly out perform the VB tree. We
also show that the HAT always produces a smaller proof size than Authentic
Publication and improves by a factor of 3 or 4 for smaller answer sizes.

HT Proof size is also smaller for answers significantly smaller than the
database size. Authentic publication, as expected, has more efficient verifica-
tion, but when bandwidth and transmission time is considered, the smaller
HAT proofs provide up to 10 times faster overall verification time than the
Authentic Publication method for smaller answer sizes. Even assuming infinite
bandwidth, for answer sizes around 105 or higher, the HAT matches the per-
formance of fast hashing in the Authentic Publication method. Our scheme is
also competitive when considering storage overhead, digest computation, proof
retrieval/generation, and updates.

Verified Query Results from Hybrid Authentication Trees 97

For high bandwidths, Authentic Publication will provide faster verification,
but our analysis shows there are significant benefits from a hybrid scheme that
takes the best of the fast hashing and accumulator methods. Good tradeoff values
can be analytically determined, changed on the fly per query with changing
network conditions and client preferences.

Our analysis assumes a nearly balanced tree. Skewed trees could make our
method even more attractive since hash trees performance depends on the length
of paths to the root. Many applications and specialized data structures, such as
XML document structures, are often not balanced. A HAT may provide flexibil-
ity in the data structure choice, reducing or eliminating the effect of unbalanced
trees on Client costs.

Acknowledgments

The author thanks Mike Dahlin and Felipe Voloch for helpful discussions and
the valuable comments of the anonymous reviewers.

References

1. A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia. Persistent authenticated
dictionaries and their applications. Lecture Notes in Computer Science, 2200:379,
2001.

2. J. Benaloh and M. de Mare. One-way accumulators: A decentralized alternative
to digital signatures. In Advances in Cryptology - EUROCRYPT ’93, number 765
in LNCS, pages 274–285, 1994.

3. E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta. Selective
and authentic third-party distribution of xml documents. IEEE Transactions on
Knowledge and Data Engineering, 16(10):1263–1278, 2004.

4. A. Buldas, P. Laud, and H. Lipmaa. Eliminating counterevidence with applications
to accountable certificate management. Journal of Computer Security, 10:273–296,
2002.

5. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine.
Flexible authentication of xml documents. In Proceedings of the 8th ACM Confer-
ence on Computer and Communications Security (CCS-8), pages 136–145, 2001.

6. P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine. Authentic publi-
cation over the internet. Journal of Computer Security, 3(11):291–314, 2003.

7. M. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an authenticated
dictionary with skip lists and commutative hashing. DISCEX II, 2001.

8. M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated data
structures for graph and geometric searching. In Topics in Cryptology - CT-RSA
2003, Proceedings of the Cryptographers’ Track at the RSA Conference, volume
2612 of LNCS, pages 295–313, 2003.

9. J. Li, M. N. Krohn, D. Mazires, and D. Shasha. Secure untrusted data repository
(sundr). In Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, pages 91–106, 2004.

10. P. Maniatis and M. Baker. Enabling the archival storage of signed documents. In
Proceedings of the USENIX Conference on File and Storage Technologies (FAST
2002), pages 31–45, Monterey, CA, USA, Jan. 2002. USENIX Association.

98 G. Nuckolls

11. C. U. Martel, G. Nuckolls, P. T. Devanbu, M. Gertz, A. Kwong, and S. G. Stub-
blebine. A general model for authenticated data structures. Algorithmica, 39(1):21–
41, 2004.

12. A. J. Menenzes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1996.

13. R. Merkle. Protocols for public key cryptosystems. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 122–134. IEEE Computer Society Press,
1980.

14. S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In Proceedings of the
44th Symposium on Foundations of Computer Science (FOCS 2003), pages 80–91,
2003.

15. M. Naor and K. Nissim. Certificate revocation and certificate update. IEEE
Journal on Selected Areas in Communications, 18(4):561–570, 2000.

16. K. Nyberg. Fast accumulated hashing. In Proceedings of the Third Fast Software
Encryption Workshop, number 1039 in LNCS, pages 83–87, 1996.

17. H. Pang and K.-L. Tan. Authenticating query results in edge computing. In
Proceedings of the 20th International Conference on Data Engineering (ICDE’04),
2004.

18. A. S. Rafail Ostrovsky, Charles Rackoff. Efficient consistency proofs for generalized
queries on a committed database. In Proceedings of the 31st International Collo-
quium on Automata, Languages and Programming (ICALP 2004), volume 3142 of
LNCS, pages 1041–1053, 2004.

19. T. Sander. Efficient accumulators without trapdoor. In Proceedings of the Second
International Conference on Information and Communication Security - ICICS’99,
number 1726 in LNCS, pages 252–262, 1999.

Multilevel Secure Teleconferencing

over Public Switched Telephone Network

Inja Youn1, Csilla Farkas2, and Bhavani Thuraisingham3

1 Department of Information and Software Engineering,
George Mason University, Fairfax, VA 22030

iyoun@gmu.edu
2 Dept. of Computer Science and Engineering,

University of South Carolina, Columbia, SC 29208
farkas@cse.sc.edu

3 Erik Jonsson School of Engineering and Computer Science,
University of Texas at Dallas, Richardson, TX 75080

bhavani.thuraisingham@utdallas.edu

Abstract. Two-way group voice communications, otherwise known as
teleconferencing are common in commercial and defense networks. One
of the main features of military teleconferences is the need to provide
means to enforce the Multilevel Security (MLS) model. In this paper we
propose an architecture and protocols facilitating MLS conferences over
Public Switched Telephone Network (PSTN). We develop protocols to
establish secure telephone conferencing at a specific security level, add
and drop conference participants, change the security level of an ongoing
conference, and tear down a conference. These protocols enforce MLS
requirements and prevent against eavesdropping. Our solution is based
on encryption methods used for user and telephone authentication and
message encryption, and trusted authentication centers and certificate
authorities. We provide an initial estimate of signaling delays of our pro-
tocols incurred due to the enforcement of the MLS requirements.

1 Introduction

The need to provide secure communication via public telephone systems has re-
sulted in custom designed and dedicated devices, like the secure telephone unit
third generation (STU-III) [3] and TeleVPN [2]. While these methods provide
some level of confidentiality, they require extensive setup procedures and ded-
icated hardware or do not require telephone device authentication. Our aim is
to enable current telephone technologies to provide voice privacy without the
extensive setup and maintenance requirements of the current systems.

Public Switched Telephone Networks (PSTN [13] - a circuit switched network
with almost zero down time and acceptable quality audio signals - use Signal-
ing System 7 (SS7) [4,5,9,7,8,6,11] as its signaling network to set up, configure,
maintain, and tear down voice circuits that are used to transmit continuous voice

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 99–113, 2005.

c© IFIP International Federation for Information Processing 2005

100 I. Youn, C. Farkas, and B. Thuraisingham

streams. Moreover, increasingly popular mobile telephones can also depend on
SS7. However, SS7 provides limited security to its signaling and voice networks,
as shown by Lorencz et al. [10]. Recognizing these limitations, Sharif et al. [12]
present protocols to ensure voice confidentiality over PSTN using the Discre-
tionary Access Control (DAC) model. Their solution uses public and secret key
encryption methods to authenticate the users and telephone devices, and to pro-
vide encrypted end-to-end communication. They show that authentication delays
are within acceptable range for PSTN. Youn et al. [14] extend the protocols of
Sharif et al. to DAC based secure teleconferences over PSTN. That is, partici-
pation in a conference is decided on the identity of the user (telephone device).
However, their methods do not satisfy the security needs of military conferences.
In this paper, we extend both these works to MLS based teleconferencing. We
adopt the Bell-LaPadula (BLP) [1] access control model.

BLP policies are expressed via security classification labels, assigned to sub-
jects (i.e., active computer system entities) and to objects (i.e., passive re-
sources). Classification labels form a lattice with a dominance relation among
the labels. BLP controls read and write operations on the objects based on the
classification labels of the requested data objects and the clearance of the sub-
ject requesting the operation. For example, BLP ensures that a subject can read
an object only if the subject’s clearance dominates the object’s classification
(simple-security property) and that a subject can write an object only if the
object’s classification dominates the subject’s clearance (*-property). Trusted
subjects are permitted to bypass the *-property of the BLP. The two axioms
of BLP ensure confidentiality by permitting information flow from a dominated
security class to a dominating security class but not in the other direction. While
MLS is considered too restrictive for general purpose applications, it is required
in the military domain.

In this paper we propose an MLS teleconference security model and provide
a set of protocols to establish and maintain an MLS teleconference at a spec-
ified security level. In our model, a user (conference participant) and his/her
telephone device together are considered as the subject; the conference (i.e.,
its content) is considered as the object. The user who initiates the conference,
called call controller, requests the join (add) of a user/telephone to an active
conference. However, the actual ”adding” of a user/telephone must be permit-
ted by a referential monitor that enforces the simple security property of BLP.
That is, a user/telephone is permitted to join a conference only if the security
classification of the conference is dominated by the greatest lower bound of the
security clearances of the user and the telephone device. The human users are
trusted not to violate the *-property, i.e., a user is trusted not to reveal any
information that is classified higher than the level of the conference. Call con-
trollers are also trusted (trusted subject) to lower the security clearance of an
ongoing conference. To ensure that telephone devices cannot leak confidential
information, they are cleared based on their encryption capabilities and verified
hardware. We develop a set of protocols to ensure that the conference content
is protected from unauthorized disclosure at any time. We also perform analysis
of the conference dynamics and the necessary security evaluations to guarantee

Multilevel Secure Teleconferencing over Public Switched Telephone Network 101

message confidentiality. Our aim is to limit the necessary delays incurred by the
authentication, security checking, and the conference key refreshment. We give
an analysis of the incurred delays for our secure teleconference.

The organization of the paper is as follows. Section 2 introduces our security
architecture and the MLS teleconferencing model. In Section 3 we present de-
scriptions of our protocols and the corresponding security requirements. Section
4 contains the delay calculation. Finally, we conclude and recommend future
research directions in Section 5. We included sample protocols in Appendix A
and the break down of the delay calculation in Appendix B.

2 Security Model

The main aim of our research is to build on top of the existing communication
infra-structure. Our protocols to set up, maintain, and tear down secure tele-
conferences use libraries on the Signaling System 7 (SS7) protocol stack. MLS
teleconferencing uses secure bridges [12,14].

2.1 Secure Teleconferencing Architecture

We distinguish between a single master-secure bridge (MSB) and slave-secure
bridges (SB). MSB has all the capabilities needed for teleconferencing and to
enforce MLS requirements. MSB connects to the call-master, i.e., the partic-
ipant who is initiating the conference. Slave-secure bridges (SB), connecting
the conference participants, performs participant and telephone authentication.
Each secure bridge is associated with an 1) Authentication Center (AC) to au-
thenticate users and telephones, and to manage secret keys, and a 2) Certificate
Authority (CA) to manage digital certificates and generate public/private key
pairs. Our model requires that each telephone has cryptographic capabilities
using symmetric and public keys. Telephones (and their corresponding secure
bridges) are trusted based on these cryptographic capabilities as well as hard-
ware verification of the physical device.

Additional PSTN components, like the Service Switching Points (SSP), Ser-
vice Control Points (SCP), and Signal Control Point, together with the secure
bridges form the secure teleconferencing architecture [14]. Our protocols use the
Digital Subscriber Signaling System no 1 (DSS1) to communicate between the
telephones and the local SSPs. ISDN user part (ISUP) is used for communication
between SSPs and Transaction capabilities Library (TCAP) as well as for trans-
actions between SSPs, ACs, CAs, and Line Information Translation Database
(LIDBs).

2.2 Security Model

Our goal is to protect the confidentiality of the telephone conversation from
unauthorized disclosure. Note, that the problem of hiding the existence of an
unauthorized conference is outside of the scope of this paper. We propose meth-
ods to apply the BLP security model to teleconferencing. The subject of our

102 I. Youn, C. Farkas, and B. Thuraisingham

model is the telephone device and the human user (conference initiator and par-
ticipants) using the telephone. Telephones are authenticated based on the tele-
phone line numbers (TLN), telephone device numbers (TDN), and the private
keys assigned to them. A security clearance label is assigned for each telephone,
based on its encryption capabilities, verification of hardware components (e.g.,
trusted hardware and reliability), and physical security. Telephone clearances
are considered relatively static. Increasing or decreasing a telephone’s clearance
level requires technical modifications, like encryption updates. We assume that
users are aware of the clearance of the telephone devices.

User authentication is performed by a claimed user identity and the corre-
sponding password. Each user with maximum security clearance λ is associated
with a set of passwords, where each password λ′ in the set corresponds to a
specific security level and λ ≥ λ′. To prevent the exposure of a higher secu-
rity password on a lower security telephone device, we require that each user
is authenticated with the password that is assigned to him/her for the level
of the telephone device. For example, a user U with Top-Secret (TS) security
clearance has different passwords for Unclassified, Secret, and Top-Secret levels.
When U uses a telephone with Secret clearance, the user is authenticated based
on his/her Secret level password. Note, that different approaches could be used
to limit exposure of user passwords on telephones. For example, users may be
restricted to use telephone devices only if the clearance level of the device dom-
inates the clearance level of the user. Finding the optimal approach is outside
of our current research and is dependent on the application area, the number of
levels, and the available hardware resources.

A secure bridge, serving a telephone with clearance λ, stores the appropriate
(user-id, password) pairs for all levels λ′, where λ ≥ λ′. For each call activation by
a user Ui, using the telephone Ti, the permitted security clearance is calculated
as the greatest lower bound of [λ(Ui), λ(Ti)], where λ(Ui) and λ(Ti) are the
clearances of user Ui and device Ti, respectively.

The protection object is the content of the telephone conference. Each confer-
ence is initiated at a specified security level. Conference classification levels may
increase and decrease along the dominance relation of the security lattice. We
require that a user/telephone pair is permitted to initiate or join a conference
only if the greatest lower bound of their joint security clearance dominates the
security classification of the conference.

This paper studies the conference dynamics, including initiating the confer-
ence, adding and dropping participants, changing security classification of an
ongoing conference, and changing the call controller of an ongoing conference.
Our security requirement is that an unauthorized user should not be able to dis-
close the conference content. That is, unauthorized users should not be permitted
to become participants of a conference or gain access to the secret key used to
encrypt the content of the conference. The later requirement protects against
passive eavesdropping. Our security requirements are supported by the proper-
ties of existing secret and public key encryption methods and by safeguarding
the encryption/decryption keys. In addition to the security requirement we want

Multilevel Secure Teleconferencing over Public Switched Telephone Network 103

to limit the number of authentication procedures and key updates that cause
delays in the teleconferencing.

3 Protocols

We developed eight protocols to support secure telephone conferencing: 1) Es-
tablish a conference, 2) Add a new conferee by the call controller, 3) Add a new
conferee by his/her own request, 4) Drop a conferee by the call controller, 5)
Drop a conferee by his/her own choosing (hang up), 6) Change the classification
of an ongoing conference 7) Call teardown by the call controller hanging up,
and 8) Call teardown when the last slave conferee hangs up. Due to the space
restrictions of the paper we only present some of our protocols.

3.1 Protocol 1 - Teleconference Call Setup Process

The teleconference call setup process has five phases: 1) Telephone authenti-
cation, 2) User authentication, 3) Cross certification of the MSB, 4) Remote
telephone authentication, 5) Remote user authentication, 6) Cross certification
of the SSBs, and 7) Key distribution. Figure 1 shows the control messages for

SETUP(CR
0)[FIE:beginSecureCONF-inv(M1)]

FAC(CR
0
)[FIE:controllerPWD-Req(M

4
)]

IAM[FIE:beginSecureCONF-inv(M 1)]

CALPRC(CR0)[FIE:controllerID-Req(M2)]
FAC(CR0)[FIE:controllerID-RR(M3)]

CPG[FIE:controllerID-Req(M2)]

ISUP

T0
(call

controller)

ISDN

MSB
ACmsbSSPmsbSSP0

TCAP

CPG[FIE:controllerID-RR(M
3
)]

CPG[FIE:controllerPWD-Req(M 4)]

FAC(CR
0
)[FIE:controllerPWD-RR(M

5
)]

CPG[FIE:controllrPWD-RR(M5)]

CPG[FIE:classCONF-Req(M6)]

FAC(CR0)[FIE:classCONF-Req(M6)]

FAC(CR0)[FIE:classCONF-RR(M7)]CPG[FIE:classCONF-RR(M
7)]

CPG[FIE:TLN-Req(M
8)]

FAC(CR0)[FIE:TLN-Req(M8)]

FAC(CR0)[FIE:TLN-RR(M9)] CPG[FIE:TLN-RR(M
9
)]

C:[RR:telAuth-RR(M2)]

B:[inv:telAuth-Req(M1)]

C:[inv:controllerID-Req(M3)]
C:[RR:controllerID-RR(M

4
)]

C:[inv:controllerPWD-Req(M
5
)]

C:[RR:controllerPWD-RR(M6)]

C:[inv:classCONF-Req(M7)]

C:[inv:classCONF-RR(M
8
)]

C:[inv:TLN-Req(M9)]

M1 = Kmsb[K*0[TLN0,TDN0,t1]]
M2 = K*msb[ID_Request,R*0,t2]
M3 = Kmsb[ID0,R*0,t3]
M4 = K*msb[PWD_Request,R*0,t4]
M5 = Kmsb[PWD0,R*0,t5]

M6 = K*msb[LC_Request,R*0,t6]
M7 = Kmsb[λ(conference), R*0, t7]]
M8 = Kmsb[TLN_Request, R*0, t8]]
M9 = Kmsb[TLNi, R*0, t9]

Fig. 1. Conference Call Setup: Initiation and call controller authentication

104 I. Youn, C. Farkas, and B. Thuraisingham

conference set up steps and the authentication of the call controller. The protocol
is given below. The call controller’s (user U0) security clearance is determined
by the security clearance of the telephone device (T0) used to initiate the con-
ference and the security clearance of the (U0, password0) pair. The permitted
classification level of the conference to be initiated by U0 is λ(U0−permitted) =
GLB[λ(T0), (λ(U0, password0))]. The call controller is permitted to initiate a
conference with security classification λ′, where λ(U0−permitted) ≥ λ′. The ac-
tual protocol steps are given in Appendix A.

1. [T0] The call controller (U0) dials the teleconference access code. Once the
telephone enters the teleconference mode, the call controller enters the tele-
phone line number (TLN) of the master secure bridge (MSB).

2. [T0 → SSP0 → SSPmsb → ACmsb] T0 invokes the facility that initiates the
conference sending M1 = Kmsb[K∗

0 [TLN0, TDN0, t0]] to MSB, where Kmsb

is the public key of the MSB, and K∗
0 is the private key of T0.

This message is used for the authentication of the telephone device and
travels in the SETUP message (ISDN) between T0 and SSP0, and in the
IAM primitive (ISDN) between SSP0 and SSPmsb. While the IAM message
travels through the SS7 network, the intermediate exchanges allocate the
voice trunks. The destination exchange (SSPmsb) allocates the resources for
the secure teleconference (the Master Secure Bridge - MSB) and initiates
the teleconference transaction by sending the message M1 to ACmsb.

3. [ACmsb] The authentication center of the Master Secure Bridge verifies the
authenticity of the telephone set by extracting TLN0 and TDN0 and com-
paring them against the ones stored in the database. It also checks the valid-
ity of the timestamp to prevent the replay attack. The authentication center
looks in its database for the telephone classification λ(T0).
If authentication succeeds and the algorithm continues with the step 4.
Else SSPmsb clears the allocated voice trunks using a RELEASE/RLCOM
message pair that propagates along the allocated path.

4. [ACmsb → SSPmsb → SSP0 → T0] MSB replies with a request for user
authentication embedded in a Call Progress (CPG) message:
M2 = K∗

br[ID Request, R∗
0, t1], where R∗

0 is a nonce generated by AC that
will be embedded in the message exchanged between call master and MSB
during the teleconference session, and t1 is a timestamp. Both the random
number and the timestamp are meant to prevent the replay attack. An IVR
message solicits the user to dial her user ID.

5. [T0 → SSP0 → SSPmsb → ACmsb] The call controller enters her/his ID
(ID0): M3 = Kmsb[ID0, R

∗
0, t3]

6. [ACmsb] The authentication center of the MSB decrypts M3 and checks the
validity of the random number, timestamp, and looks in the database for
ID0.
If authentication succeeds the protocol continues with the step 7.
Else, SSPmsb clears the allocated voice trunks using a RELEASE/RLCOM
message pair and ends the transaction with ACmsb

Multilevel Secure Teleconferencing over Public Switched Telephone Network 105

7. [ACmsb → SSPmsb → SSP0 → T0] The authentication center sends a signed
acknowledgement in a CPG message, which contain a request for password:
M4 = K∗

msb[PWD Request, R∗
0, t4]

8. [T0 → SSP0 → SSPmsb → ACmsb] The call controller dials her password
(PWD0), which will be again send to ACmsb in a CPG message encrypted
by the public key of MSB. M5 = Kmsb[PWD0, R

∗
0, t5]

9. [ACmsb] The MSB decrypts the message and checks the timestamp and the
(ID0, PWD0) pair.
If authentication succeeds, i.e., there is an (ID0, PWD0) pair, the ACmsb

maps the user clearance λ(U0, passwordU0). ACmsb computes λ(permitted)
= GLB[λ(Ti), λ(U0, passwordU0)]. The protocol continues to assign security
classification for the conference.
Else, SSPmsb clears the allocated voice trunks using a RELEASE/RLCOM
message pair and ends the transaction with ACmsb

3.2 Protocol 2 - Add a Participant to an Ongoing Conference

After the conference is set up, new participants Ux may join the ongoing con-
ference. U0 (call controller) places the teleconference on hold by pressing the
HOLD button. The other conferees are still able to talk while the conference is
on hold. U0 initiates the new participant by dialing the Ux’s telephone number.
The minimal requirement after successful authentication of Tx and Ux is that
GLB[λ(Tx), λ(Ux, passwordx)] ≥ λ(conf). Based on the conference dynamics,
the encryption key used for the conference may or may not need to be updated
(see Section 3.4).

3.3 Protocol 3 - Drop a Participant from an Ongoing Conference

Conference participants may be dropped from an active conference voluntarily
(conferee hangs up) or non-voluntarily (call controller drops the user to maintain
the MLS requirements). For example, a user with Secret clearance may decide
to discontinue participation in a Secret conference. The same user may rejoin
the conference at a later time. On the other hand, a user with Secret clearance
is ”forced” to be dropped from a conference when the conference classification
is increased from Secret to Top-Secret. The MSB is responsible for enforcing the
drop of the participants, reallocating the system resources, and initiating a new
encryption key if a forced drop occurred.

3.4 Protocol 4 - Change the Security Classification of an Ongoing
Conference

The security classification of an ongoing conference may be changed during the
conference. For example, after discussing a Top-Secret topic, the security classi-
fication of the conference may be decreased to Secret to allow participation of
Secret users. Any change in the conference classification may have an effect on
the 1) minimum clearance requirement of the call controller, 2) new clearance re-
quirements of the participants of the ongoing conference, 3) dropping conference

106 I. Youn, C. Farkas, and B. Thuraisingham

participants, and 4) need of new encryption key. Figure 2 shows the message
transfer to change the conference classification.

To change the security classification of an ongoing conference to a new clas-
sification, the call controller U0 must be cleared to the new classification. That
is, if λ(conf0) denotes the security classification of the ongoing conference, and
λ(confnew) denotes the requested security classification, then the new level is
permitted only if λ(U0) ≥ λ(confnew). Moreover, to decrease the classification
of a conference, the call controller must be trusted. If λ(Ui) ≥ λ(confnew) is
not true for all participants Ui then Ui must be dropped and a new message
encryption key must be distributed among the remaining participants. Also, if
the conference classification is decreased and a new user Ui is added such that
λ(conf0) > λ(Ui) ≥ λ(confnew) then a new message encryption key must be
distributed among the participants.

FAC(CR0)[FIE:changeClassCONF-inv(M1)]

RLC

ISUP

DSS1

RLSE(CRx)

DISC(CRx)
REL

T0
(call

controller)

Tx
(conferee)

<(CR0)(Active,Idle)>

DSS1

ISUP

SSB

SSP
x

MSB

AC
msb

SSP
msbSSP

0

TCAP
TCAP

AC
x

RLCOM(CRx)

C:[RR:changeClassCONF-RR(IDx,Drop)]

ACi SSP
i

T
i

Users U
i
, = {0, 1, 2 ... n} with

λ(conference-new) <= λ(U
i
, T

i
)

FAC[FIE:changeClassCONF-inv(M1)]

C:[inv:changeClassCONF(M1)]

M
1
= K

msb
[λ(conference-new),R*

0
,t

1
]]

M
2
= K

i
[K*

msb
[λ(conference-new),
ID

X
,...,K

NEW
,R*

i
,t

2
]]

Users Ux who do not have
λ(conference-new) <= λ(Ux, Tx)

C:[keyDist-RR(M2i)]

CPG[keyDist(M2i)]

FAC(CR
i
)[FIE:

keyDist(M
2i
)]

Notify(CRi)[NIE:
keyDist-ACK(IDi)]

CPG(keyDist-ACK(ID
i
))

C:[keyDist-ACK(ID
i
)]

Fig. 2. Changing an ongoing conference classification

We consider the following three scenarios: decrease conference classification,
increase conference classification, and change the classification to an incompa-
rable level. Table 1 show our security analysis for these scenarios from the per-
spectives of security requirements for the call controller, active participants, new
participants, and the need of new key generation.

Note, that any change in the conference classification can be modeled as a se-
ries of single steps in the security lattice. That is, a change from label λ1 to λk is

Multilevel Secure Teleconferencing over Public Switched Telephone Network 107

Table 1. Conference dynamics and security requirements

Decrease conference Increase conference Change to non-
level level compatible level
λ(conf0) > λ(confnew) λ(confnew) > λ(conf0) λ(confnew) �≥ λ(conf0)

λ(conf0) �≥ λ(confnew)
Security require- Trusted Subject GLB[λ(T0), λ(U0, pass− Trusted Subject and
ment for call word0)] ≥ λ(confnew) GLB[λ(T0), λ(U0, pass−
controller (U0) must hold to authorize word0)] ≥ LUB[λ(conf0),

the change λ(confnew)]
must hold to authorize
the change

Security require- None, since GLB[λ(Ti), λ(Ui, pass− GLB[λ(Ti), λ(Ui, pass−
ment for active GLB[λ(Ti), λ(Ui, pass− wordi)] ≥ λ(confnew) wordi)] ≥ LUB[λ(conf0),
user (Ui) wordi)] ≥ λ(conf0) > must hold not to be λ(confnew)]

λ(confnew) dropped must hold not to be
dropped

Security require- GLB[λ(Tx), λ(Ux, pass− GLB[λ(Tx), λ(Ux, pass− GLB[λ(Tx), λ(Ux, pass−
ment for new wordx)] ≥ λ(confnew) wordx)] ≥ λ(confnew) wordx)] ≥ λ(confnew)
user (Ux) must hold to join must hold to join must hold to join
Need of new YES YES YES
message encryption if a new participant with if any participants with if a new join with
key distribution λ(confnew) ≤ λ(Ux) < λ(conf0) λ(Ui) < λ(confnew) has λ(confnew) ≤ λ(Ux) but

joins the conference dropped out (voluntarily or NOT λ(conf0) ≤ λ(Ux) or
NO-if no new joins forced) if any participants with

NO-if no drops NOT λ(confnew) ≤ λ(Ui)
has dropped out
NO-if no new joins
and drops

modelled as navigating the security lattice along the path λ1 → λ2 → . . .→ λk,
where for all λi → λj either λi > λj or λj > λi. For a call master to initiate
the change of a conference level from λ1 to λk must be cleared to all intermedi-
ate levels, that is GLB[λ(T0), [λ(U0, password0)] ≥ LUB[λ(conf0), λ(confnew)]
must hold. Similar restrictions hold for any active participant. Our analysis on
the need of new encryption key incorporates the possibility that any non-active
user may be eavesdropping on the conference before or after the change. The
requirements for distributing a new key are based on this possibility of eavesdrop-
ping. Application requirements may require periodic refreshment of the message
encryption key even if this is not necessary based on the conference dynamics.

4 Performance Analysis

We compute the delays of our protocol, using standard telecommunication con-
nections delays [16,17,18], published encryption/decryption delays for text [3],
and the switch response time delays. Table 2 in Appendix B summarizes our
findings. The encryption and decryption time for RSA encryption and decryp-
tion is considered to be 12ms, (we do not consider the possibility of a small
public key, therefore the encryption and decryption time is about the same).
Table 3 in Appendix B shows the network delays corresponding to our proto-
cols. The delays corresponding to the user interaction (like the time before an
user answer the phone, the time necessary for a user to enter the password, or
playing messages) are hard to measure and are user dependent, therefore are
not considered here. The user interaction delay may take considerable time, but
it is unavoidable and also part of traditional (un-secure) teleconferencing. The
worst case calculation, given in Table 3, shows that teleconference setup delay
is slightly less than 20 seconds under the assumption that all slave conferees are

108 I. Youn, C. Farkas, and B. Thuraisingham

authenticated simultaneously (i.e., parallel authentication). Adding a user delay
is about 11 seconds. Dropping a user and changing the conference classification
create small (2-3 seconds) delays.

5 Conclusions

In this paper we present an architecture and protocols to facilitate multilevel se-
cure teleconferences over Public Switched Telephone Network (PSTN). Our goal
is to protect conversation confidentiality. Our protocols enable to establish se-
cure telephone conferencing at a specific security level, add and drop conference
participants, change the security level of an active conference, and tear down a
conference. The protocols protect against eavesdropping and unauthorized par-
ticipation in a MLS conference. MLS requirements are enforced by safeguarding
the message encryption key of the conference. We also provide an initial estimates
of delays incurred during setup (20 seconds) and adding a user (11 seconds).

The authors are not aware of any published acceptance delay range for au-
tomated teleconferencing. Based on our experiences using such services (e.g.,
observed delays of several minutes for conference set up) indicates that the de-
lays, incurred by our protocols, are within the acceptable range. Nevertheless,
for future references, we are planning to request evaluation of our protocols by
vendors and developers. For future work we are planning to simulate our proto-
cols to generate realistic measurements over the incurred delays. Furthermore,
we are investigating methods to include a protocol for negotiating encryption
algorithms, keys, and configurations specifications between the participants.

Acknowledgement

Farkas’ work was partially supported by the National Science Foundation under
Grant IIS-0237782.

References

1. D. Bell and L. Lapadula. Secure computer systems : Unified exposition and multics
interpretation. Technical Report ESD-TR-75-306, MITRE Corporation, 1975.

2. SecureLogix Corporation. TeleVPN call shield 1.0. http://www.securelogix.

com/applications/televpn.htm.

3. Department of Defense Security Institute, http://www.tscm.com/STUIIIhand-
book.html. STU-III Handbook for Industry.

4. ITU-T Recommendation Q.706. Specifications of Signaling System No. 7–Message
Transfer Part Signaling Performance, March 1993.

5. ITU-T Recommendation Q.706. Specifications of Signaling System No. 7–Signaling
performance in the Telephone Application, March 1993.

6. ITU-T Recommendation Q.709. Specifications of Signaling System No.7–
Hypothetical Signaling Reference Connection, 1993.

Multilevel Secure Teleconferencing over Public Switched Telephone Network 109

7. ITU-T Recommendation Q.734. Stage 3 description for multiparty supplementary
Specifications of signaling system no. 7., 1993.

8. ITU-T Recommendation Q.84. Stage 2 description for multiparty supplementary
services, 1993.

9. ITU-T Recommendation Q.954. Stage 3 description for multiparty supplementary
services using DSS 1, 1993.

10. G. Lorenz, T. Moore, J. Hale, and S. Shenoi. Securing SS7 telecommunications
networks. In Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security, 2001.

11. T. Russell. Signaling system 7. McGraw-Hill, New York, 2002.
12. M. Sharif and D. Wijesekera. Providing voice privacy over public switched tele-

phone networks. In Proceeding of IFIP 11.5, pages 25–36, 2003.
13. J. G. von Bosse. Signaling in Telecommunication Networks. John Wiley & Sons,

New York, 1998.
14. I. Youn and D. Wijesekera. Secure bridges: A means to conduct secure teleconfer-

ences over public telephones. In Proc. of the 18th Annual Conference on Data and
Applications Security, 2004.

Appendix A

Protocol 1 – Conference Set Up:

A. Call Controller Authentication:

1. [T0] The call controller (U0) dials the teleconference access code. Once the telephone
enters the teleconference mode, the call controller enters the telephone line number
(TLN) of the master secure bridge (MSB).

2. [T0 → SSP0 → SSPmsb → ACmsb] T0 invokes the facility that initiates the con-
ference sending M1 = Kmsb[K

∗
0 [TLN0, TDN0, t0]] to MSB, where Kmsb is the

public key of the MSB, and K∗
0 is the private key of T0. This message is used

for the authentication of the telephone device and travels in the SETUP message
(ISDN) between T0 and SSP0, and in the IAM primitive (ISDN) between SSP0

and SSPmsb. While the IAM message travels through the SS7 network, the inter-
mediate exchanges allocate the voice trunks. The destination exchange (SSPmsb)
allocates the resources for the se-cure teleconference (the Master Secure Bridge -
MSB) and initiates the teleconference transaction by sending the message M1 to
ACmsb.

3. [ACmsb] The authentication center of the Master Secure Bridge verifies the authen-
ticity of the telephone set by extracting TLN0 and TDN0 and comparing them
against the ones stored in the database, and by checking also the validity of the
timestamp to prevent the replay attack. The authentication center looks in its
database for the telephone classification λ(Ti) and associates it with the initiated
teleconference.
If authentication succeeds and the algorithm continues with the step A.4.
Else, SSPm clears the allocated voice trunks using a RELEASE/RLCOM message
pair that propagates along the allocated path.

4. [ACmsb → SSPmsb → SSP0 → T0] MSB replies with a request for user authenti-
cation embedded in a Call Progress (CPG) message:
M2 = K∗

b r[ID Request,R∗
0 , t1], where R∗

0 is a nonce generated by AC that will

110 I. Youn, C. Farkas, and B. Thuraisingham

be embedded in the message exchanged between call master and MSB during the
teleconference session, and t1 is a timestamp. Both the random number and the
timestamp are meant to prevent the replay attack. An IVR message solicits the
user to dial her user ID.

5. [T0 → SSP0 → SSPmsb → ACmsb] The call controller enters her ID (ID0):
M3 = Kmsb[ID0, R

∗
0 , t3]

6. [ACmsb] The authentication center of the MSB decrypts M3 and checks the va-
lidity of the random number, timestamp, and looks in the database for ID0.
If authentication succeeds the protocol continues with the step A.7.
Else, SSPmsb clears the allocated voice trunks using a RELEASE/RLCOM mes-
sage pair and ends the transaction with ACmsb

7. [ACmsb → SSPmsb → SSP0 → T0] The authentication center sends a signed
acknowledgement in a CPG message, which contain a request for password: M4 =
K∗

msb[PWD Request,R∗
0 , t4].

8. [T0 → SSP0 → SSPmsb → ACmsb] The call controller dials her password
(PWD0), which will be again send to ACmsb in a CPG message encrypted by
the public key of MSB. M5 = Kmsb[PWD0, R

∗
0, t5]

9. [ACmsb] The MSB decrypts the message and checks the timestamp and the
(ID0, PWD0) pair.
If authentication succeeds, i.e., there is an (ID0, PWD0) pair, the ACmsb maps
the user clearance λ(U0). ACmsb computes λ(permitted) =
GLB[λ(Ti), λ(U0)]. The protocol continues with step 10.
Else, SSPmsb clears the allocated voice trunks using a RELEASE/RLCOM mes-
sage pair and ends the transaction with ACmsb.

B. Conference Classification and the Telephone Line Numbers

1. The call master dials the number of the nc conferees, one by one (nc is a number
between 1 and 30). We suppose that only n conferees (n = nc) succeed in con-
necting to the conference. The other (nc − n) conferees do not connect or have
authentication failure.

2. [ACmsb → SSPmsb → SSP0 → T0] The authentication center requests the call
master to choose a classification for the conference (LC): M6 = K∗

msb[LC Request,
R∗

0 , t6]. This is requested as a list of options played using the IVR.
3. [T0 → SSP0 → SSPmsb → ACmsb] The call controller sends the classification for

the conference: M7 = Kmsb[λ(conference), R∗
0 , t7].

If λ(conference) ≤ λ(permitted) then the protocol continues with step B.4.
Else SSPmsb clears the allocated voice trunks using a RELEASE/RLCOM mes-
sage pair and ends the transaction with ACmsb.

4. The following steps are repeated for all remote parties (i = 1, 2 . . . n)
(a) [ACmsb → SSPmsb → SSP0 → T0] MSB sends a request to the call controller

to dial the telephone line number of the first conferee:
M8 = Kmsb[TLN request,R∗

0, t8i]
(b) [T0 → SSP0 → SSPmsb → ACmsb] The call controller dials the telephone line

number of Useri (TLNi): M9 = Kmsb[TLNi, R
∗
0 , t9i]

5. For i = 1 to nc repeat the following steps (1 through 9) (nc is the number of
conferees called by U0). If λ(conference) ≤ λ(permitted) for user Ui than associate
(Ui, λ(permitted)) with the conference and continue the protocol. Else drop Ui and
clear the connection.

Multilevel Secure Teleconferencing over Public Switched Telephone Network 111

C. Cross-Certification

1. [ACmsb → SSPmsb → SSPi] ACmsb signals to SSPmsb to send the initial address
message (IAM) that seizes a trunk between the secure bridge for Ui and the local
exchange of the remote user (SSPi) to establish a bidirectional circuit between the
secure bridge and the SSPi, followed by a call progress (CPG) message that has
as a parameter a ticket M10 = K∗

msb[ID0, ID1 . . . IDnc, λ(conference), Ri, t10i]
signed by the bridge. M10 certifies the U0, initiate the conference, and transmits
the conference classification λ(conference) to the SSBs.

2. [SSPi → ACi] SSPi forwards M10 to ACi for authentication. If fails, the ACi

signals the SSPi to drop the Useri. Otherwise, continues with step D.1.

D. Remote Parties Authentication

1. [ACi → SSPi → Ti → SSPi] If authentication succeeds, ACi sends authentication
result to the SSPi in TCAP message M11 = K∗

aci[ID0, ID1 . . . IDnc,
Kmsb, R

∗
i , t11i]. SSPi sends the result to the Ti in an ISUP message. Ti sends back:

M12 = Kaci[K
∗
i [TLNi, TDNi, R

∗
i , t12i]] encrypts and signs telephone device and

line numbers.
2. [SSPi → ACi] The authentication center checks the telephone line and the device

numbers in M12 sent through the TCAP message by decrypting the message with
K∗

aci, and then checks the signature of Ti using Ki. After decryption and authen-
tication, the ACi also verifies whether the TLNi and the TDNi from the message
M12 coincides with the one in the local database. Also, ACi looks in its database
for the telephone device classification λ(Ti). If the authentication fails, or if the
security condition λ(conference) ≤ λ(Ti) fails, ACi sends an error message to the
SSPi, which initiates the disconnection procedure for the Useri from the secure
conference by sending a REL/RLCOM message pair to the MSB.

3. [ACi → SSPi → Ti] ACi sends M13 = K∗
aci[ID Request,R∗

i , t13i] in a TCAP
message as the return result to the SSPi where the random number R∗

i is included
in the confirmation ticket sent by the ACi to the MSB.

4. [SSPi → Ti] SSPi sends M13 to Ui in a FACILITY message with a FIE containing
a user authentication request.

5. [Ti → SSPi] Ti sends the ALERT (CRi) message to SSPi.
6. [SSPi → SSP0] SSPi sends the ALERT
7. [SSP0 → T0] SSP0 sends the ALERT (CR0) message to T0.
8. [Ti → SSPi] When Ui picks up the handset, Ti sends the CONNECT message to

SSPi, and the SSPi plays an IVR announcement informing Ui of the conference
participants, after the SSPi plays a new IVR announcement to the Ti: ”Please
enter your ID”.

9. [Ti → SSPi] Ui dials her ID that is encrypted with ACi’s public key. The Ui’s
telephone knows the ACi’s public key, and sends it to the ACi over the network.

10. [SSPi → ACi] SSPi forwards M14 = Kaci[IDi, R ∗ i, t14] to the ACi in a
TCAP message. The authentication center verifies the pair (ID, password) sent
over by the SSPi. If the ID is not found in ACi’s database, or if the condi-
tion λ(conference) = λ(Ti) is not fulfilled, the ACi issues an error message to
the SSPi, and the local exchange starts clearing the connection. Thus we have:
λ(conference) = GLB[λ(Ti), λ(Ui)] = λ(Ti, Ui)

11. [ACi → SSPi → Ti] If the authentication succeeds, ACi sends a PWD request to
the Useri: M15 = K∗aci[PWD Request,R∗

i , t15i]
12. [Ti → SSPi → ACi] Useri answers with M16 = K∗

aci[PWDi, R
∗
i , t16i]

112 I. Youn, C. Farkas, and B. Thuraisingham

13. [ACi] ACi checks the password, and if authentication fails, clears the connections
with MSB and Ti. If authentication succeeds, it continues with step E.1.

E. Cross-Certification

1. [ACi → SSPi → SSPmsb → ACmsb] If authentication succeeds, SSPi sends
the following ticket to ACmsb, completing the cross-certification phase: M17 =
K∗

aci[IDi, λ(U17i]. The MSB receives now Ui’s public key and clearance, and also
the telephone device classification. Thus, MSB and Ui are able to communicate
without any further help from the slave secure bridge. MSB double-checks the
condition λ(conference) = GLB(λ(Ti), λ(Ui)) = λ(Ti, Ui)

F. Key Distribution

1. The master secure bridge waits until either all users have connected or a connection
timeout occurred, and adds the IDs of all connected users to a list.

2. For i = 0, 1, . . . n repeat following steps 1 and 2.
(a) [ACmsb → SSPmsb → SSPi → Ti]. The secure bridge starts the group shared

key distribution phase by sending M18 = Ki[K
∗
br[KE , R∗

i , t18]] in a TCAP
message between the ACmsb and the SSPmsb, in a CPG message between the
SSPmsb and the SSPi and in a FACILITY message between SSPi and Ti.

(b) [Ti → SSPi → SSPmsb → ACmsb] Ti decrypts M18, checks the signature, the
random number and the timestamp, and recovers the group shared key KE.
After this, the Ti sends the Key − dist − ACK(IDi) back to the ACmsb.

3. As soon as the users receive the symmetric key, they can start the secure group
conversation. The voice is encrypted by the telephone device and is sent to the
Master Secure Bridge. The MSB takes care of forwarding the encrypted signal to
the destination telephone devices, where the signal is decrypted.

Appendix B

Table 2. Switch Response Delay Calculation

Type of Call Segment Switch Response time (ms)
Mean 95% confidence interval

ISUP Message 205 − 218 = 337 − 349

Alerting 400 = 532

ISDN Access Message 220 − 227 = 352 − 359

TCAP Message 210 − 222 = 342 − 354

Announcement/Tone 300 = 432

Connection 300 = 432

End MF Address - Seize 150 = 282

Multilevel Secure Teleconferencing over Public Switched Telephone Network 113

Table 3. Network delay

Table Delay under
Confer- assumptions: Description of the parameters
ence Call Delay n = 10, p = 10s, and assumptions
Phase ai = bi = 50ms

d = e = 12ms

11007 + 667n The number of conferencing sub-
+(n + 8)a0 scribers is n

Call setup +8 · max{a1 . . . an} 19, 181ms The transmission propagation
+2 · max{b1 . . . bn} delay between T0 and ACmsb is a0

+21 · (d + e) ms and the transmission propagation

Add user 9855 + 3a0 + 6an delay between Ti and ACi is ai,
by call +2 · max a1 . . . an 10, 769ms where i = 1, 2 . . . n. (see ITU-T
controller +2 · max b1 . . . bn Recommendation TABLE

+11 · (d + e) ms 1/Q.706). We will omit a maxi-

Drop user 2001 + a0 mum 2.5ms delay between T0 and
by call +2 · max{a1 . . . an} 2, 323ms SSP0 (under the realistic assump-
controller +2 · max{b1 . . . bn} tion that the distance between T0

+3 · (d + e) ms and SSP0 is less then 500km),

Increase / 2001 + a0 since it is not significant compared
change +2 · max a1 . . . an with the total delay.
conference +2 · max b1 . . . bn 2,323 ms The transmission propagation
classifica- +3 · (d + e) ms delay between ACmsb and ACi is
tion. bi, where i = 1, 2 . . . n

Decrease 2001 + a0 The delay to perform a RSA 1024
conference +2 · max{a1 . . . an} 2, 275ms encryption/decryption is
classifica- +2 · max{b1 . . . bn} e = d = 12ms.
tion +(d+e) ms

Secrecy of Two-Party Secure Computation�

Yi-Ting Chiang, Da-Wei Wang��, Churn-Jung Liau, and Tsan-sheng Hsu� � �

Institute of Information Science Academia Sinica, Taipei, 115, Taiwan
{ytc, wdw, liaucj, tshsu}@iis.sinica.edu.tw

Abstract. Privacy protection has become one of the most important
issues in the information era. Thus, many protocols have been devel-
oped to achieve the goal of cooperatively accomplishing a computational
task without revealing the participants’ private data. Practical protocols,
however, do not guarantee perfect privacy protection, as some degree of
privacy leakage is allowed during the computation process for the sake of
efficient resource consumption, e.g., the number of random bits required
and the computation time. Although there are metrics for measuring the
amount of resource consumption, as far as we know, there are no effec-
tive metrics that measure the degree of privacy leakage. Without such
metrics, however, it is difficult to compare protocols fairly. In this paper,
we propose a framework based on linear algebra and information theory
to measure the amount of privacy leakage in protocols. This framework
can be used to analyze protocols that satisfy certain algebraic proper-
ties. We use it to analyze three two-party scalar product protocols. The
framework might also be extendable to the analysis of other protocols.

Keywords: Privacy Analysis, Private Computation, Scalar Product.

1 Introduction

Privacy protection is one of the most pressing issues in the information era.
The massive databases spread over the Internet are gold mines for some and,
at the same time, one of the greatest threats to privacy for others. How to
cooperatively accomplish a computational task without revealing participants’
private input has therefore gained a lot of attention and the development of
efficient solutions is now an active research area. In theory [11,7], it is possible
to securely compute almost any function without revealing anything, except the
output. Unfortunately, the theoretical results are not readily applicable to real
applications due to their high computational complexity.

Most theoretical approaches adopt a computationally indistinguishable view
of secrecy and try to find provable secure solutions, but such a definition leaves

� Supported in part by Taiwan Information Security Center.
�� Corresponding Author: Joint-appointment faculty member of National Yang Ming

University, Taiwan. Supported in part by NSC (Taiwan) Grant 93-2213-E-001-031.
� � � Supported in part by NSC (Taiwan) Grants 92-2213-E-001-005 and 93-2213-E-

001-001.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 114–123, 2005.

c© IFIP International Federation for Information Processing 2005

Secrecy of Two-Party Secure Computation 115

little room to quantify secrecy. Meanwhile, in application oriented studies, re-
searchers usually take an intuitive approach to the definition of secrecy and try
to prove the secrecy of protocols by refuting possible attacks. However, being
intuitive, this approach cannot actually prove the security of protocols per se. It
can only be argued that refuting possible attacks preserves some security. There
is a gap between the theoretical and intuitive approaches in terms of provable
secrecy. Although, privacy is a basic human right, it is not the only one. When
multi-party private computation is applied to the public sector, sometimes pri-
vacy must be compromised to accommodate other important social values. It
can also be applied to the private sector, such as in a business setting. For
example, two (or more) companies might want to compute a function coopera-
tively; however, neither of them wants to share their private information. In both
public sector and private sector applications, it would be beneficial to be able to
quantify secrecy so that some tradeoff, for example, between secrecy and compu-
tational efficiency, could be made. In [5], similar arguments are presented about
ideal secrecy and acceptable secrecy. In this paper, we propose an information
theoretical framework toward a quantifiable definition of secrecy for multi-party
private computation.

The remainder of this paper is organized as follows. We give a short review
of related works in Section 2. In Section 3, we present our formal framework. In
Section 4, we analyze several scalar product protocols to demonstrate our model
and summarize the results. Finally, in Section 5, we present our conclusions and
a short discussion about possible extensions of our model. We also indicate the
direction of future work.

2 Related Work

Secure two-party computation was first studied by Yao [11] and extended to
the multi-party case by Goldreich et al [7]. Through a sequence of effort, a
satisfactory definitional treatment was developed and precise proofs for security
were provided . A full description of these developments can be found in [6].
The general construction approach is as follow. To securely compute a function,
it is first converted to a combinatorial circuit. For each gate in the circuit, all
parties run a protocol to compute the result of that gate. Both the input and
the output of the gate are shared randomly and the final output is also shared
randomly among all parties, after which each party can exchange its share of
the information to compute the final result. Although, this general construction
approach is impressive, it implies that both the size of the circuit and the number
of parties involved dominate the size, i.e., complexity, of the protocol. Note that
the size of the circuit is related to the size of the input. Therefore, the approach
is not a feasible solution for a real world problem with a large input and/or a
large number of parties [9].

The high cost of the general approach for large problems has motivated re-
searchers to look for efficient solutions for specific functions and many protocols
have already been developed to solve specific problems. There are specific pro-

116 Y.-T. Chiang et al.

tocols for general computation primitives, such as, scalar products [1,10], set
union and set intersection cardinality [8], and private permutation [2]. In ad-
dition, there are protocols for specific application domains, for example, data
mining, computational geometry, statistical analysis, etc. An excellent survey of
secure multi-party computation problems can be found in [3].

Almost all the approaches mentioned above are based on the notion of ideal
secrecy, as indicated in [5]. In that paper the authors ask if it would be possible to
lower the security requirement from an ideal level to an acceptable level so that
an efficient protocol could be developed. We extend their work by quantifying
the security level within an information theoretical framework.

3 Framework

In multi-party private computation, n players cooperate to compute a function,
and each player holds some private input that is part of the parameters for
computing the function. The goal is to compute the function and maintain the
secrecy of each party’s private input. Given a protocol, P , we use XP

i to denote
the private input of party i, and msgP

i to denote the message received by party
i. We use information theory to model the amount of information revealed after
running P . Before running P , each party has no information about other parties’
private input. However, after running P , each party may know something about
some of the other parties’ private inputs because of new information gathered
during the execution of P . Let HP

i = H(XP
i) denote the entropy of random

variable XP
i , and HP

ij = H(XP
i |msgP

j) denote the entropy of random variable
XP

i given msgP
j . The conditional entropy corresponds to the intuitive idea of

the amount of information (uncertainty) of XP
i from party j’s perspective after

receiving msgP
j .

We define the degree of secrecy of protocol P as mini,j(HP
ij/HP

i), or mini,j

(HP
ij); and call the former relative secrecy and the latter absolute secrecy. When

comparing different protocols, we believe that relative secrecy is a better notion,
since it is normalized to a number between zero and one, where one indicates
perfect secrecy, and zero means no secrecy at all. However, for some specific ap-
plications, where the number of players and the types of private input are fixed,
absolute secrecy gives the user a direct measurement of the degree of uncertainty
that each private input contains after executing the protocol. Obviously we as-
sume the existence of private communication channels between any two parties.
To model the case of a broadcast channel, we simply replace msgP

i with msgP ,
where msgP denotes the complete record of messages broadcast during the exe-
cution of the protocol. It is worth mentioning that our model can be extended to
model situations such as parties forming a coalition, where there is asymmetry
among data elements in the private inputs and among the parties. We do not
try to describe such a general model here, as the extension might detract from
our main points. In a later work, we hope to extend our model to a multi-party
setting.

Secrecy of Two-Party Secure Computation 117

4 Analysis of the Protocols

4.1 Preliminaries

In this paper, we analyze the degree of secrecy of three two-party scalar product
protocols, each of which has two players, Alice and Bob, who have private input
XA and XB respectively. The private input of each player is an n dimensional
vector. After running the protocol, Alice and Bob receive the numbers u and v
respectively, such that u + v is the inner product of XA and XB, i.e., XA ·XB.
Let ∗ be the matrix product operator, and XT

B be the transpose of XB. Then,
u + v = XA · XB = XA ∗ XT

B . Hereafter, we assume that XA, XB ∈ GF (p)n,
where GF (p) is a Galois field of order p, and p is a prime number. We also
assume that both parties are semi-honest, i.e., they both follow the protocol and
do not deliberately deviate from it to get more information. Instead, they only
deduce information from messages they receive.

We first list some facts from information theory.

Fact 1

1. H(X |msg) = H(X, R|msg)−H(R|X, msg).
2. If R is a function of X and msg, then H(R|X, msg) = 0 and H(X |msg) =

H(X, R|msg).
3. If H(R|X, msg) �= 0 and H(X |R, msg) = 0, then H(X |msg) = H(R|msg)−

H(R|X, msg).

Let V and C be two random sources. If it is known that some functional
dependency exists between V and C, then knowing information about C reveals
information about V . That is, the entropy of V is reduced. For the case where
V, C ∈ GF (p)n and A is a matrix, we get the following:

Proposition 1. Let V, C ∈ GF (p)n be two vectors with all elements uniformly
randomly selected from GF (p), and let A be an m×n matrix with all its elements
in GF (p). If there exists a functional dependency A ∗ V = C and rank(A) = k,
then H(V |C) = (n− k) log p.

Proof: By A∗V = C, let W1 and W2 be two vector spaces with ordered bases α
and β such that there is a linear transformation T : W1 → W2. [T]αβ = A. Since
rank(A) = k, if C is known, we can find a vector space U ⊆ W1 such that the
dimension of U is n− k and V ∈ U . Let s = (s1, . . . , sn−k) be an ordered basis
of U . Then V can be expressed in the form:

V = a1s1 + a2s2 + · · ·+ an−ksn−k.

Thus, H(V |C) = H(a1, . . . , an−k) = (n− k) log p.
The following lemma can be derived directly from the above proposition.

Lemma 1. Let A ∗ V = C be a linear system of equations in GF (p). If there
are k linear independent equations in A ∗ V = C, that is, rank(A) = k, and n
unknowns in V , then H(V |C) = (n− k) log p.

We now describe and analyze three scalar product protocols. In our analysis,
let Ii be an i× i identity matrix, and 0i×j be an i× j zero matrix.

118 Y.-T. Chiang et al.

4.2 Analysis of Protocol 1

The protocol is as follows. First Alice and Bob agree to an n∗n invertible matrix,
M , and a positive integer, k, that is not larger than n.

Scalar Product Protocol 1 [5]
Alice Bob

1. Compute X ′
A = XA ∗M . Compute X ′

B = (M−1 ∗XT
B)T .

Let X ′
A = [xA1 , . . . , xAn], Let X ′

B = [xB1 , . . . , xBn],
X̄A = [xA1 , . . . , xAk

], X̄B = [xB1 , . . . , xBk
],

X
¯ A=[xAk+1 , . . . , xAn] X

¯ B = [xBk+1 , . . . , xBn]

2. Alice
X̄A−→ Bob

Alice
X
¯ B←− Bob

3. u = X
¯ A ∗X

¯
T
B v = X̄A ∗ X̄T

B

Let U be a matrix whose column vectors are the leftmost k column vectors of
matrix M , and let V be a matrix whose row vectors are the last n−k row vectors
of matrix M−1. We organize messages received by Alice and Bob in a matrix
form and use Lemma 1 to derive the conditional information of each private
input after the other party receives the messages sent during the protocol.

– Alice receives the message msgA = {X
¯B} = {V ∗XT

B}. Thus, V ∗XT
B = X

¯B

and rank(V) = n− k. By Lemma 1, H(XB|msgA) = k log p.
– Similarly, Bob receives the message msgB = {X̄A} = {U ∗ XA}. Hence,

U ∗XA = X̄A and rank(U) = k. By lemma 1, H(XA|msgB) = (n− k) log p.

Based on the above discussion, we have the following lemma.

Lemma 2. In Protocol 1, the degree of secrecy for Alice is H(XA |msgB)
H(XA) =

(n−k) log p
n log p = (n− k)/n, and for Bob is H(XB |msgA)

H(XB) = k log p
n log p = k/n. The degree of

secrecy for Protocol 1 is min(H(XA|msgB)
H(XA) , H(XB |msgA)

H(XB)) =min(k, n− k)/n ≤ 1
2 .

Remarks: In [5], it is mentioned, but not formally explained, that M should
be invertible and k should be selected as k = �n/2�. From our analysis, we
know that selecting M to be invertible and k = �n/2� maximizes the degree
of secrecy. It is also mentioned in [5] the selection of M should avoid the case
where X̄A = [xA1 , . . . , xAk

]; for example, that the selection of M = In is one of
the bad cases. However, in our framework, picking M = In and picking M to be
any invertible matrix are identical in terms of the degree of secrecy. Institutively,
the advice mentioned above indicates that, the case where an individual value
is fully revealed is definitely more serious than the cases where individual values
are partially revealed, even though the total information remains are the same.
The conflict will be resolved when our model is extended to consider asymmetry
among the data elements of private inputs.

Secrecy of Two-Party Secure Computation 119

4.3 Analysis of Protocol 2

This protocol assumes the existence of a semi-honest party, C. In other words,
C does not collude with Alice or Bob. First C generates two 1 × n random
matrices, Ra and Rb; and then randomly picks two integers, ra and rb, such that
ra + rb = Ra ∗RT

b . C sends Ra and ra to Alice, and Rb and rb to Bob.

Scalar Product Protocol 2 [4,5]
Alice Bob

1. X ′
A = XA + Ra X ′

B = XB + Rb

2. Alice
X′

A−→ Bob

Alice
X′

B←− Bob
3. Bob generates a random value

v, and computes s = X ′
A ∗

XT
B + rb − v

4. Alice s←− Bob
5. u = s− (Ra ∗X ′T

B) + ra

Because, in this protocol, the commodity party C generates random variables
without receiving any message, C gets no information about the private inputs
of Alice and Bob.

Alice receives the message msgA = {X ′
B, ra, s} in Protocol 2, where

– X ′
B = In ∗XT

B + In ∗RT
b + 0 · rb + 0 · v,

– ra = 01×n ∗XT
B + Ra ∗RT

b − 1 · rb + 0 · v, and
– s = X ′

A ∗XT
B + 01×n ∗RT

b + 1 · rb − 1 · v.

Since H(Rb|XB, msgA), H(rb|XB, msgA), and H(v|XB , msgA) are all 0,

we have H(XB|msgA)=H(XB, Rb, rb, v|msgA). Let A1 =

⎡
⎣ In In 0 0

01×n Ra −1 0
X ′

A 01×n 1 −1

⎤
⎦,

Z1 =

⎡
⎢⎢⎣

XT
B

RT
b

rb

v

⎤
⎥⎥⎦, and C1 =

⎡
⎣X ′T

B

ra

s

⎤
⎦.

Note that rank(A1) = n + 2, A1 ∗ Z1 = C1, and C1 is essentially msgA.
H(XB|msgA) = n log p by Lemma 1.

Bob gets the message msgB = {rb, X
′
A} in Protocol 2, where

– In ∗XT
A + In ∗RT

a + 0 · ra = X ′T
A , and

– 01×n ∗XT
A + Rb ∗RT

a − 1 · ra = rb.

Let A2 =
[

In In 0
01×n Rb −1

]
, Z2 =

⎡
⎣XT

A

RT
a

ra

⎤
⎦, and C2 =

[
X ′T

A

rb

]
.

It is easy to verify that H(Ra|XA, msgB) = 0, H(ra|XA, msgB) = 0, and
rank(A) = n + 1. Thus, H(XA|msgB) = H(XA, Ra, rb|msgB). We know A2 ∗

120 Y.-T. Chiang et al.

Z2 = C2, and C2 is essentially msgB. By Lemma 1, H(XA|msgB) = ((2n + 1)−
(n + 1)) log p = n log p.

Based on the above discussion, we have the following lemma.

Lemma 3. The degree of secrecy for Protocol 2 is min(H(XA|msgB)
H(XA) ,

H(XB |msgA)
H(XB))=1.

4.4 Analysis of Protocol 3

This protocol assumes M is a public n×n matrix, m is a publicly known constant
that is at most n, and rank(M) = k. Without loss of generality, we assume that
n can be evenly divided by m, and q = n/m.

Scalar Product Protocol 3 [10]
Alice Bob

1. Generate a 1 × n random
matrix R. Let D be an
m × n matrix whose ele-
ments are dij , where dij ={

1, if j∈ [(i− 1) · q + 1, i · q]
0, otherwise

Define X ′
A = (XT

A + M ∗ RT)T

and Q = D ∗RT .

2. Alice
Q,X′

A−→ Bob
3. Let s = X ′

A∗XT
B , and gen-

erate a 1×m random ma-
trix R′ = [r′1, . . . , r′m].
Let W = [w1, . . . , wn] be
a 1 × n matrix, where
w(i−1)×q+j = r′i, ∀i ∈
[1, m] and ∀j ∈ [1, q].
Let X ′

B = XB ∗M + W .

4. Alice
X′

B ,s←−Bob
5. Note that s = X ′

A ∗ XT
B

=X ′
A ∗XT

B + R ∗WT−R ∗WT

=XA ∗XT
B +R ∗X ′T

B −R ∗WT .

Bob can compute v = R′ ∗
Q. Notes that R·WT =R′∗
Q.

Since Alice knows X ′
B, she can

get u = XA ∗XB −R ∗WT .

Alice receives the message msgA = {X ′T
B , s}, where

– X ′T
B = MT ∗XT

B + In ∗WT , and
– s = X ′

A ∗XT
B + 01×n ∗WT .

Secrecy of Two-Party Secure Computation 121

Note that there are only m unknowns, r′1, . . . , r′m, in W . Let A =
[
MT In

X ′
A 01×n

]
,

Z =
[

XT
B

WT

]
, and C =

[
X ′T

B

s

]
.

We know that H(W |XB, msgA) = 0, rank(A) = n + 1, A ∗ Z = C, and C
is essentially msgA. By Lemma 1, H(XB|msgA) = (n + m − (n + 1))log p =
(m− 1) log p.

Bob receives the message msgB = {X ′
A, Q} from Alice in Protocol 3, where

– X ′T
A = In ∗XT

A + M ∗RT , and
– Q = 0m×n ∗XT

A + D ∗RT .

In Bob’s case, H(R|XA, msgB) may not be 0 if rank(M) = k �= n. On the
other hand, H(XA|R, msgB) = 0, even if k is not equal to n. So we have
H(XA|msgB) = H(R|msgB)−H(R|XA, msgB).

We first compute H(XA, R|msgB). Let A1 =
[

In M
0m×n D

]
, Z1 =

[
XT

A

RT

]
, and

C1 =
[

X ′T
A

Q

]
.

It is clear that rank(A) = n+m, A1∗Z1 = C1, and C1 is essentially msgB. By
Lemma 1, H(R|msgB) = H(XA, R|msgB) = (2n−(n+m)) log p = (n−m) log p.

To compute H(R|XA, msgB), XA can be treated as a constant vector. There-

fore, let A2 =
[
M
D

]
, Z2 =

[
RT

]
, and C2 =

[
X ′T

A −XT
A

Q

]
=

[
M ∗R

Q

]
. From

A1 ∗ Z1 = C1, we can derive A2 ∗ Z2 = C2.
Let rank(A2) = e. From Lemma 1, H(R|XA, msgB) = (n − e) log p. As

a result, H(XA|msgB) = H(R|msgB) − H(R|XA, msgB) = ((n − m) − (n −
e)) log p = (e−m) log p.

Note that e ≤ n, m is an integer, and min (m− 1, e−m) ≤ min(m − 1,
n−m) ≤ (n− 2)/2.

Based on the above discussion, we have the following lemma.

Lemma 4. The degree of secrecy for Protocol 3 is:

min(
H(XA|msgB)

H(XA)
,
H(XB|msgA)

H(XB)
) = min(

e−m

n
,
m− 1

n
) ≤ 1

2
− 1

n
<

1
2
.

Remarks: In our analysis, Protocol 3 achieves its maximum level of secrecy
when m = n+1

2 and rank(A2) = n However, we require that m = n/q for some
integer q, and m to be an integer. When n is even and m = n/2, the protocol
achieves its maximum level of secrecy. This provides a guideline for choosing M
and m.

5 Conclusion and Future Works

In this paper, we propose the measurement of secrecy in the information the-
oretical sense, and use our model to analyze three two-party scalar product

122 Y.-T. Chiang et al.

protocols. The results are summarized in Table 1. We note that although Proto-
col 2 achieves the highest level of security with the least complexity, i.e., random
bits, communication cost, and computational efforts, it requires a semi-honest
third party, which may be costly to implement in real applications. Protocol 3
may be slightly more secure than Protocol 1.

Table 1. Summary of results

Protocol 1 Protocol 2 Protocol 3

random bits 0 (2n + 1)�log p	 (m + n)�log p	
communication O(n log p) O(n log p) O(n log p)
cost

computational O(n2) O(n) O(n2)
complexity

degree of secrecy ≤ 1
2

1 ≤ min(n−m
n

, m−1
n

)
≤ 1

2
− 1

n

comments requires a n × n requires a semi-honest achieve max secrecy
inevitable matrix third party when m =
n/2�

We consider that maintaining secrecy is an important factor in multi-party
private computation, but it is not the sole goal. Thus, a tradeoff among com-
putational complexity, communication complexity, and secrecy can be explored.
The theoretical existential proof of solutions for multi-party private computation
is elegant and impressive; however, it is not practical for real world, large-scale
applications. For real applications, perfect secrecy is an ideal situation, but ad-
equate secrecy is sometimes sufficient. Being able to quantify the secrecy pre-
served by protocols is important in deciding if an adequate secrecy level can be
achieved. In this paper, we have proposed the use of an information theoretical
framework to measure the secrecy of protocols. Furthermore, we have analyzed
three two-party scalar protocols to demonstrate the efficacy of our approach.

Finally, there are two interesting research directions worthy of further study.
First, it would interesting and challenging to develop general analysis method-
ologies. So far, we have only investigated the linearly dependent relationship
between secret input and messages. More tools are needed to analyze more com-
plex protocols. The second interesting direction would be to explore possible
tradeoffs between secrecy and other performance related measurements.

References

1. M. J. Atallah and W. Du. Secure multi-party computational geometry. Lecture
Notes in Computer Science, 2125:165–179, 2000.

2. W. Du and M. J. Atallah. Privacy-preserving cooperative statistical analysis. In
Proceedings of the 17th Annual Computer Security Applications Conference, pages
102–110, New Orleans, Louisiana, USA, December 2001.

Secrecy of Two-Party Secure Computation 123

3. W. Du and M. J. Atallah. Secure multi-party computation problems and their
applications: A review and open problems. In New Security Paradigms Workshop,
pages 11–20, Cloudcroft, New Mexico, USA, September 2001.

4. W. Du and Z. Zhan. Building decision tree classifier on private data, 2002.
5. W. Du and Z. Zhan. A practical approach to solve secure multi-party computation

problems. In Proceedings of New Security Paradigms Workshop, Virginia Beach,
virginia, USA, September 2002.

6. O. Goldreich. Foundations of Cryptography Volume II Basic Aplications. Cam-
bridge, 2004.

7. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game, or:
A completeness theorem for protocols with honest majority. In Proc. 19th ACM
Symposium on Theory of Computing, pages 218–229, 1987.

8. M. Kantarcoglu and C. Clifton. Privacy-preserving distributed mining of associa-
tion rules on horizontally partitioned data. IEEE Transactions on Knowledge and
Data Engineering, 16(9):1026–1037, 2004.

9. Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay — a secure
two-party computation system. In Proceedings of the 13th Symposium on Security,
Usenix, pages 287–302, 2004.

10. J. Vaidya and C. Clifton. Privacy preserving association rule mining in verti-
cally partitioned data. In The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 639–644, July 2002.

11. A. C. Yao. How to generate and exchange secrets. In Proceedings of the 27rd
Annual IEEE Symposium on Foundations of Computer Science, pages 162–167,
November 1986.

Reliable Scheduling of Advanced Transactions

Tai Xin, Yajie Zhu, and Indrakshi Ray

Department of Computer Science,
Colorado State University

{xin, zhuy, iray}@cs.colostate.edu

Abstract. The traditional transaction processing model is not suitable for many
advanced applications, such as those having long duration or those consisting
of co-operating activities. Researchers have addressed this problem by propos-
ing various new transaction models capable of processing advanced transactions.
Advanced transactions are characterized by having a number of component sub-
transactions whose execution is controlled by dependencies. The dependencies
pose new challenges which must be addressed to ensure secure and reliable ex-
ecution of advanced transactions. Violation of dependencies in advanced trans-
actions could lead to unavailability of resources and information integrity prob-
lems. Although advanced transactions have received a lot of attention, not much
work appears in addressing these issues. In this paper, we focus on the problem of
scheduling advanced transactions. Specifically, we show how the different depen-
dencies constrain the execution of the advanced transaction and give algorithms
for scheduling advanced transactions that preserve the dependencies. Our sched-
uler is not confined to any specific advanced transaction processing model, but
is capable of handling different kinds of advanced transactions, such as, Saga,
Nested Transactions and Workflow.

1 Introduction

Driven by the need for designing high performance and non-traditional applications, a
number of advanced transaction models [2,7,9,12,17,19] have been proposed in recent
years as extensions to the traditional flat transaction model. These advanced transaction
models, though differ in forms and applicable environments, have two common prop-
erties: made up of long running activities and containing highly cooperative activities.
We refer to these activities as subtransactions in this paper. Subtransactions need to be
coordinated to accomplish a specific task. The coordination among subtransactions is
achieved through dependencies. Existing research work in advanced transactions, like
ACTA [8] and ASSET [6], have discussed dependencies as means to characterize the
semantics of interactions between subtransactions. Using these dependencies, different
kinds of advanced transactions can be generated. Although a lot of research appears
in advanced transactions, reliable scheduling and execution have not been adequately
addressed.

Improper scheduling of subtransactions in an advanced transaction may result in
integrity and availability problems. For instance, suppose there is a begin on commit
dependency between subtransactions T1 and T2, which requires that T2 cannot begin
until T1 commits. If the scheduler fails to enforce this dependency, then the integrity

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 124–138, 2005.
c© IFIP International Federation for Information Processing 2005

Reliable Scheduling of Advanced Transactions 125

of the application may be compromised. As a second example, consider the existence
of a strong commit dependency between subtransactions T3 and T4 that requires T4 to
commit if T3 does so. Suppose the scheduler executes and commits T3 before T4. Later
if T4 needs to be aborted for some reason, then we have a complex situation: T4 needs
to abort as well as commit. In such a case, allowing T4 to complete will cause integrity
problems and keeping it incomplete raises issues pertaining to availability.

In this paper, we propose a solution that overcomes the problems mentioned above.
We first evaluate the scheduling constraints imposed by each dependency. We discuss
the data structures needed by the scheduler, and give the detailed algorithm. In some sit-
uations, each pair of subtransactions can be related by multiple dependencies. We show
how our algorithm can be extended to handle such scenarios. Note that, our scheduler
is extremely general – it can be used for processing any advanced transaction where
the transaction can be decomposed into subtransactions that are co-ordinated through
dependencies.

The rest of the paper is organized as follows. Section 2 defines our advanced trans-
action processing model and describes the different kinds of dependencies that may be
associated with it. Section 3 describes the different data structures needed by our sched-
uler. Section 4 presents the details of how an advanced transaction is scheduled by our
model. Section 5 discusses related work. Section 6 concludes the paper with pointers to
future directions.

2 Our Model for Advanced Transactions

Our definition of advanced transaction is very general; it can be customized for dif-
ferent kinds of transaction models by restricting the type of dependencies that can ex-
ist among component subtransactions. An advanced transaction AT is specified by the
set of subtransactions in AT , the dependencies between these subtransactions, and the
completion sets to specify the complete execution states. All subtransactions specified
in an advanced transaction may not execute or commit. A completion set gives the set
of transactions that needs to be committed for successfully completing the advanced
transaction. The application semantics decides which subtransactions constitute a com-
pletion set. The set of subtransactions that commit in an advanced transaction model
may vary with different instantiations of the advanced transaction. Thus, an advanced
transaction may have multiple completion sets. With this background, we are now ready
to formally define our notion of advanced transaction.

Definition 1
[Advanced Transaction] An advanced transaction AT =< S,D,C > is defined by S,
which is the set of subtransactions in AT , D, which is the set of dependencies between
the subtransactions in S, and C, which is the set of completion sets in AT . We assume
that the set of dependencies in D do not conflict with each other.

Definition 2
[Subtransaction] A subtransaction Ti is the smallest logical unit of work in an ad-
vanced transaction. It consists of a set of data operations (read and write) and transac-

126 T. Xin, Y. Zhu, and I. Ray

tion primitives; the begin, abort and commit primitives of subtransaction Ti are denoted
by bi, ai and ci respectively.

Definition 3
[Dependency] A dependency specified between a pair of subtransactions Ti and Tj ex-
presses how the execution of a primitive (begin, commit, and abort) of Ti causes (or
relates to) the execution of the primitives (begin, commit and abort) of another sub-
transaction Tj.

A set of dependencies has been defined in the work of ACTA [8]. A comprehensive
list of transaction dependency definitions can be found in [3,6,8,14]. Summarizing all
these dependencies in previous work, we collect a total of fourteen different types of
dependencies. These are given below. In the following descriptions Ti and Tj refer to
the transactions and bi, ci, ai refer to the events of Ti that are present in some history H,
and the notation ei ≺ e j denotes that event ei precedes event e j in the history H.

[Commit dependency] (Ti →c Tj): If both Ti and Tj commit then the commitment of
Ti precedes the commitment of Tj. Formally, ci ⇒ (c j ⇒ (ci ≺ c j)).

[Strong commit dependency] (Ti →sc Tj): If Ti commits then Tj also commits. For-
mally, ci ⇒ c j.

[Abort dependency] (Ti →a Tj): If Ti aborts then Tj aborts. Formally, ai ⇒ a j.
[Termination dependency] (Ti→t Tj): Subtransaction Tj cannot commit or abort until

Ti either commits or aborts. Formally, e j⇒ ei≺ e j, where ei ∈{ci,ai}, e j ∈{c j,a j}.
[Exclusion dependency] (Ti →ex Tj): If Ti commits and Tj has begun executing, then

Tj aborts. Formally, ci ⇒ (b j ⇒ a j).
[Force-commit-on-abort dependency] (Ti → f ca Tj): If Ti aborts, Tj commits. For-

mally, ai ⇒ c j.
[Force-begin-on-commit/abort/begin/terminationdependency] (Ti→f bc/ f ba/ f bb/ f bt

Tj): Subtransaction Tj must begin if Ti commits(aborts/begins/terminates). For-
mally, ci(ai/bi/Ti)⇒ b j.

[Begin dependency] (Ti→b Tj): Subtransaction Tj cannot begin execution until Ti has
begun. Formally, b j ⇒ (bi ≺ b j).

[Serial dependency] (Ti →s Tj): Subtransaction Tj cannot begin execution until Ti

either commits or aborts. Formally, b j ⇒ (ei ≺ b j) where ei ∈ {ci,ai}.
[Begin-on-commit dependency] (Ti →bc Tj): Subtransaction Tj cannot begin until Ti

commits. Formally, b j ⇒ (ci ≺ b j).
[Begin-on-abort dependency] (Ti →ba Tj): Subtransaction Tj cannot begin until Ti

aborts. Formally, b j ⇒ (ai ≺ b j).

Let’s see an example of an advanced transaction below.

Example 1
Let AT =< S,D,C > be an advanced transaction where S = {T1,T2,T3,T4}, D =
{T1 →bc T2,T1 →bc T3,T2 →ex T3,T2 →a T4}, and C = {{T1,T2,T4},{T1,T3)}}. Thus,
this transaction has two complete execution states: {T1,T2,T4} and {T1,T3}. The ad-
vanced transaction can be represented graphically as shown in Figure 1.

Reliable Scheduling of Advanced Transactions 127

A real world example of such a transaction may be a workflow associated with mak-
ing travel arrangements: The subtransactions perform the following tasks. T1 – Reserve
a ticket on Airlines A; T2 – Purchase the Airlines A ticket; T3 – Cancels the reservation,
and T4 – Reserves a room in Resort C. There is a begin-on-commit dependency between
T1 and T2 and also between T1 and T3. This means that neither T2 or T3 can start before
T1 has committed. This ensures that the airlines ticket cannot be purchased or canceled
before a reservation has been made. The exclusion dependency between T2 and T3 en-
sures that either T2 can commit or T3 can commit but not both. In other words, either
the airlines ticket must be purchased or the airlines reservation canceled, but not both.
And, there is an abort dependency between T4 and T2 - This means that if T2 aborts then
T4 must abort. In other words, if the resort room cannot be reserved, then the airlines
ticket should not be purchased.

ex

bc a

bc

T

T

T

T1

2

3

4

Fig. 1. Dependencies in the Advanced Transaction of Example 1

Sometimes one single dependency is not adequate for specifying the relationship
between two subtransactions. For example, if we want to specify that (i) T1 must be-
gin after T2 has committed and (ii) if T2 aborts then T1 must also abort. In such cases,
a single dependency is not sufficient for expressing the co-ordination relationship be-
tween T1 and T2. A composite dependency is needed under this situation. A composite
dependency contains two or more primitive dependencies which are applied towards
the same pair of subtransactions. The single dependencies will be henceforth referred
to as primitive dependencies. For example, the above two primitive could generate a
composite dependency: T2 → f bc,a T1.

Definition 4
[Composite Dependency] A composite dependency between a pair of subtransactions
Ti, Tj in an advanced transaction, denoted by Ti→d1,d2,...,dn Tj, is obtained by combining
two or more primitive dependencies d1,d2, . . . ,dn. The effect of the composite depen-
dency is the conjunction of the constraints imposed by the individual dependencies
d1,d2, . . . ,dn.

Note that, the constraints placed by the individual primitive dependencies might
conflict with each other. In this paper, we assume that the advanced transaction specifi-
cation does not have such conflicts.

128 T. Xin, Y. Zhu, and I. Ray

2.1 Execution Model

Having presented the structural model of the advanced transaction, we now present
our execution model. A subtransaction can be at different states during its lifetime.
Rusinkiewicz and Sheth have discussed the states of workflow tasks in a similar manner
[17]. In this paper, our approach will extend the their work. We will have the unsched-
uled state to identify that a subtransaction has not been submitted, and, we will require
the subtransactions being hold in prepare state and cannot transit to final (commit or
abort) state until the dependencies have been satisfied.

Definition 5
[State of a subtransaction] A subtransaction Ti can be in any of the following states:
unscheduled (uni), initiation (ini), execution (exi), prepare (pri) (means prepare to com-
mit), committed (cmi) and aborted (abi). Execution of subtransaction primitives causes
a subtransaction to change its state. Detailed state transition diagrams are shown in
figure 2.

submit ex
 i

pr i

commitabort

done

abort

reject

delay

execute
un i in i

user

ab i
cm i

Fig. 2. States of subtransaction Ti

Below we formally define each state, and describe how and when state transitions
take place.

– unscheduled (uni), means a subtransaction (Ti) is not sent to a scheduler. At this
point, a scheduler can do nothing about it.

– initiation (ini), After subtransaction (Ti) is sent to the scheduler, its state changes to
initiation. Now it is waiting to be executed. Later the scheduler can execute, delay
or reject this subtransaction.

– execution (exi), a subtransaction (Ti) moves from initiation state to execution state
by executing the begin primitive. When a subtransaction is in the execution state,
the only way a scheduler can control it is by aborting the subtransaction.

– prepare (pri), After a subtransaction (Ti) finishes its execution and ready to com-
mit, it is in the prepare state. At this point, a scheduler can determine whether the
subtransaction should commit or abort.

Reliable Scheduling of Advanced Transactions 129

– committed (cmi), means a subtransaction (Ti) has committed.
– aborted (abi), means a subtransaction (Ti) has aborted. There are two ways to enter

the aborted state. When a subtransaction is in the execution state, it may be aborted.
Also when it is in the prepare state, the scheduler can abort it.

The aborted state and the committed states are called the final states. When a sub-
transaction has reached the final state, the scheduler can no longer change its state.

A reliable scheduler of an advanced transaction must be able to complete all the
necessary subtransactions in an advanced transaction and not cause any dependency
violation. A subtransaction that is never terminated but remains active even after the
transaction has terminated is called an orphan subtransaction.

Definition 6
[Reliable Scheduling] The scheduling of an advanced transaction is reliable if it satis-
fies the following constraints.

1. all dependency constraints of the advanced transaction must be satisfied;
2. when execution completes, each subtransaction must be in final state (a commit-

ted/aborted state) or unscheduled state. In other words, when execution of an ad-
vanced transaction completes, there should be no orphan subtransaction. Notice
that an orphan subtransaction will hold resources and possibly cause availability
problems.

The above conditions are necessary to avoid availability and integrity problems
caused by the advanced transaction.

3 Data Structures Required by the Scheduler

Before giving the details of the algorithm, we describe the data structures needed by
our algorithm.

3.1 Scheduling Action Table for Primitive Dependencies

The actions to be taken by the scheduler in order to correctly enforce a dependency
of the form Ti →x Tj depends on the type of dependency existing between Ti and Tj

and the states of Ti and Tj. This information is stored in the scheduling action table.
For each dependency of the form Ti →x Tj, we construct a scheduling action table T Bx.
This table has six rows and six columns corresponding to the different states of Ti and
Tj respectively. An entry in this table is denoted as ENx(i, j) where i represents a state
of the subtransaction (Ti), and j represents a state of the subtransaction (Tj). The entry
ENx(i, j) can have the following values:

1. no restriction, shown as ’–’ in the table, means that the scheduler need not impose
any restriction for the state transitions of the two subtransactions Ti and Tj. The
subtransactions Ti or Tj can go into the next state without any restriction.

2. delay Ti(Tj) means that the subtransaction Ti(Tj) cannot make a state transition at
this stage. It must wait at the current state until the other subtransaction Tj(Ti) has
entered another state.

130 T. Xin, Y. Zhu, and I. Ray

3. execute Ti(Tj) means that the subtransaction Ti(Tj) must be executed.
4. abort Ti(Tj) means that the subtransaction Ti(Tj) must be aborted.
5. reject Ti(Tj) means that the subtransaction Ti(Tj) will be rejected instead of being

scheduled for execution. This entry is only possible when subtransaction Ti(Tj) is
in its initiation state.

6. prohibited, shown as ’/’ in the table, means it is not possible for the subtransactions
to be in the corresponding states simultaneously because of this dependency.

7. final states, shown as ‘final’ in the table, means both the subtransactions are in the
final state. No further state transitions are possible.

The dependency scheduling tables specify the necessary actions that must be taken
by the scheduler to ensure the satisfaction of all dependencies. For lack of space, we do
not give the tables for all the dependencies. Table 1 shows the scheduling action table
for the strong commit dependency.

Table 1. Scheduling action table for strong commit dependency

action un j in j ex j pr j cm j ab j

uni – – – – – –
ini – – – – – –
exi – – – – – abort Ti

pri delay Ti delay Ti delay Ti delay Ti – abort Ti

cmi / / / / final /
abi – – – – final final

The first row of the table specifies the actions to be taken when Ti is in the unsched-
uled state. In this row all the entries are marked with ‘–’ indicating that the scheduler
does not impose any constraint on Ti or Tj changing states. The entry in the third row,
last column (that is, EN(exi,ab j)) is an ‘abort Ti’. This means that when Ti is in the ex-
ecution state, and Tj is aborted, then Ti must be aborted as well. The entry in the fourth
row, first column (that is, EN(pri,un j)) is ‘delay Ti’. This means that when Ti is in the
prepare state and Tj is unscheduled, Ti must wait in the prepare stage. The entry in the
fifth row, first column (that is, EN(cmi,un j)) is ‘/’. This means that the scheduler will
not allow this to happen. The entry in the fifth row, fifth column (that is, EN(cmi,cm j))
is ‘final’. This means that both the transactions have reached their final states, and the
scheduler need not do anything more.

The following ensures the correctness of our scheduling action table. For lack of
space, we omit the proof.

Lemma 1. The scheduler by taking the actions listed in the scheduling action tables
for the primitive dependencies can enforce the dependencies correctly.

3.2 Scheduling Action Table for Composite Dependencies

Based on the dependency scheduling action tables for all primitive dependencies, we
propose an algorithm to create scheduling table for composite dependencies. This ta-
ble is called the composite dependency scheduling table. The composite dependency

Reliable Scheduling of Advanced Transactions 131

scheduling table for the composite dependency consisting of primitive dependencies x,
y, and z is denoted by T BCx,y,z.

In determining the proper actions for a composite dependency, we need to combine
the entries from two or more scheduling action tables of the component primitive de-
pendencies. To obtain the correct action from these different entry items, we need to
define the priority for each type of scheduling actions in the primitive scheduling action
table. The different actions are prioritized in the following order: “prohibited” , “reject” ,
“abort” , “delay” , “execute”, and “no restriction”, where “prohibited” signifies the high-
est priority and “no restriction” signifies the least priority. We use the notation > to de-
scribe the priority ordering. For instance, “prohibited > reject” means that “prohibited”
has a higher priority than “reject”. In combining the actions of two or more primitive de-
pendency tables, the scheduler will choose the table entry with the highest priority, and
set this entry as the action for the composite dependency. For example, when a sched-
uler finds “no restriction” in one execution table and a “delay” entry in other scheduling
table, it will take the “delay” entry as the action for the composite dependency.

We next give the algorithm to combine the scheduling tables and determine the cor-
rect actions for the composite dependency. To combine the scheduling tables of two (or
more) primitive dependencies, we compare the corresponding table entries and choose
the action that satisfies the constraints of all component dependencies.

Algorithm 1
Creating Composite Dependency Scheduling Table
Input: (i) Ti →d1,d2,...,dn Tj – the composite dependency composed of the primitive de-
pendencies d1,d2, ..., . . .dn and (ii) TB = {TBd1 ,T Bd2 , . . . ,T Bdn} – the scheduling ac-
tion tables for the primitive dependencies
Output: Scheduling action table TBC for this composite dependency.

begin
for each state (Si) of subtransaction (Ti) ∈ {uni, ini,exi, pri,abi,cmi}

for each state (S j) of subtransaction (Tj) ∈ {un j, in j,ex j, pr j,ab j,cm j}
begin

/* initialization */
ENT BC(Si,S j) = “–”
set maxp = “–”
/* get every component dependency’s scheduling table entry */
for every primitive dependency dk in this composite dependency
begin

access the scheduling action table TBk for this dependency dk

get the corresponding entry ENk(Si,S j)
/* finding the highest priority entry in these dependencies */
if ENk(Si,S j) > maxp

maxp = ENk(Si,S j)
end for
ENT BC(Si,S j) = maxp

end for
end

132 T. Xin, Y. Zhu, and I. Ray

We next show that, with the priority assignment, the above algorithm could be able
to ensure the satisfaction of all primitive dependencies in a composite dependency.

Lemma 2. The scheduler can enforce composite dependencies correctly.

3.3 State Table and Job Queue

The scheduler during the execution of advanced transactions maintains some dynamic
data structures called state tables. A state table is created for each advanced transaction
that has been submitted by the user. The state table records the execution states of
the subtransactions in an advanced transaction while it is being executed. Whenever a
subtransaction of this advanced transaction changes state, the corresponding entry in
the state table is updated. When the advanced transaction terminates, the state table is
deleted.

The job queue is another dynamic data structure that is needed by the scheduler.
The job queue holds subtransactions that have been submitted by the user but which are
not being currently executed. The jobs submitted by a user is initially placed in the job
queue. Also, when a subtransaction needs to wait before being processed further, it is
placed in the job queue. In other words, subtransactions in the initiation state or prepare
state are placed in this job queue. When the subtransaction in the initiation (prepare)
state is ready to execute (commit), it is removed from this queue.

4 Execution of an Advanced Transaction

In this section we describe how an advanced transaction is executed. The advanced
transaction is executed in three stages: (i) Preparation Stage, (ii) Execution Stage, and
(iii) Termination Stage. These stages are described in the following subsections.

4.1 Preparation Stage

In this stage, the user submits the advanced transaction for execution. After receiving
the input from the user, a state table is created for this advanced transaction. The entries
for each subtransaction in this state table is initialized to initiation. The subtransactions
are placed in the job queue for later execution. When the user has completed submitting
subtransactions for the advanced transaction, the advanced transaction moves into the
execution stage. The following algorithm summarizes the work done in the preparation
stage.

Algorithm 2
InputAdvancedTransaction
Input: (i) ATt =< S,D,C > – the advanced transaction.

Procedure InputAdvancedTransaction(ATt)
begin

receive the input ATt =< S,D,C >
create StateTablet

for each Ti ∈ S

Reliable Scheduling of Advanced Transactions 133

begin
StateTablet[Ti] = initiation /* set initial states for subtransactions */
enQueue(JobQueue, Ti) /* insert in the job queue */

end for
end

4.2 Execution Stage

In this stage, the subtransactions submitted by the user get executed. When the sched-
uler gets a subtransaction, it first looks into the advanced transaction specification to find
out all dependencies associated with it. For each dependency, the scheduler identifies
the states of the two involved subtransactions. The scheduler then accesses the depen-
dency scheduling action table, and gets the required action for the subtransactions. The
action can be one of the following: allow the subtransaction to commit/abort, send the
subtransaction to execute, delay the subtransaction, or reject the subtransaction. If the
action causes the subtransaction to change state, the state table entry corresponding to
this subtransaction may need to be modified. The following algorithm formalizes the
actions taken in this stage.

Algorithm 3
Execution Stage
Input: (i) ATt =< S,D,C > – the advanced transaction that must be executed and (ii)
TB – the set of primitive and composite scheduling action tables associated with the
dependencies of the advanced transaction ATt .

Procedure ExecuteAdvancedTransaction(ATt, TB)
begin

while(TRUE)
begin

Ti = deQueue(JobQueue) /* get the job from the job queue */
Action = getAction(Ti, ATt , TB)
if Action = wait

enQueue(JobQueue, Ti) /* insert in queue */
else if Action = abort

abort Ti

StateTablet[Ti] = aborted
else if Action = re ject

StateTablet[Ti] = unscheduled
else if Action = − /* no restriction for Ti */
begin

if StateTablet[Ti] = initiation
send (Ti) to execute /* execute the operations for Ti */
StateTablet[Ti] = executing

else if StateTablet[Ti] = executing
get execution results
if execution result is completed /* operations completed */

134 T. Xin, Y. Zhu, and I. Ray

StateTablet[Ti] = prepare
enQueue(JobQueue, Ti)

else if execution failed /* operations failed */
StateTablet[Ti] = aborted

else if StateTablet[Ti] = prepare
commit Ti

StateTablet[Ti] = committed
end

end while
end

The above algorithm makes a call getAction to get the action that must be taken by
the scheduler. We next describe the algorithm getAction that describes how the sched-
uler determines an action for scheduling a submitted subtransaction (Ti), focusing on
ensuring the dependency constrains associated with Ti. We assume that the primitive
and composite dependency tables that will be needed by this advanced transaction have
already been created.

Algorithm 4
Get Action From ActionTables
Input: (i) Ti – the subtransaction for which the action must be determined, and (ii)
ATt =< S,D,C > – the advanced transaction whose subtransaction is Ti, and (iii) TB –
the set of primitive and composite scheduling action tables associated with the depen-
dencies of the advanced transaction ATt .
Output: The action the scheduler should take to for subtransaction Ti

Procedure getAction(Ti, ATt , TB)
begin

ACTION = ’–’ /* Initialize ACTION */
/* find out all the dependencies associated with Ti */
for every dependency Tm →d Tn ∈ D
begin

if (Ti �= Tm) AND (Ti �= Tn)
skip this round, and continue to next round

else /* this dependency is associated with Ti */
begin

if (Ti = Tn) /* d is a dependency pointed to Ti */
/* get the state of the subtransactions */
let Sy = StateTablet[Ti]
let Sx = StateTablet[Tm]

else if (Ti = Tm) /* d is a dependency that Ti lead out */
/* get the state of the subtransactions */
let Sx = StateTablet[Ti]
let Sy = StateTablet[Tn]

access the corresponding dependency scheduling table T Bd

locate the corresponding entry ENd(x,y) according to the states
if ENd(x,y) > ACTION /* check the priority */

Reliable Scheduling of Advanced Transactions 135

ACTION = ENd(x,y);
end

end
return ACTION;

end

4.3 Termination Stage

When all the subtransactions of an advanced transaction have completed execution, the
advanced transaction must be terminated. From the state tables, we find out the set of
executing, committed and prepared subtransactions. If the set of prepared or executing
subtransactions is not empty, then we return the message not terminated. Otherwise, we
check whether the set of committed transactions correspond to one of the completion
sets specified in the advanced transaction. If so, we return a successful termination
message, otherwise we return an unsuccessful termination message. Once the advanced
transaction is terminated, the state table corresponding to the advanced transaction is
deleted.

Algorithm 5
Termination Stage
Input: (i) ATt =< S,D,C > – the advanced transaction whose termination is being
determined.
Output: (i) result indicating whether the advanced transaction terminated successfully
or not.

Procedure TerminateAdvancedTransaction(ATt)
begin

executing = prepared = committed = {}
for each subtransaction Ti ∈ S
begin

if StateTablet[Ti] = committed
committed = committed∪Ti

else if StateTablet[Ti] = executing
executing = executing∪Ti

else if StateTablet[Ti] = prepared
prepared = prepared∪Ti

end
/* check whether there are active subtransactions for ATt */
if prepared �= {} OR committed �= {}

return ‘not terminated’
else /* all subtransactions are finished */
begin

Delete StateTablet

/* check whether it matches some completion set */
for each Ci ∈C
begin

136 T. Xin, Y. Zhu, and I. Ray

if (Ci = committed)
return ‘terminated successfully’

end
/* none of the termination states are satisfied */
return ‘terminated unsuccessfully’

end
end

The following theorem ensures the correctness of the mechanisms.

Theorem 1
The mechanism described above ensures reliable scheduling as per Definition 6.

5 Related Work

In the past two decades, a variety of transaction models and technologies supporting
advanced transaction have been proposed. Examples are ACTA [8], ConTracts [16],
nested transactions [12], ASSET [6], EJB and CORBA object transaction services [13],
workflow management systems [1], concurrency control in advanced databases [5] etc.
Chrysanthis and Ramamrithan introduce ACTA [8], as a formal framework for speci-
fying extended transaction models. ACTA allows intuitive and precise specification of
extended transaction models by characterizing the semantics of interactions between
transactions in terms of different dependencies between transactions, and in terms of
transaction’s effects on data objects. However, impacts of dependencies on reliable ex-
ecution of advanced transactions are not discussed in ACTA.

Mancini, Ray, Jajodia and Bertino have proposed the notion of multiform transac-
tions [11]. A multiform transaction consists of a set of transactions and includes the
definition of a set of termination dependencies among these transactions. The set of de-
pendencies specifies the commit, abort relationship among the component transactions.
The multiform transaction is organized as a set of coordinate blocks. The coordinate
block, along with the corresponding coordinator module (CM) can manage the execu-
tion of the transactions.

A workflow involves different computational and business activities which are coor-
dinated through dependencies. Thus, we can consider a workflow as a type of advanced
transaction. The importance of workflow models is increasing rapidly due to its suitabil-
ity in the business application. For these reasons, a lot of research appears in workflow
management systems [1,3,10,15].

Singh has discussed the semantical inter-task dependencies on workflows [18]. The
author used algebra format to express the dependencies and analyze their properties and
semantics in workflow systems. Attie at el. [4] discussed means to specify and enforce
intertask dependencies. They illustrate each task as a set of significant events (start,
commit, rollback, abort). Intertask dependencies limit the occurrence of such events
and specify a temporal order among them. In an earlier work, Rusinkiewicz and Sheth
[17] have discussed the specification and execution issues of transactional workflows.
They have described the different states of tasks in execution for a workflow system.

Reliable Scheduling of Advanced Transactions 137

They also discussed different scheduling approaches, like: scheduler based on predi-
cate Petri Nets models, scheduling using logically parallel language, or using temporal
propositional logic. Another contribution of their paper is that they discussed the issues
of concurrent execution of workflows - global serializability and global commitment
of workflow systems. However, none of these papers address the scheduling actions
needed to satisfy the dependency constraints.

6 Conclusion and Future Work

An advanced transaction is composed of a number of cooperating subtransactions that
are coordinated by dependencies. The dependencies make the advanced transaction
more flexible and powerful. However, incorrect enforcement of dependencies can lead
to integrity and availability problems. In this paper, we looked at how the subtransac-
tions of an advanced transaction can be scheduled, such that the dependencies are not
violated.

The constraints between the subtransactions of an advanced transaction must be
maintained during recovery as well. In future, we would like to investigate how the
dependencies impact the recovery algorithms and design a mechanism that is suitable
for the recovery of advanced transactions. In future, we also plan to design mechanisms
that will allow advanced transactions to recover from malicious attacks.

Acknowledgment

This work is partially supported by National Science Foundation under grant number
IIS 0242258.

References

1. Gustavo Alonso, Divyakant Agrawal, Amr El Abbadi, Mohan Kamath, Roger G., and C. Mo-
han. Advanced Transaction Models in Workflow Contexts. In In Proceedings of ICDE 1996,
pages 574–581, 1996.

2. M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth. Using Flexible Transactions to Support
Multi-System Telecommunication Applications. In Proceeding of the 18th International
Conference on Very Large DataBases, August 1992.

3. V. Atluri, W-K. Huang, and E. Bertino. An Execution Model for Multilevel Secure Work-
flows. In 11th IFIP Working Conference on Database Security and Database Security, XI:
Status and Prospects, pages 151–165, August 1997.

4. Paul C. Attie, Munindar P. Singh, Amit P. Sheth, and Marek Rusinkiewicz. Specifying and
enforcing intertask dependencies. In 19th International Conference on Very Large Data
Bases, August 24-27, 1993, Dublin, Ireland, Proceedings, pages 134–145. Morgan Kauf-
mann, 1993.

5. Naser S. Barghouti and Gail E. Kaiser. Concurrency control in advanced database applica-
tions. ACM Computing Surveys, 23(3):269–317, September 1991.

6. A. Biliris, S. Dar, N. Gehani, H.V. Jagadish, and K. Ramamritham. ASSET: A System for
Supporting Extended Transactions. In Proceedings of ACM SIGMOD International Cofer-
ence on Management of Data, May 1994.

138 T. Xin, Y. Zhu, and I. Ray

7. P. K. Chrysanthis and K. Ramamritham. Synthesis of Extended Transaction Models Using
ACTA. ACM Transactions on Database Systems, 19:450–491, September 1994.

8. Panayiotis K. Chrysanthis. ACTA, A Framework for Modeling and Reasoning about Ex-
tended Transactions Models. Ph.D. Thesis, September 1991.

9. U. Dayal, M. Hsu, and R.Ladin. Organizing Long-Running Activities with Triggers and
Transactions. In Proceeding of the 17th International Conference on Very Large DataBases,
September 1991.

10. D. Hollingsworth. Workflow Reference Model. Technical report, Workflow Management
Coalition, Brussels, Belgium, 1994.

11. L. V. Mancini, I. Ray, S. Jajodia, and E. Bertino. Flexible transaction dependencies in
database systems. Distributed and Parallel Databases, 8:399–446, 2000.

12. J. E. Moss. Nested Transactions: an approach to reliable distributed computing. PhD Thesis
260, MIT, Cambridge, MA, April 1981.

13. OMG. Additional Structuring Mechanisms for the OTS Specification. OMG, Document
ORBOS, 2000-04-02, Sept. 2000.

14. M. Prochazka. Extending transactions in enterprise javabeans. Tech. Report No. 2000/3,
Dep. of SW Engineering, Charles University, Prague, January 2000.

15. Indrakshi Ray, Tai Xin, and Yajie Zhu. Ensuring Task Dependencies During Workflow Re-
covery. In Proceedings of the Fifteenth International Conference on Database and Expert
Systems, Aug. 2004.

16. A. Reuter. Contracts: A means for extending control beyond transaction boundaries. In 3rd
International Workshop on High Performance Transaction Systems, Sept. 1989.

17. Marek Rusinkiewicz and Amit P. Sheth. Specification and execution of transactional work-
flows. In Modern Database Systems 1995, pages 592–620, 1995.

18. Munindar P. Singh. Semantical considerations on workflows: An algebra for intertask de-
pendencies. In Proceedings of the Fifth International Workshop on Database Programming
Languages, Electronic Workshops in Computing. Springer, 1995.

19. Helmut Wuchter and Andreas Reuter. The ConTract Model. In Database Transaction Models
for Advanced Applications, A. K. Elmagarmid Ed., Morgan Kaufmann Publishers, pages
219–263, 1992.

Privacy-Preserving Decision Trees

over Vertically Partitioned Data�

Jaideep Vaidya1 and Chris Clifton2

1 MSIS Department, Rutgers University, Newark, NJ 07102
jsvaidya@rbs.rutgers.edu

http://cimic.rutgers.edu/~jsvaidya
2 Department of Computer Science, Purdue University,

West Lafayette, IN 47907
clifton@cs.purdue.edu

http://www.cs.purdue.edu/people/clifton

Abstract. Privacy and security concerns can prevent sharing of data,
derailing data mining projects. Distributed knowledge discovery, if done
correctly, can alleviate this problem. In this paper, we tackle the problem
of classification. We introduce a generalized privacy preserving variant
of the ID3 algorithm for vertically partitioned data distributed over two
or more parties. Along with the algorithm, we give a complete proof of
security that gives a tight bound on the information revealed.

1 Introduction

There has been growing interest in privacy-preserving data mining since the sem-
inal papers in 2000 [1,2]. Classification is one of the most ubiquitous data mining
problems found in real life. Decision tree classification is one of the best known
solution approaches. ID3, first proposed by Quinlan[3] is a particularly elegant
and intuitive solution. This paper presents an algorithm for privately building
an ID3 decision tree. While this has been done for horizontally partitioned data
[4], we present an algorithm for vertically partitioned data: a portion of each
instance is present at each site, but no site contains complete information for
any instance. This problem has been addressed[5], but the solution is limited
to the case where both parties have the class attribute. In addition, both the
previous methods are limited to two parties. The method presented here works
for any number of parties, and the class attribute (or other attributes) need be
known only to one party. Our method is trivially extendible to the simplified
case where all parties know the class attribute.

There has been other work in privacy-preserving data mining. One approach
is to add “noise” to the data before the data mining process, and using tech-
niques that mitigate the impact of the noise from the data mining results[1,6,7,8].
However, recently there has been debate about the security properties of such
algorithms [9].
� This material is based upon work supported by the National Science Foundation

under Grant No. 0312357.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 139–152, 2005.

c© IFIP International Federation for Information Processing 2005

140 J. Vaidya and C. Clifton

Other work follows the secure multiparty computation approach found in
cryptography, achieving “perfect” privacy, i.e., nothing is learned that could not
be deduced from one’s own data and the results. This includes Lindell’s work
[2], as well as work on association rule mining [10,11,12,13], clustering [14,15],
and some work on classification [16,5]. While some of this work makes trade-offs
between efficiency and information disclosure, all maintain provable privacy of
individual information and bounds on disclosure, and disclosure is limited to
information that is unlikely to be of practical concern.

Privacy preservation can mean many things: Protecting specific individual
values, breaking the link between values and the individual they apply to, pro-
tecting source, etc. This paper aims for a high standard of privacy: Not only
individual entities are protected, but to the extent feasible even the schema (at-
tributes and possible attribute values) are protected from disclosure. Our goal is
for each site to disclose as little as possible, while still constructing a valid tree
in a time suitable for practical application.

To this end, all that is revealed is the basic structure of the tree (e.g., the
number of branches at each node, corresponding to the number of distinct values
for an attribute; the depth of each subtree) and which site is responsible for the
decision made at each node (i.e., which site possesses the attribute used to make
the decision, but not what attribute is used, or even what attributes the site
possesses.) This allows for efficient use of the tree to classify an object; otherwise
using the tree would require a complex cryptographic protocol involving every
party at every possible level to evaluate the class of an object without revealing
who holds the attribute used at that level. Each site also learns the count of
classes at some interior nodes (although only the class site knows the mapping
to actual classes – other sites don’t even know if a class with 30% distribution at
one node is the same class as one with a 60% distribution at a lower node, except
to the extent that this can be deduced from the tree and it’s own attributes.)
At the leaf nodes, this is desirable: one often wants probability estimates, not
simply a predicted class. As knowing the count of transactions at each leaf node
would enable computing distributions throughout the tree anyway, this really
doesn’t disclose much new information.

We now go directly into the algorithm for creating a tree. In Section 3 we
describe how the tree (distributed between sites) is used to classify an instance,
even though the attribute values of the instance to be classified are also private
and distributed between sites. Section 4 formalizes what it means to be secure,
and gives a proof that the algorithms presented are secure. Section 5 presents
the computation and communication complexity of the algorithm. Section 6
discusses future work and concludes the paper.

2 Privacy-Preserving ID3: Creating the Tree

The basic ID3 algorithm[3] is given in Algorithm 1. We will introduce our dis-
tributed privacy-preserving version by running through this algorithm, describ-
ing pieces as appropriate. We then give the full algorithm in Algorithm 7. Note

Privacy-Preserving Decision Trees over Vertically Partitioned Data 141

Algorithm 1. ID3(R,C,T) tree learning algorithm
Require: R, the set of attributes
Require: C, the class attribute
Require: T , the set of transactions
1: if R is empty then
2: return a leaf node, with class value assigned to most transactions in T
3: else if all transactions in T have the same class c then
4: return a leaf node with the class c
5: else
6: Determine the attribute A that best classifies the transactions in T
7: Let a1, . . . , am be the values of attribute A. Partition T into the m partitions

T (a1), . . . , T (am) such that every transaction in T (ai) has the attribute value ai.
8: Return a tree whose root is labeled A (this is the test attribute) and has m

edges labeled a1, . . . , am such that for every i, the edge ai goes to the tree
ID3(R − A, C, T (ai)).

9: end if

that for our distributed algorithm, no site knows R, instead each site i knows its
own attributes Ri. Only one site knows the class attribute C. In vertical parti-
tioning, every site knows a projection of the transactions ΠRiT . Each projection
includes a transaction identifier that serves as a join key.

We first check if R is empty. This is based on Secure Sum[17,10], and is
given in Algorithm 2. Basically, the first party adds a random r to its count
of remaining items. This is passed to all sites, each adding its count. The last

Algorithm 2. IsREmpty(): Are any attributes left?
Require: k sites Pi (the site calling the function is P1; any other site can be Pk),

each with a flag ARi = 0 if no remaining attributes, ARi = 1 if Pi has attributes
remaining.

Require: a commutative encryption function E with domain size m > k.
1: P1 chooses a random integer r uniformly from 0 . . . m − 1.
2: P1 sends r + AR1 to P2

3: for i = 2..k − 1 do
4: Site Pi receives r′ from Pi−1.
5: Pi sends r′ + ARi mod m to Pi+1

6: end for
7: Site Pk receives r′ from Pk−1.
8: r′ ← r′ + ARk mod m
9: P1 and Pk create secure keyed commutative hash keys E1 and Ek

10: P1 sends E1(r) to Pk

11: Pk receives E1(r) and sends Ek(E1(r)) and Ek(r′) to P1

12: P1 returns E1(Ek(r′)) = Ek(E1(r)) {⇔ r′ = r ⇔ ∑k
j=1 ARi = 0 ⇔ 0 attributes

remain }

142 J. Vaidya and C. Clifton

site and first then use commutative encryption to compare the final value to r
(without revealing either) – if they are the same, R is empty.

Line 2 requires determining the majority class for a node, when only one
site knows the class. This is accomplished with a protocol for securely determin-
ing the cardinality of set intersection. Many protocols for doing so are known
[13,18,19]. We assume that one of these protocols is used. Each site determines
which of its transactions might reach that node of the tree. The intersection of
these sets with the transactions in a particular class gives the number of trans-
actions that reach that point in the tree, enabling the class site to determine the
distribution and majority class; it returns a (leaf) node identifier that allows it
to map back to this distribution.

To formalize this, we introduce the notion of a Constraint Set. As the tree
is being built, each party i keeps track of the values of its attributes used to
reach that point in the tree in a filter Constraintsi. Initially, this is all don’t
care values (‘?’). However, when an attribute Aij at site i is used (lines 6-7 of
id3), entry j in Constraintsi is set to the appropriate value before recursing to
build the subtree. An example is given in Figure 1. The site has 6 attributes
A1, . . . , A6. The constraint tuple shows that the only transactions valid for this
transaction are those with a value of 5 for A1, high for A2, and warm for A5.
The other attributes have a value of ? since they do not factor into the selection
of an instance. Formally, we define the following functions:

?warm??high5

A 6A 5A 4A 3A 2A 1

Fig. 1. A constraint tuple for a single site

Constraints.set(attr, val): Set the value of attribute attr to val in the local
constraints set. The special value ‘?’ signifies a don’t-care condition.

satisfies: x satisfies Constraintsi if and only if the attribute values of the in-
stance are compatible with the constraint tuple: ∀i, (Ai(x) = v ⇔
Constraints(Ai) = v) ∨ Constraints(Ai) = ‘?’.

FormTransSet: Function FormTransSet(Constraints): Return local transac-
tions meeting constraints
1: Y = ∅
2: for all transaction id i ∈ T do
3: if ti satisfies Constraints then
4: Y ← Y ∪ {i}
5: end if
6: end for
7: return Y

Privacy-Preserving Decision Trees over Vertically Partitioned Data 143

Now, we determine the majority class (and class distributions) by computing for
each class

⋂
i=1..k Yi, where Yk includes a constraint on the class value. This is

given in Algorithm 3.

Algorithm 3. DistributionCounts(): Compute class distribution given current
constraints
Require: k sites Pi with local constraint sets Constraintsi

1: for all sites Pi except Pk do
2: at Pi: Yi ← FormTransSet(Constraintsi)
3: end for
4: for each class c1, . . . , cp do
5: at Pk: Constraintsk.set(C, ci) {To include the class restriction}
6: at Pk: Yk ← FormTransSet(Constraintsk)
7: cnti ← |Y1∩ . . .∩Yk| using the cardinality of set intersection protocol ([13,18,19])
8: end for
9: return (cnt1, . . . , cntp)

The next issue is determining if all transactions have the same class (Algo-
rithm 1 line 3). If all are not the same class, as little information as possible
should be disclosed. For efficiency, we do allow the class site to learn the count
of classes even if this is an interior node; since it could compute this from the
counts at the leaves of the subtree below the node, this discloses no additional
information. Algorithm 4 gives the details, it uses constraint sets and secure
cardinality of set intersection in basically the manner described above for com-
puting the majority class at a leaf node. If all transactions are in the same class,

Algorithm 4. IsSameClass(): Are all transactions of the same class?
Require: k sites Pi with local constraint sets Constraintsi

1: (cnt1, . . . , cntp) ← DistributionCounts()
2: if ∃j s.t. cntj �= 0 ∧ ∀i �= j, cnti = 0 {only one of the counts is non-zero} then
3: Build a leaf node with distribution (cnt1, . . . , cntp) {Actually, 100% class j}
4: return ID of the constructed node
5: else
6: return false
7: end if

we construct a leaf node. The class site maintains a mapping from the ID of that
node to the resulting class distribution.

The next problem is to compute the best attribute: that with the maximum
information gain. The information gain when an attribute A is used to partition
the data set S is:

Gain(S, A) = Entropy(S)−
∑
v∈A

(|Sv|
|S| ∗ Entropy(Sv)

)

144 J. Vaidya and C. Clifton

Algorithm 5. AttribMaxInfoGain(): return the site with the attribute having
maximum information gain
1: for all sites Pi do
2: bestgaini ← −1
3: for each attribute Aij at site Pi do
4: gain ← ComputeInfoGain(Aij)
5: if gain > bestgaini then
6: bestgaini ← gain
7: BestAtti ← Aij

8: end if
9: end for

10: end for
11: return argmaxj bestgainj {Could implement using a set of secure comparisons}

Algorithm 6. ComputeInfoGain(A): Compute the Information Gain for at-
tribute A
1: S ← DistributionCounts() {Total number of transactions at this node}
2: InfoGain ← Entropy(S)
3: for each attribute value ai do
4: Constraints.set(A,ai) {Update local constraints tuple}
5: Sai ← DistributionCounts()
6: Infogain ← Infogain − Entropy(Sai) ∗ |Sai |/|S| {|S| is

∑p
i=1 cnti}

7: end for
8: Constraints.set(A, ‘?’) {Update local constraints tuple}
9: return InfoGain

The entropy of a dataset S is given by:

Entropy(S) = −
p∑

j=1

Nj

N
log

Nj

N

where Nj is the number of transactions having class cj in S and N is the number
of transactions in S. As we see, this again becomes a problem of counting trans-
actions: the number of transactions that reach the node N , the number in each
class Nj , and the same two after partitioning with each possible attribute value
v ∈ A. Algorithm 6 details the process of computing these counts; Algorithm 5
captures the overall process.

Once the best attribute has been determined, execution proceeds at that site.
It creates an interior node for the split, then recurses.

3 Using the Tree

Instance classification proceeds as in the original ID3 algorithm, except that
the nodes (and attributes of the database) are distributed. The site requesting
classification (e.g., a master site) knows the root node of the classification tree.

Privacy-Preserving Decision Trees over Vertically Partitioned Data 145

Algorithm 7. PPID3(): Privacy-Preserving Distributed ID3
Require: Transaction set T partitioned between sites P1, . . . , Pk

Require: p class values, c1, . . . , cp, with Pk holding the class attribute
1: if IsREmpty() then
2: Continue at site Pk up to the return:
3: (cnt1, . . . , cntp) ← DistributionCounts()
4: Build a leaf node with distribution (cnt1, . . . , cntp)
5: {class ← argmaxi=1..p cnti}
6: return ID of the constructed node
7: else if clsNode ← (at Pk :) IsSameClass() then
8: return leaf nodeId clsNode
9: else

10: BestSite ← AttribMaxInfoGain()
11: Continue execution at BestSite:
12: Create Interior Node Nd with attribute Nd.A ← BestAttBestSite {This is best

locally (from AttribMaxInfoGain()), and globally from line 8}
13: for each attribute value ai ∈ Nd.A do
14: Constraints.set(Nd.A, ai) {Update local constraints tuple}
15: nodeId ← PPID3() {Recurse}
16: Nd.ai ← nodeId {Add appropriate branch to interior node}
17: end for
18: Constraints.set(A, ‘?’) {Returning to parent: should no longer filter transactions

with A}
19: Store Nd locally keyed by Node ID
20: return Node ID of interior node Nd {Execution continues at site owning parent

node}
21: end if

The basic idea is that control passes from site to site, based on the decision
made. Each site knows the transaction’s attribute values for the nodes at its site
(and can thus evaluate the branch), but knows nothing of the other attribute
values. The complete algorithm is given in Algorithm 8, and is reasonably self-
explanatory if viewed in conjunction with Algorithm 7.

We now give a demonstration of how instance classification would actually
happen in this instance for the tree built with the UCI “weather” dataset[20].
Assume two sites: The weather observatory collects information about relative
humidity and wind, a second collects temperature and cloud cover forecast as
well as the class (“Yes” or “No”). Suppose we wish to know if it is a good day
to play tennis. Neither sites wants to share their forecasts, but are willing to
collaborate to offer a “good tennis day” service. The classification tree is shown
in Figure 2, with S1 and S2 corresponding to the site having information on that
node. The private information for each site is shown within italics. If today is
sunny with normal humidity, high temperature, and weak wind; classification
would proceed as follows: We know that Site 1 has the root node (we don’t need
to know anything else). Site 1 retrieves the attribute for from S1L1: Outlook.
Since the classifying attribute is outlook, and Site 1 knows the forecast is sunny,

146 J. Vaidya and C. Clifton

No S2L8:YesS2L4: Yes

S2L2 Humidity

S2L7:

S1L1:Outlook

S2L6:Wind

Val1:Sunny Val2:Overcast Val3:Rain

S1L5:Yes

Val1:High Val2: Normal Val1:Strong Val2:Weak

S2L3:No

Fig. 2. The privacy preserving ID3 decision tree on the weather dataset (Mapping from

identifiers to attributes and values is known only at the site holding attributes)

the token S2L2 is retrieved. This indicates that the next step is at Site 2. Site
2 is called with the token S2L2, and retrieves the attribute for S2L2: Humidity.
The humidity forecast is normal, so the token S2L4 is retrieved. Since this token
is also present at Site 2, it retrieves the class value for nodeId S2L4 and returns
it: we receive our answer of “Yes”.

4 Security Discussion

We evaluate the security of our algorithm under the basic framework of Secure
Multiparty Computation [21]. As such, we assume the security of the underlying

Algorithm 8. classifyInstance(instId, nodeId): returns the class/distribution
for the instance represented by instId
1: {The start site and ID of the root node is known}
2: if nodeId is a LeafNode then
3: return class/distribution saved in nodeId
4: else {nodeId is an interior node}
5: Nd ← local node with id nodeId
6: value ← the value of attribute Nd.A for transaction instId
7: childId ← Nd.value
8: return childId.Site.classifyInstance(instId, childId) {Actually tail recursion:

this site need never learn the class}
9: end if

Privacy-Preserving Decision Trees over Vertically Partitioned Data 147

set intersection algorithm, and then prove the security of our privacy-preserving
ID3 algorithm.

The proof of security is given assuming semi-honest adversaries. A semi-
honest party follows the rules of the protocol using its correct input, but is
free to later use what it sees during execution of the protocol to compromise
security. While this protocol provides somewhat strong guarantees in the absence
of collusion, due to space constraints we will only prove security for the semi-
honest case.

Privacy by Simulation. The basic proof style is to show that the view of each
party during the execution of the protocol can be effectively simulated given the
input and the output of that party. This is sufficient to prove that the protocol is
secure [21]. Thus, in all of the following proofs of security, we show that we can
simulate each message received. Once the received messages are simulated, the
algorithm itself can be used to simulate the rest of the view. This does not quite
guarantee that private information is protected. Whatever information can be
deduced from the final result is not kept private. However, nothing beyond the
results is learned.

4.1 Secure ID3

We first analyze the security of the constituent algorithms, then the security of
the complete algorithm. Although it may seem that some of the constituent al-
gorithms leak a large quantity of information, in the context of the full algorithm
the leaked information can be simulated by knowing the distribution counts at
each node, so overall privacy is maintained.

Lemma 1. Algorithm 2 reveals nothing to any site except whether the total num-
ber of attributes left is 0.

Proof. The algorithm has two basic phases: The sum (through Pk), and the
comparison between Pk and P1. First, the sum: simulating the messages received
at lines 2 and 7. The value received by Pi at these steps is r+

∑i−1
j=1 ARj mod m.

We will simulate by choosing a random integer uniformly from 0 . . .m− 1 for r′.
We now show that the probability that the simulated r′ = x is the same as the
probability that the messages received in the view = x.

Pr{V IEWi = x} = Pr{x = r +
i−1∑
j=1

ARj mod m}

= Pr{r = x−
i−1∑
j=1

ARj mod m}

=
1
m

= Pr{Simulatorir
′ = x}

148 J. Vaidya and C. Clifton

The key to the derivation is that arithmetic is mod m. r and r′ are chosen
uniformly from 0 . . .m− 1, so the probability of hitting any particular value in
that range is 1/m.

Simulating the message received by Pk at line 11 is simple: Secure encryption
gives messages where the distribution is independent of the key/message, so a
selection from this distribution of possible encrypted messages simulates what
Pk receives.

The messages received by P1 are more difficult. The problem is that if r = r′,
Ek(r′) must be such that when encrypted with E1 it is equal to Ek(E1(r)).
For this, the simulator requires the ability to decrypt. The simulator computes
m = D1(Ek(E1(r)) = Ek(r). If r = r′, this is the message used to simulate
Ek(r′). If not, a random message �= m is chosen, as in the simulator for Pk. ��
Lemma 2. Algorithm 3 reveals only the count of instances corresponding to all
combinations of constraint sets for each class.

Proof. The only communication occurs at line 7 which consists of a call to the
Cardinality of Set Intersection algorithm. This reveals only the size of the inter-
section set for all subsets of Yi, which are the counts revealed. Algorithm 3 is
secure except for revealing this information. ��
Lemma 3. Algorithm 4 finds if all transactions have the same class, revealing
only the class distributions described in Lemma 2.

Proof. Line 1 is an invocation of Algorithm 3; Everything else is computed lo-
cally, and can be simulated from the knowledge from Lemma 2. ��
Lemma 4. Algorithm 6 reveals nothing except the counts S, Sai , and the con-
stituent subcounts described in Lemma 2 for each attribute value ai and class j,
assuming the number of distinct class values is known.

Proof. The only messages received are at lines 1 and 5, invocations of the
DistributionCounts() function. Since the underlying function is secure, Algo-
rithm 6 is secure. ��
Lemma 5. Algorithm 5 finds the site with the attribute having the maximum
information gain while revealing only the best information gain at each site and
the information discussed in Lemma 4.

Proof. Communication occurs at lines 4 and 11. Line 4 consists of an invocation
of Algorithm 6. Line 11 is implemented by letting the site compare all the values;
revealing the value of the best information gain at each site. Assuming this is
revealed (part of the input to the simulator), it is trivially simulated. ��
Further reduction of the information revealed is possible by using a secure pro-
tocol for finding the maximum among a set of numbers. This would reveal only
the site having the attribute with the maximum information gain and nothing
else.

Privacy-Preserving Decision Trees over Vertically Partitioned Data 149

Theorem 1. Algorithm 7 computes the decision tree while revealing only:

– The distribution subcounts of each node, as described in Lemma 2. (The full
counts, and some of the subcounts, can be computed knowing the distribution
counts at the leaves.)

– The best information gain from each site at each interior node (as discussed
above, this leak can be reduced.)

Proof. Knowing the final tree, the simulator at each site can uniquely determine
the sequence of node computations at a site and list the function calls occurring
due to this. Given this function call list, if the messages received in each function
call can be simulated, the entire algorithm can be proven to be secure.

Line 1 is an invocation of Algorithm 2. The result is simulated as either true
or false depending on whether the node in question is a leaf node in the final
tree or not.

Line 3 is an invocation of Algorithm 3. The actual counts are given by the
counts in the leaf node, which are known to the site Pk that invoked the algo-
rithm. The subcounts revealed by Algorithm 3 are presumed known.

Line 7 is an invocation of Algorithm 4. If the node in question is not a leaf
node in the final tree, the result is false. Otherwise the result is the nodeId of
the leaf node.

Line 10 consists of an invocation of Algorithm 5. The result is actually equal
to the Site which will own the child node. This information is known from the
tree structure. The subcounts and information gain values revealed during this
step are presumed known.

Line 15 is a recursive invocation that returns a node identifier; a part of the
tree structure.

Since all of the algorithms mentioned above have been proven secure, apply-
ing the composition theorem, Algorithm 7 is secure. The repeated invocations of
the cardinality of set intersection protocol are valid because in each invocation,
a new set of keys are chosen. This ensures that messages cannot be correlated
across calls. ��
Theorem 2. Algorithm 8 reveals nothing other than the leaf node classifying
the instance.

Proof. All the computations are local. The only information passed between var-
ious sites are node identifiers. This list of node identifiers can be easily simulated
from the classification tree once the final leaf is known. ��

5 Computation and Communication Analysis

The communication/computation analysis depends on the number of transac-
tions, number of parties, number of attributes, number of attribute values per
attribute, number of classes and complexity of the tree. Assume that there are:
n transactions, k parties, c classes, r attributes, p values per attribute (on aver-
age), and q nodes in final classification tree. We now give a rough analysis of the

150 J. Vaidya and C. Clifton

cost involved in terms of the number of set intersections required for building
the tree (erring on the conservative side).

At each node in the tree the best classifying attribute needs to be deter-
mined. To do this, the entropy of the node needs to be computed as well as the
information gain per attribute. Computing the entropy of the node requires c set
intersections (1 per class). Computing the gain of one attribute requires cp set
intersections (1 per attribute value and class). Thus, finding the best attribute
requires cpr set intersections. Note that this analysis is rough and assumes that
the number of attributes available at each node remains constant. In actuality,
this number linearly decreases with the depth of the node in the tree (this has lit-
tle effect on our analysis). In total, every node requires c(1+pr) set intersections.
Therefore, the total tree requires cq(1 + pr) set intersections.

The intersection protocol of [13] requires that the set of each party be en-
crypted by every other party. Since there are k parties, k2 encryptions are re-
quired and k2 sets are transferred. Since each set can have at most n transactions,
the upper bound on computation is O(nk2) and the upper bound on communi-
cation cost is also O(nk2 ∗ bitsize) bits.

Therefore, in total the entire classification process will require O(cqnk2(1 +
pr)) encryptions and cqnk2(1 + pr) ∗ bitsize bits communication. Note that the
encryption process can be completely parallelized reducing the required time by
an order of k.

Once the tree is built, classifying an instance requires no extra overhead, and
is comparable to the original ID3 algorithm.

6 Conclusions

It is possible to extend the protocols developed such that the class of each
instance is learned only by the party holding the class attribute (nothing is
learned by the remaining parties). In some cases, this might be preferable.

The major contributions of this paper are the following:

– It proposes a new protocol to construct a decision tree on vertically parti-
tioned data with an arbitrary number of parties where only one party has
the class attribute (The method is trivially extendible to the case where all
parties have the class attribute, and in fact causes a significant increase in
the efficiency of the protocol).

– The paper presents a general framework in which distributed classification
would work and how such a system should be constructed.

As part of future work, we are actually implementing the entire protocol
in JAVA, which should form the first working code in the area of PPDM. Our
work provides an upper bound on the complexity of building privacy preserving
decision trees. Significant work is required to propose more efficient solutions
and/or to find a tight upper bound on the complexity. We leave this for the
future.

Privacy-Preserving Decision Trees over Vertically Partitioned Data 151

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of the
2000 ACM SIGMOD Conference on Management of Data, Dallas, TX, ACM (2000)
439–450

2. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Advances in Cryptology
– CRYPTO 2000, Springer-Verlag (2000) 36–54

3. Quinlan, J.R.: Induction of decision trees. Machine Learning 1 (1986) 81–106
4. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15

(2002) 177–206
5. Du, W., Zhan, Z.: Building decision tree classifier on private data. In Clifton, C.,

Estivill-Castro, V., eds.: IEEE International Conference on Data Mining Work-
shop on Privacy, Security, and Data Mining. Volume 14., Maebashi City, Japan,
Australian Computer Society (2002) 1–8

6. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy pre-
serving data mining algorithms. In: Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, Santa Barbara,
California, USA, ACM (2001) 247–255

7. Evfimievski, A., Srikant, R., Agrawal, R., Gehrke, J.: Privacy preserving mining
of association rules. In: The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002) 217–
228

8. Rizvi, S.J., Haritsa, J.R.: Maintaining data privacy in association rule mining.
In: Proceedings of 28th International Conference on Very Large Data Bases, Hong
Kong, VLDB (2002) 682–693

9. Kargupta, H., Datta, S., Wang, Q., Sivakumar, K.: On the privacy preserving
properties of random data perturbation techniques. In: Proceedings of the Third
IEEE International Conference on Data Mining (ICDM’03), Melbourne, Florida
(2003)

10. Kantarcıoǧlu, M., Clifton, C.: Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data
Engineering 16 (2004) 1026–1037

11. Rozenberg, B., Gudes, E.: Privacy preserving frequent item-set mining in vertically
partitioned databases. In: Proceedings of the Seventeenth Annual IFIP WG 11.3
Working Conference on Data and Applications Security, Estes Park, Colorado,
U.S.A. (2003)

12. Vaidya, J., Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. In: The Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada (2002) 639–
644

13. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to
association rule mining. Journal of Computer Security (to appear)

14. Lin, X., Clifton, C., Zhu, M.: Privacy preserving clustering with distributed EM
mixture modeling. Knowledge and Information Systems (to appear 2004)

15. Vaidya, J., Clifton, C.: Privacy-preserving k-means clustering over vertically parti-
tioned data. In: The Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC (2003) 206–215

16. Vaidya, J., Clifton, C.: Privacy preserving näıve bayes classifier for vertically parti-
tioned data. In: 2004 SIAM International Conference on Data Mining, Lake Buena
Vista, Florida (2004) 522–526

152 J. Vaidya and C. Clifton

17. Schneier, B.: Applied Cryptography. 2nd edn. John Wiley & Sons (1995)
18. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-

section. In: Eurocrypt 2004, Interlaken, Switzerland, International Association for
Cryptologic Research (IACR) (2004)

19. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, San Diego, California (2003)

20. Blake, C., Merz, C.: UCI repository of machine learning databases (1998)
21. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptog-

raphy. Volume 2. Cambridge University Press (2004)

Privacy-Preserving Collaborative Association

Rule Mining

Justin Zhan, Stan Matwin, and LiWu Chang

1 School of Information Technology & Engineering,
University of Ottawa, Canada

2 School of Information Technology & Engineering,
University of Ottawa, Canada

Institute for Computer Science,
Polish Academy of Sciences, Warsaw, Poland

{zhizhan, stan}@site.uottawa.ca
3 Center for High Assurance Computer Systems,

Naval Research Laboratory, USA
lchang@itd.nrl.navy.mil

Abstract. This paper introduces a new approach to a problem of data
sharing among multiple parties, without disclosing the data between the
parties. Our focus is data sharing among parties involved in a data mining
task. We study how to share private or confidential data in the follow-
ing scenario: multiple parties, each having a private data set, want to
collaboratively conduct association rule mining without disclosing their
private data to each other or any other parties. To tackle this demanding
problem, we develop a secure protocol for multiple parties to conduct the
desired computation. The solution is distributed, i.e., there is no central,
trusted party having access to all the data. Instead, we define a protocol
using homomorphic encryption techniques to exchange the data while
keeping it private.

Keywords: Privacy, security, association rule mining.

1 Introduction

In this paper, we address the following problem: multiple parties are cooperating
on a data-rich task. Each of the parties owns data pertinent to the aspect of the
task addressed by this party. More specifically, the data consists of instances, all
parties have data about all the instances involved, but each party has its own
view of the instances - each party works with its own attribute set. The overall
performance, or even solvability, of this task depends on the ability of performing
data mining using all the attributes of all the parties. The parties, however,
may be unwilling to release their attribute to other parties, due to privacy or
confidentiality of the data. How can we structure information sharing between
the parties so that the data will be shared for the purpose of data mining,
while at the same time specific attribute values will be kept confidential by the

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 153–165, 2005.

c© IFIP International Federation for Information Processing 2005

154 J. Zhan, S. Matwin, and L. Chang

parties to whom they belong? This is the task addressed in this paper. In the
privacy-oriented data mining this task is known as data mining with vertically
partitioned data (also known as heterogeneous collaboration [6].) Examples of
such tasks abound in business, homeland security, coalition building, medical
research, etc.

The following scenarios illustrate situations in which this type of collabora-
tion is interesting: (1) Multiple competing supermarkets, each having an extra
large set of data records of its customers’ buying behaviors, want to conduct
data mining on their joint data set for mutual benefit. Since these companies
are competitors in the market, they do not want to disclose too much about their
customers’ information to each other, but they know the results obtained from
this collaboration could bring them an advantage over other competitors. (2)
Success of homeland security aiming to counter terrorism depends on combina-
tion of strength across different mission areas, effective international collabora-
tion and information sharing to support coalition in which different organizations
and nations must share some, but not all, information. Information privacy thus
becomes extremely important: all the parties of the collaboration promise to
provide their private data to the collaboration, but neither of them wants each
other or any other party to learn much about their private data. (3) Vidya and
Clifton [6] provide the following convincing example in the area of automotive
safety: Ford Explorers with Firestone tires from a specific factory had tread sep-
aration problems in certain situations. Early identification of the real problem
could have avoided at least some of the 800 injuries that occurred in accidents
attributed to the faulty tires. Since the tires did not have problems on other
vehicles, and other tires on Ford Explorers did not pose a problem, neither side
felt responsible. Both manufacturers had their own data, but only early gener-
ation of association rules based on all of the data may have enabled Ford and
Firestone to collaborate in resolving this safety problem.

Without privacy concerns, all parties can send their data to a trusted central
place to conduct the mining. However, in situations with privacy concerns, the
parties may not trust anyone. We call this type of problem the Privacy-preserving
Collaborative Data Mining problem. Homogeneous collaboration means that each
party has the same sets of attributes [7]. As stated above, in this paper we are
interested in heterogeneous collaboration where each party has different sets of
attributes [6].

Data mining includes a number of different tasks, such as association rule
mining, classification, and clustering. This paper studies the association rule
mining problem. The goal of association rule mining is to discover meaningful
association rules among the attributes of a large quantity of data. For example,
let us consider the database of a medical study, with each attribute represent-
ing a characteristic of a patient. A discovered association rule pattern could be
“70% of patients who suffer from medical condition C have a gene G”. This
information can be useful for the development of a diagnostic test, for pharma-
ceutical research, etc. Based on the existing association rule mining technologies,
we study the Privacy-preserving Collaborative Association Rule Mining problem

Privacy-Preserving Collaborative Association Rule Mining 155

defined as follows: multiple parties want to conduct association rule mining on a
data set that consists of all the parties’ private data, but neither party is willing
to disclose her raw data to each other or any other parties. In this paper, we
develop a protocol, based on homomorphic cryptography, to tackle the problem.

The paper is organized as follows: The related work is discussed in Section 2.
We describe the association rule mining procedure in Section 3. We then present
our proposed secure protocols in Section 4. We give our conclusion in Section 5.

2 Related Work

2.1 Secure Multi-party Computation

A Secure Multi-party Computation (SMC) problem deals with computing any
function on any input, in a distributed network where each participant holds
one of the inputs, while ensuring that no more information is revealed to a
participant in the computation than can be inferred from that participant’s
input and output. The SMC problem literature was introduced by Yao [13].
It has been proved that for any polynomial function, there is a secure multi-
party computation solution [5]. The approach used is as follows: the function F
to be computed is firstly represented as a combinatorial circuit, and then the
parties run a short protocol for every gate in the circuit. Every participant gets
corresponding shares of the input wires and the output wires for every gate. This
approach, though appealing in its generality and simplicity, is highly impractical
for large datasets.

2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data mining, Lindell and Pinkas [8] propose
a solution to privacy-preserving classification problem using oblivious transfer
protocol, a powerful tool developed by secure multi-party computation (SMC)
research. The techniques based on SMC for efficiently dealing with large data
sets have been addressed in [6], where a solution to the association rule mining
problem for the case of two parties was proposed.

Randomization approaches were firstly proposed by Agrawal and Srikant in
[3] to solve privacy-preserving data mining problem. In addition to perturbation,
aggregation of data values [11] provides another alternative to mask the actual
data values. In [1], authors studied the problem of computing the kth-ranked
element. Dwork and Nissim [4] showed how to learn certain types of boolean
functions from statistical databases in terms of a measure of probability differ-
ence with respect to probabilistic implication, where data are perturbed with
noise for the release of statistics. In this paper, we focus on privacy-preserving
among the intra-party computation.

The work most related to ours is [12], where Wright and Yang applied homo-
morphic encryption [10] to the Bayesian networks induction for the case of two
parties. However, the core protocol which is called Scalar Product Protocol can

156 J. Zhan, S. Matwin, and L. Chang

be easily attacked. In their protocol, since Bob knows the encryption key e, when
Alice sends her encrypted vector (e(a1), · · · , e(an)) where ais are Alice’s vector
elements, Bob can easily figure out whether ai is 1 or 0 through the following
attack: Bob computes e(1), and then compares it with e(ai). If e(1) = e(ai),
then ai = 1, otherwise ai = 0. In this paper, we develop a secure two-party
protocol and a secure multi-party protocol based on homomorphic encryption.
Our contribution not only overcomes the attacks which exist in [12], but more
importantly, a general secure protocol involving multiple parties is provided.

3 Mining Association Rules on Private Data

Since its introduction in 1993 [2], the association rule mining has received a great
deal of attention. It is still one of most popular pattern-discovery methods in the
field of knowledge discovery. Briefly, an association rule is an expression X ⇒ Y ,
where X and Y are sets of items. The meaning of such rules is as follows: Given
a database D of records, X ⇒ Y means that whenever a record R contains X
then R also contains Y with certain confidence. The rule confidence is defined
as the percentage of records containing both X and Y with regard to the overall
number of records containing X. The fraction of records R supporting an item
X with respect to database D is called the support of X.

3.1 Problem Definition

We consider the scenario where multiple parties, each having a private data set
(denoted by D1, D2, · · · and Dn respectively), want to collaboratively conduct
association rule mining on the concatenation of their data sets. Because they are
concerned about their data privacy, neither party is willing to disclose its raw
data set to others. Without loss of generality, we make the following assumptions
about the data sets (the assumptions can be achieved by pre-processing the data
sets D1, D2, · · · and Dn, and such a pre-processing does not require one party
to send her data set to other parties): (1) all the data sets contain the same
number of transactions. Let N denote the total number of transactions for each
data set. (2) The identities of the ith (for i ∈ [1, N]) transaction in all the data
sets are the same.

Privacy-Preserving Collaborative Association Rule Mining problem: Party 1 has
a private data set D1, party 2 has a private data set D2, · · · and party n has a
private data set Dn. The data set [D1∪D2∪· · ·∪Dn] forms a database, which is
actually the concatenation of D1, D2, · · · and Dn (by putting D1, D2, · · · and Dn

together so that the concatenation of the ith row in D1, D2, · · · and Dn becomes
the ith row in [D1∪D2∪· · ·∪Dn]). The n parties want to conduct association rule
mining on [D1 ∪ D2 ∪ · · · ∪ Dn] and to find the association rules with support
and confidence being greater than the given thresholds. We say an association
rule (e.g., xi ⇒ yj) has confidence c% in the data set [D1 ∪ D2 ∪ · · · ∪ Dn]
if in [D1 ∪ D2 ∪ · · · ∪ Dn] c% of the records which contain xi also contain yj

Privacy-Preserving Collaborative Association Rule Mining 157

(namely, c% = P (yj | xi)). We say that the association rule has support s% in
[D1 ∪D2 ∪ · · · ∪Dn] if s% of the records in [D1 ∪D2 · · · ∪Dn] contain both xi

and yj (namely, s% = P (xi ∩ yj)). Consequently, in order to learn association
rules, one must compute the candidate itemsets, and then prune those that do
not meet the preset confidence and support thresholds. In order to compute
confidence and support of a given candidate itemset, we must compute, for a
given itemset C, the frequency of attributes (items) belonging to C in the entire
database (i.e., we must count how many attributes in C are present in all records
of the database, and divide the final count by the size of the database which
is N .) Note that association rule mining works on binary data, representing
presence or absence of items in transactions. However, the proposed approach
is not limited to the assumption about the binary character of the data in the
content of association rule mining since non-binary data can be transformed to
binary data via discreterization.

3.2 Association Rule Mining Procedure

The following is the procedure for mining association rules on [D1∪D2 · · ·∪Dn].

1. L1 = large 1-itemsets
2. for (k = 2; Lk−1 �= φ; k++) do begin
3. Ck = apriori-gen(Lk−1)
4. for all candidates c ∈ Ck do begin
5. Compute c.count (c.count divided by the total number of records

is the support of a given item set. We will show how to compute it in Sec-
tion 3.3.)

6. end
7. Lk = {c ∈ Ck|c.count ≥ min-sup}
8. end
9. Return L = ∪kLk

The procedure apriori-gen is described in the following (please also see [2]
for details).

apriori-gen(Lk−1: large (k-1)-itemsets)

1. insert into Ck

2. select p.item1, p.item2, · · ·, p.itemk−1,q.itemk−1

3. from Lk−1 p, Lk−1 q
4. where p.item1 =q.item1, · · · , p.itemk−2 =q.itemk−2, p.itemk−1 <q.itemk−1;

Next, in the prune step, we delete all itemsets c ∈ Ck

such that some (k-1)-subset of c is not in Lk−1:

1. for all itemsets c ∈ Ck do
2. for all (k-1)-subsets s of c do
3. if(s /∈ Lk−1) then
4. delete c from Ck;

158 J. Zhan, S. Matwin, and L. Chang

3.3 How to Compute c.count

In the procedure of association rule mining, the only steps accessing the ac-
tual data values are: (1) the initial step which computes large 1-itemsets, and
(2) the computation of c.count. Other steps, particularly computing candidate
itemsets, use merely attribute names. To compute large 1-itemsets, each party
selects her own attributes that contribute to large 1-itemsets. As only a single
attribute forms a large 1-itemset, there is no computation involving attributes of
other parties. Therefore, no data disclosure across parties is necessary. However,
to compute c.count, a computation accessing attributes belonging to different
parties is necessary. How to conduct this computations across parties without
compromising each party’s data privacy is the challenge we address.

If all the attributes belong to the same party, then c.count, which refers to the
frequency counts for candidates, can be computed by this party. If the attributes
belong to different parties, they then construct vectors for their own attributes
and apply our secure protocols, which will be discussed in Section 4, to obtain
c.count. We use an example to illustrate how to compute c.count among two
parties. Alice and Bob construct vectors Ck1 and Ck2 for their own attributes
respectively. To obtain c.count, they need to compute

∑N
i=1(Ck1[i] ·Ck2[i]) where

N is the total number of values in each vector. For instance, if the vectors are
as depicted in Fig.1, then

∑N
i=1(Ck1[i] · Ck2[i]) =

∑5
i=1(Ck1[i] · Ck2[i]) = 3. We

provide a secure protocol in Section 4 for the two parties to compute this value
without revealing their private data to each other.

1 1

0 1

 1 1

1 1

1 0

Alice Bob

Fig. 1. Raw Data For Alice and Bob

4 Collaborative Association Rule Mining Protocol

How the collaborative parties jointly compute c.count without revealing their
raw data to each other presents a great challenge. In this section, we develop
two secure protocols to compute c.count for the case of two parties as well as
the case of multiple parties, respectively.

4.1 Introducing Homomorphic Encryption

In our secure protocols, we use homomorphic encryption [10] keys to encrypt
the parties’ private data. In particular, we utilize the following characterizer of

Privacy-Preserving Collaborative Association Rule Mining 159

the homomorphic encryption functions: e(a1) × e(a2) = e(a1 + a2) where e is
an encryption function; a1 and a2 are the data to be encrypted. Because of the
property of associativity, e(a1 +a2 + ..+an) can be computed as e(a1)× e(a2)×
· · · × e(an) where e(ai) �= 0. That is

e(a1 + a2 + · · ·+ an) = e(a1)× e(a2)× · · · × e(an) (1)

4.2 Secure Two-Party Protocol

Let us firstly consider the case of two parties (n = 2). Alice has a vector A1

and Bob has a vector A2. Both vectors have N elements. We use A1i to denote
the ith element in vector A1, and A2i to denote the ith element in vector A2.
In order to compute the c.count of an itemset containing A1 and A2, Alice and
Bob need to compute the scalar product between A1 and A2.

Firstly, one of parties is randomly chosen as a key generator. For simplicity,
let’s assume Alice is selected as the key generator. Alice generates an encryption
key (e) and a decryption key (d). She applies the encryption key to the addition
of each value of A1 and Ri ∗ X (e.g., e(A1i + Ri ∗ X)), where Ri is a random
integer and X is an integer which is greater than N. She then sends e(A1i +
Ri ∗ X)s to Bob. Bob computes the multiplication

∏n
j=1[e(A1j + Ri ∗ X) ×

A2j] when A2j = 1 (since when A2j = 0, the result of multiplication doesn’t
contribute to the c.count). He sends the multiplication results to Alice who
computes [d(e(A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗ X)])modX =
(A11 +A12 + · · ·+A1j +(R1 +R2 + · · ·+Rj)∗X)modX and obtains the c.count.
In more detail, Alice and Bob apply the following protocol:

Protocol 1. (Secure Two-Party Protocol)

1. Alice performs the following:
(a) Alice generates a cryptographic key pair (d, e) of a homomorphic encryp-

tion scheme. Let’s use e(.) denote encryption and d(.) denote decryption.
Let X be an integer number which is chosen by Alice and greater than
N (i.e., the number of transactions).

(b) Alice randomly generates a set of integer numbers R1, R2, · · ·, RN and
sends e(A11 + R1 ∗X), e(A12 + R2 ∗X), · · ·, and e(A1N + RN ∗X) to
Bob.

2. Bob performs the following:
(a) Bob computes E1 = e(A11 + R1 ∗X) ∗A21, E2 = e(A12 + R2 ∗X) ∗A22,

· · · and EN = e(A1N + RN ∗ X) ∗ A2N . Since A2i is either 1 or 0,
e(A1i + Ri ∗ X) ∗ A2i is either e(A1i + Ri ∗ X) or 0. Note that R1,
R2, · · ·, and RN are unrelated random numbers.

(b) Bob multiplies all the Eis for those A2is that are not equal to 0. In other
words, Bob computes the multiplication of all non-zero Eis, e.g., E =∏

Ei where Ei �= 0. Without loss of generality, let’s assume only the first
j elements are not equal to 0s. Bob then computes E = E1∗E2∗· · ·∗Ej =
[e(A11+R1∗X)×A21]×[e(A12+R2∗X)×A22]×· · ·×[e(A1j+Rj∗X)×A2j]

160 J. Zhan, S. Matwin, and L. Chang

= [e(A11 + R1 ∗ X) × 1] × [e(A12 + R2 ∗ X) × 1] × · · · × [e(A1j + Rj ∗
X)× 1] = e(A11 + R1 ∗X)× e(A12 + R2 ∗X)× · · · × e(A1j + Rj ∗X) =
e(A11 + A12 + · · ·+ A1j + (R1 + R2 + · · ·+ Rj) ∗X) according to Eq. 1.

(c) Bob sends E to Alice.
3. Alice computes d(E)modX which is equal to c.count.

4.3 Analysis of Two-Party Protocol

Correctness Analysis. Let us assume that both parties follow the protocol.
When Bob receives each encrypted element e(A1i +Ri ∗X), he computes e(A1i +
Ri) ∗ A2i. If A2i = 0, then c.count does not change. Hence, Bob computes
the product of those elements whose A2is are 1s and obtains

∏
e(A1j + Rj) =

e(A11 +A12 + · · ·+A1j +(R1 +R2+ · · ·+Rj)∗X) (note that the first j terms are
used for simplicity in explanation), then sends it to Alice. After Alice decrypts
it, she obtains [d(e(A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗X))]modX
= (A11 + A12 + · · · + A1j + (R1 + R2 + · · · + Rj) ∗X)modX which is equal to
the desired c.count. The reasons are as follows: when A2i = 1 and A1i = 0,
c.count does not change; only if both A1i and A2i are 1s, c.count changes. Since
(A11 + A12 + · · · + A1j) ≤ N < X , (A11 + A12 + · · · + A1j + (R1 + R2 +
· · · + Rj) ∗ X)modX = (A11 + A12 + · · · + A1j). In addition, when A2i = 1,
(A11 + A12 + · · ·+ A1j) gives the total number of times that both A1i and A2i

are 1s. Therefore, c.count is computed correctly.

Complexity Analysis. The bit-wise communication cost of this protocol is
α(N + 1) where α is the number of bits for each encrypted element. The cost
is approximately α times of the optimal cost of a two-party scalar product. The
optimal cost of a scalar product is defined as the cost of conducting the product
of A1 and A2 without privacy constraints, namely one party simply sends its
data in plaintext to the other party.

The computational cost is caused by the following: (1) the generation of a
cryptographic key pair; (2) the total number of N encryptions, e.g., e(A1i+Ri∗X)
where i ∈ [1, N]; (3)at most 3N-1 multiplications; (4) one decryption; (5) one
modulo operation; (6) N additions.

Privacy Analysis. All the information that Bob obtains from Alice is e(A11 +
R1 ∗ X), e(A12 + R2 ∗ X), · · · and e(A1N + RN ∗ X). Bob does not know the
encryption key e, Ris, and X . Assuming the homomorphic encryption is secure,
he cannot know Alice’s original element values. The information that Alice ob-
tains from Bob is

∏
[e(A1i + Ri ∗ X) ∗ A2i] for those is that A2i = 1. After

Alice computes [d(
∏

e(A1i + Ri ∗ X) ∗ A2i)]modX for those is that A2i = 1,
she only obtains c.count, and can’t exactly know Bob’s original element values.
Note that the trouble with binary data presented in [6] does not exist for our
protocol. More importantly, [6] only deals with the case of two parties; however,
our protocol can cope with the case of two parties as well as the case of multiple
parties.

Privacy-Preserving Collaborative Association Rule Mining 161

4.4 Secure Multi-party Protocol

We have discussed our secure protocol for two parties. In this section, we develop
a protocol to deal with the case where more than two parties are involved.
Without loss of generality, assuming Party 1 has a private vector A1, Party 2
has a private vector A2, · · · and Party n has a private vector An. For simplicity,
we use Pi to denote Party i.

In our protocol, P1, P2, · · · and Pn−1 share a cryptographic key pair (d, e) of
a homomorphic encryption scheme and a large integer X which is greater than
N. P1 modifies every element of its private vectors with R1i ∗X , where R1i is a
random integer number, then encypts and sends them to Pn. Like P1, all other
parties send their encrypted values to Pn too. Pn will multiply received values
with her own element, e.g., Ei = e(A1i + R1i ∗ X) ∗ e(A2i + R2i ∗ X) ∗ · · · ∗
e(A(n−1)i + R(n−1)i ∗ X) ∗ Ani. Pn randomly permutes Eis and divides those
non-zero Eis into n-1 parts with each part having approximately equal number
of elements, and sends them to n-1 other parties who compute [d(Ei)]modX =
[d(e(A1i + R1i ∗X) ∗ e(A2i + R2i ∗X) ∗ · · · ∗ e(A(n−1)i + R(n−1)i ∗X))]modX
= (A1i + A2i + · · ·+ A(n−1)i + (R1i + R2i + · · ·+ R(n−1)i) ∗X)modX = (A1i +
A2i + · · ·+A(n−1)i). Suppose P1 gets the above [d(Ei)mod]X . P1 then compares
whether (A1i + A2i + · · ·+A(n−1)i) = n− 1. If it is true, then c.count1 increases
by 1. Consequently, P1 gets c.count1. Similarly, P2 gets c.count2, · · · and Pn−1

gets c.countn−1.
To avoid Pi knowing c.countj, where i �= j, we perform the following steps:

Pn generates another cryptographic key pair (e1, d1) of a homomorphic encryp-
tion scheme and sends the encryption key e1 to P1, P2, · · · and Pn−1 who com-
pute e1(c.count1), e1(c.count2), · · · and e1(c.countn−1) respectively. One of those
n-1 parties (e.g., Pj) is randomly chosen. All other parties Pks where k �= j
send e1(c.countk)s to Pj . Pj multiplies all the encrypted counts and obtains the
encrypted c.count. That is e1(c.count1) ∗ e1(c.count2) ∗ · · · ∗ e1(c.countn−1) =
e1(c.count1 + c.count2 + · · · + c.countn−1) = e1(c.count). Pj sends e1(c.count)
to Pn who computes d1(e1(c.count)) and gets c.count.

Protocol 2. (Secure Multi-Party Protocol)

1. P1, P2, · · ·, and Pn−1 perform the following:
(a) P1, P2, · · · and Pn−1 jointly generate a cryptographic key pair (d, e) of

a homomorphic encryption scheme. Let’s use e(.) denote encryption and
d(.) denote decryption. They also generate the number, X, where X is
an integer which is greater than N .

(b) P1 generates a set of random integers R11, R12, · · ·, R1N and sends
e(A11 + R11 ∗ X), e(A12 + R12 ∗ X), · · ·, and e(A1N + R1N ∗ X) to
Pn; P2 generates a set of random integers R21, R22, · · ·, R2N and sends
e(A21 + R21 ∗ X), e(A22 + R22 ∗ X), · · ·, and e(A2N + R2N ∗ X) to
Pn, · · ·, Pn−1 generates a set of random integers R(n−1)1, R(n−1)2, · · ·,
R(n−1)N and sends e(A(n−1)1 + R(n−1)1 ∗X), e(A(n−1)2 + R(n−1)2 ∗X),
· · ·, e(A(n−1)N + R(n−1)N ∗X) to Pn.

162 J. Zhan, S. Matwin, and L. Chang

2. Pn performs the following:
(a) Pn computes E1 = e(A11+R11∗X) ∗ e(A21+R21∗X) ∗ · · · ∗ e(A(n−1)1+

R(n−1)1) ∗ An1 = e(A11+A21+· · ·+A(n−1)1+(R11+R21+· · ·+R(n−1)1)∗
X) ∗An1,
E2 = e(A12+R12∗X) ∗ e(A22+R22∗X) ∗ · · · ∗ e(A(n−1)2+R(n−1)2∗X)
∗ An2 = e(A12+A22+· · ·+A(n−1)2+(R12+R22+· · ·+R(n−1)2)∗X)∗An2,
E3 = e(A13+R13∗X) ∗ e(A23+R23∗X) ∗ · · · ∗ e(A(n−1)3+R(n−1)3∗X)
∗ An3 = e(A13+A23+· · ·+A(n−1)3+(R13+R23+· · ·+R(n−1)3)∗X)∗An3,
· · ·, and
EN = e(A1N + R1N ∗ X) ∗ e(A2N + R2N ∗ X) ∗ · · · ∗ e(A(n−1)N +
R(n−1)N ∗X) ∗ AnN = e(A1N + A2N + · · ·+ A(n−1)N + (R1N + R2N +
· · ·+ R(n−1)N) ∗X) ∗AnN .
Since Ani is either 1 or 0, E1 is either e(A11 + A21 + · · · + A(n−1)1 +
(R11 + R21 + · · ·+ R(n−1)1) ∗X) or 0; E2 is either e(A12 + A22 + · · ·+
A(n−1)2 + (R12 + R22 + · · · + R(n−1)2) ∗ X) or 0; · · ·; and EN is either
e(A1N + A2N + · · ·+ A(n−1)N + (R1N + R2N + · · ·+ R(n−1)N) ∗X) or 0.

(b) Pn randomly permutes [9] the E1, E2, · · · and EN , then obtains the
permuted sequence D1, D2, · · · and DN .

(c) From computational balance point of view, we want each party among
P1, P2, · · · and Pn−1 to decrypt some of non-zero Dis. 1 Consequently,
in our protocol Pn divides those non-zero elements from D1, D2, · · · and
DN into n− 1 parts with each part having approximately equal number
of elements.

(d) Pn sends the n − 1 parts to P1, P2, · · · and Pn−1 respectively, so that
P1 gets the first part, P2 gets the second part, · · · and Pn−1 gets the
(n− 1)th part.

3. Compute c.count
(a) P1, P2, · · · and Pn−1 decrypt the encrypted terms received from Pn, then

modulo X. Due to the properties of homomorphic encryption, this gives
them the correct value of c.count for a candidate itemset consisting of
attributes A1, A2, · · · and An. Note that if a decrypted term is equal
to n-1 mod X, it means the values of P1, P2, · · ·, Pn−1 and Pn are all
1s2. For example, if Pi obtains Ei, she then computes d(Ei) mod X
= (A1i + A2i + · · · + A(n−1)i + (R1i + R2i + · · ·+ R(n−1)i) ∗X) mod X
= A1i +A2i + · · ·+A(n−1)i. Consequently, P1, P2, · · · and Pn−1 compare
whether each decrypted term is equal to n− 1 modX. If yes, then each
Pi (i = 1, 2, · · · and n-1) increases her c.counti by 1.

(b) What remains is the computation of c.count by adding the c.countis.
Since we do not want a party Pi to know the countj for j �= i, we use the
following cryptographic scheme avoiding this disclosure: Pn generates

1 We assume that the number of non-zero elements of Dis (Let’s denote the number
by ND) is ≥ n-1. If not, we randomly select the number of ND parties from P1,
P2, · · · and Pn−1, and send each non-zero element to each of the selected parties.
Moreover, in practice N � n.

2 The value of Pn must be 1 because Pn doesn’t send the Dis to those n − 1 parties
if Di = 0.

Privacy-Preserving Collaborative Association Rule Mining 163

another cryptographic key pair (d1, e1) of a homomorphic encryption
scheme3. She then sends e1 to P1, P2, · · · and Pn−1. Pi (i = 1, 2, · · · , n−1)
encrypts c.counti by using e1. In other words, P1 computes e1(c.count1),
P2 computes e1(c.count2), · · · and Pn−1 computes e1(c.countn−1).

(c) One of parties among P1, P2, · · · and Pn−1 (e.g., Pj) is randomly se-
lected. Other parties Pks among P1, P2, · · · and Pn−1 (k �= j) send
their encrypted c.countk to Pj , who then multiplies all the encrypted
counts including her own e1(c.countj) and obtains the encrypted c.count.
That is, e1(c.count) = e1(c.count1) ∗ e1(c.count2) ∗ e1(c.count3) ∗ · · · ∗
e1(c.countn−1) = e1(c.count1 + c.count2 + · · ·+ c.countn−1).

(d) Pj sends e1(c.count) to Pn.
(e) Pn computes d1(e1(c.count)) = c.count. Finally, Pn obtains c.count and

shares with P1, P2, · · · and Pn−1.

4.5 Analysis of Multi-party Protocol

Correctness Analysis. Assuming all of the parties follow the protocol, to show
the c.count is correct, we need to consider:

– If the element of Pn is 1 (e.g., Ani = 1), and A1i+A2i+ · · ·+A(n−1)i = n−1,
then c.count increases by 1. Since [d(e(A1i +R1i ∗X)∗e(A2i +R2i ∗X)∗ · · ·∗
e(A(n−1)i + R(n−1)i ∗X))] mod X = [d(e(A1i + A2i + · · ·+ A(n−1)i + (R1i +
R2i + · · · + R(n−1)i) ∗X))] mod X = A1i + A2i + · · · + A(n−1)i, if Ani = 1
and A1i + A2i + · · ·+ A(n−1)i = n− 1, that means A1i, A2i, · · ·, A(n−1)i and
Ani are all 1s, then c.count should increase by 1. For other scenarios, either
Ani = 0 or A1i +A2i + · · ·+A(n−1)i �= n−1 or both, c.count doesn’t change.

– In the protocol, Pn permutes Eis before sending them to P1, P2, · · · and
Pn−1. Permutation does not affect c.count. We evaluate whether each ele-
ment contributes to c.count, we then sum those that contribute. Summation
is not affected by a permutation. Therefore, the final c.count is correct.

Complexity Analysis. The bit-wise communication cost of this protocol is
at most 2αnN where α is the number of bits for each encrypted element. The
following contributes to the computational cost: (1) the generation of two cryp-
tographic key pairs; (2) the total number of nN + (n-1) encryptions; (3) the
total number of n(N + 1)− 1 multiplications; (4) the generation of permutation
function; (5) the total number of N permutations; (6) at most N decryptions;
(7) at most N modulo operations; (8) (n-1)N additions.

Privacy Analysis. Pn obtains all the encrypted terms from other parties. Since
Pn does not know the encryption key, Rij , and X, she cannot know the original
values of other parties’ elements. Each party of P1, P2, · · · and Pn−1 obtains
some of Dis. Since Dis are in permuted form and those n-1 parties don’t know
the permutation function, they cannot know the Pn’s original values either.
3 (d1, e1) is independent from (d, e).

164 J. Zhan, S. Matwin, and L. Chang

In our protocol, those n−1 parties’ c.counts are also preserved because of the
encryption. What Pj receives from other n − 2 parties is the encrypted counts.
Since Pj doesn’t know the encryption key e1, Pj cannot know other n−2 parties’
counts. What Pn receives from Pj is the multiplication of all c.countis. Therefore,
she doesn’t know each individual Pi’s count (i = 1, 2, · · ·, n-1).

We also emphasis that Step (2b) are required, the goal is to prevent other
parties from knowing Pn’s values. Step (2c) is for the consideration of compu-
tational balance among P1, P2, · · ·, and Pn−1. Step (3b) to (3e) is to further
prevent parties from knowing c.countis each other. If the collaborative parties
allow sharing c.countis each other, some of steps can be removed and communi-
cation cost is saved.

5 Concluding Remarks

In this paper, we consider the problem of privacy-preserving collaborative asso-
ciation rule mining. In particular, we study how multiple parties can collabora-
tively conduct association rule mining on their joint private data. We develop
a secure collaborative association rule mining protocol based on homomorphic
encryption scheme. In our protocol, the parties do not send all their data to a
central, trusted party. Instead, we use the homomorphic encryption techniques
to conduct the computations across the parties without compromising their data
privacy. Privacy analysis is provided. Correctness of our protocols is shown and
complexity of the protocols is addressed as well. As future work, we will develop
a privacy measure to quantitatively measure the privacy level achieved by our
proposed secure protocols. We will also apply our technique to other data mining
computations, such as secure collaborative clustering.

Acknowledgement

The first two authors acknowledge generous support of the Natural Sciences
and Engineering Research Council of Canada, and the Communications and
Information Technology Ontario for their research.

References

1. G. Aggarwal, N. Mishra, and B. Pinkas. Secure computation of the k th-ranked
element. In EUROCRYPT pp 40-55, 2004.

2. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In P. Buneman and S. Jajodia, editors, Proceedings of
ACM SIGMOD Conference on Management of Data, pages 207–216, Washington
D.C., May 1993.

3. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of the
ACM SIGMOD Conference on Management of Data, pages 439–450. ACM Press,
May 2000.

4. C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned
databases.

Privacy-Preserving Collaborative Association Rule Mining 165

5. O. Goldreich. Secure multi-party computation (working draft). http://www.

wisdom.weizmann.ac.il /home/oded/public html/foc.html, 1998.
6. J.Vaidya and C.W.Clifton. Privacy preserving association rule mining in vertically

partitioned data. In Proceedings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, July 23-26, 2002, Edmonton,
Alberta, Canada.

7. M. Kantarcioglu and C. Clifton. Privacy preserving data mining of association
rules on horizontally partitioned data. In Transactions on Knowledge and Data
Engineering, IEEE Computer Society Press, Los Alamitos, CA, to appear.

8. Y. Lindell and B. Pinkas. Privacy preserving data mining. In Advances in Cryp-
tology - Crypto2000, Lecture Notes in Computer Science, volume 1880, 2000.

9. M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, January 1996.

10. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptography - EUROCRYPT ’99, pp 223-238, Prague, Czech Re-
public, May 1999.

11. L. Sweeney. k-anonymity: a model for protecting privacy. In International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems 10 (5), pp 557–570.

12. R. Wright and Z. Yang. Privacy-preserving bayesian network structure computa-
tion on distributed heterogeneous data. In Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2004.

13. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science, 1982.

Privacy-Preserving Distributed k-Anonymity�

Wei Jiang and Chris Clifton

Department of Computer Science, Purdue University,
West Lafayette, IN 47907

{wjiang, clifton}@cs.purdue.edu
http://www.cs.purdue.edu/people/wjiang

http://www.cs.purdue.edu/people/clifton

Abstract. k-anonymity provides a measure of privacy protection by
preventing re-identification of data to fewer than a group of k data items.
While algorithms exist for producing k-anonymous data, the model has
been that of a single source wanting to publish data. This paper presents
a k-anonymity protocol when the data is vertically partitioned between
sites. A key contribution is a proof that the protocol preserves
k-anonymity between the sites: While one site may have individually
identifiable data, it learns nothing that violates k-anonymity with re-
spect to the data at the other site. This is a fundamentally different
distributed privacy definition than that of Secure Multiparty Computa-
tion, and it provides a better match with both ethical and legal views of
privacy.

Keywords: k-anonymity, privacy, security.

1 Introduction

Privacy is an important concept in our society, and has become very vulnera-
ble in these technologically advanced times. Legislation has been proposed to
protect individual privacy; a key component is the protection of individually
identifiable data. Many techniques have been proposed to protect privacy, such
as data perturbation [1], data swapping [2], query restriction [3], secure multi-
party computation (SMC) [4,5,6], etc. One challenge is relating such techniques
to a privacy definition that meets legal and societal norms. Anonymous data are
generally considered to be exempt from privacy rules – but what does it mean
for data to be anonymous? Census agencies, which have long dealt with private
data, have generally found that as long as data are aggregated over a group of
individuals, release does not violate privacy. k-anonymity provides a formal way
of generalizing this concept. As stated in [7,8], a data record is k-anonymous if
and only if it is indistinguishable in its identifying information from at least k
specific records or entities. The key step in making data anonymous is to gen-
eralize a specific value. For example, the ages 18 and 21 could be generalized to

� This material is based upon work supported by the National Science Foundation
under Grant No. 0428168.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 166–177, 2005.

c© IFIP International Federation for Information Processing 2005

Privacy-Preserving Distributed k -Anonymity 167

an interval [16..25]. Details of the concept of k-anonymity and ways to generate
k-anonymous data are provided in Section 2.

Generalized data can be beneficial in many situations. For instance, a car
insurance company may want to build a model to estimate claims for use in
pricing policies for new customers. To build this model, the company may wish
to use state-wide driver’s license records. Such records, even with name and
ID numbers removed, are likely to contain sufficient information to link to an
individual. However, by generalizing data (e.g., replacing a birth date with an
age range [26..30]), it is possible to prevent linking a record to an individual. The
generalized age range is likely to be sufficient for building the claim estimation
model. Similar applications exist in many areas: medical research, education
studies, targeted marketing, etc.

Due to vast improvements in networking and rapid increase of storage ca-
pacity, the full data about an individual are typically partitioned into several
sub-data sets (credit history, medical records, earnings, ...), each stored at an
independent site.1 The distributed setting is likely to remain, partially because
of performance and accessibility, but more importantly because of autonomy of
the independent sites. This autonomy provides a measure of protection for the
individual data. For instance, if two attributes in combination reveal private
information (e.g., airline and train travel records indicating likely attendance
at political rallies), but the attributes are stored at different sites, a lack of
cooperation between the sites ensures that neither is able to violate privacy.

In this paper, data are assumed to be vertically partitioned and stored at
two sites, and the original data could be reconstructed by a one-to-one join on a
common key. The goal is to build a k-anonymous join of the datasets, so that the
join key and any other candidate keys in the joined dataset are k-anonymized
to prevent re-identification.

1.1 What Is a Privacy-Preserving Distributed Protocol?

A key question in this problem is the definition of privacy preservation. Sim-
ply stating that the result is k-anonymous is not enough, as this does not en-
sure that the participating sites do not violate privacy. However, since the sites
already have individually identifiable information, we cannot fully extend the
k-anonymity measure to them. We now give an informal definition for privacy
preservation; the paper will then present an algorithm and show formally that
it does not violate k-anonymity in the sense of the following definition.

Definition 1. Let Ti be the input of party i,
∏

i(f) be the party i’s execution im-
age of the protocol f , r be the result computed by f , and P be a set of privacy con-
straints. f is privacy-preserving if every inference induced from < Ti,

∏
i(f), r >

that violates any privacy constraint in P could also be induced from < Ti >.

1 In the context of this paper, assume data are represented by a relational table, where
each row indicates an individual data record and each column represents an attribute
of data records.

168 W. Jiang and C. Clifton

This definition has much in common with that of Secure Multiparty Compu-
tation (SMC) [9]. Both talk about a party’s view during execution of a protocol,
and what can be inferred from that view. The key distinction is the concept of
privacy (and privacy constraints) versus security. An SMC protocol must reveal
nothing except the final result, and what can be inferred from one’s own input
and the result. Definition 1 is weaker (giving greater flexibility): It allows infer-
ences from the protocol that go beyond what can be inferred from the result,
provided that such inferences do not violate the privacy constraints.

A more subtle distinction is that Definition 1 is also stronger than SMC. The
above definition requires that the inferences from the result r and from one’s own
input combined with the result (and the protocol execution) do not violate the
privacy constraints. The SMC definitions do not account for this.

For example, a privacy-preserving classification scheme meeting SMC defi-
nitions [10,11,12,13] ensures that nothing is disclosed but the resulting model.
Assume that Party A holds input attributes, and B holds the (private) class
attribute: B has committed to ensuring that the class is not revealed for the
individuals that have given it data. An SMC protocol can generate a classifier
without revealing the class of the individuals to A. Moreover, the classifier need
not inherently violate privacy: A properly pruned decision tree, for example,
will only contain paths corresponding to several data values. A, however, can
use its input along with the classifier to learn (with high probability) the class
values held by B. This clearly violates the commitment B has made, even if the
protocol meets SMC definitions. More discussion of this specific problem can be
found in [14].

Generally speaking, if the set of privacy constraints P can be easily incor-
porated into the functionality computed by a SMC protocol, a SMC protocol
also preserves privacy. However, there is no obvious general framework that eas-
ily and correctly incorporates privacy constraints into part of the functionality
computed by a SMC protocol.

This paper presents a privacy-preserving two-party protocol that generates
k-anonymous data from two vertically partitioned sources such that the protocol
does not violate k-anonymity of either site’s data. While one site may already
hold individually identifiable data, we show that the protocol prevents either
site from linking its own individually identifiable data to specific values from the
other site, except as permitted under k-anonymity. (This privacy constraint will
be formally defined in Section 3.) Interestingly, one of distinctive characteristics
of the proposed protocol is that it is not secure by SMC definitions; parties may
learn more than they can infer from their own data and the final k-anonymous
datset. Nevertheless, it preserves the privacy constraint.

The rest of the paper is organized as the following: Section 2 introduces the
fundamental concepts of k-anonymity. Section 3 presents a generic two-party
protocol, with proof of its correctness and privacy-preservation property. The
paper concludes with some insights gained from the protocol and future research
directions on achieving k-anonymity in a distributed environment.

Privacy-Preserving Distributed k -Anonymity 169

2 Background

We now give key background on k-anonymity, including definitions, a single-site
algorithm, and a relevant theorem, from [7,15,16]. The following notations are
crucial for understanding the rest of the paper:

– Quasi-Identifier (QI): a set of attributes that can be used with certain ex-
ternal information to identify a specific individual.

– T , T [QI]: T is the original dataset represented in a relational form, T [QI] is
the projection of T to the set of attributes contained in QI.

– Tk[QI]: k-anonymous data generated from T with respect to the attributes
in the Quasi-Identifier QI.

Definition 2. Tk[QI] satisfies k-anonymity if and only if each record in it ap-
pears at least k times.

Let T be Table 1, Tk be Table 2 and QI = {AREA, POSITION, SALARY}.
According to Definition 2, Tk[QI] satisfies 3-anonymity.

Several algorithms have been proposed to generate k-anonymous data
[17,8,18]. Datafly [8,18] is a simple and effective algorithm, so for demonstra-
tion of our protocol, Datafly is used to make local data k-anonymous. Algorithm
1 presents several key steps in Datafly (detailed explanations regarding this al-
gorithm can be found in [8]). The main step in most k-anonymity protocols

Algorithm 1. Key Steps in Datafly
Require: T , QI[A1, . . . , Am], k, Hierarchies VGHs Assume k ≤ |T |
1: freq ← a frequency list contains distinct sequences of values of T [QI] along with

the number of occurrences of each sequence.
2: while (sequences ∈ freq occurring less than k times that count for more than k

tuples) do
3: Ai ∈ QI having the most number of distinct values
4: freq ← generalize the values of Ai ∈ freq
5: end while
6: freq ← suppress sequences in freq occurring less than k times
7: freq ← enforce k requirement on suppressed tuples in freq
8: Tk[QI] ← construct table from freq
9: return Tk[QI]

is to substitute a specific value with a more general value. For instance, Fig-
ure 1(a) contains a value generalization hierarchy (VGH) for attribute AREA,
in which Database Systems is a more general value than Data Mining. Simi-
larly, Figure 1(b) and Figure 1(c) present VGHs of attributes POSITION and
SALARY contained in QI. Continuing from the previous example, Tk[QI] satis-
fies 3-anonymity. According to the three VGHs and the original data represented
by T , it is easily verified that Datafly can generate Tk[QI] by generalizing the
data on SALARY, then AREA, then SALARY again. Next, we present a useful
theorem about k-anonymity.

170 W. Jiang and C. Clifton

Table 1. Original Dataset Before Partitioning

ID AREA POSITION SALARY SSN

1 Data Mining Associate Professor $90,000 708-79-1698
2 Intrusion Detection Assistant Professor $91,000 606-67-6789
3 Data Warehousing Associate Professor $95,000 626-23-1459
4 Intrusion Detection Assistant Professor $78,000 373-55-7788
5 Digital Forensics Professor $150,000 626-87-6503
6 Distributed Systems Research Assistant $15,000 708-66-1552
7 Handhold Systems Research Assistant $17,000 810-74-1079
8 Handhold Systems Research Assistant $15,500 606-37-7706
9 Query Processing Associate Professor $100,000 373-79-1698
10 Digital Forensics Assistant Professor $78,000 999-03-7892
11 Digital Forensics Professor $135,000 708-90-1976
12 Intrusion Detection Professor $145,000 606-17-6512

Table 2. Generalized Data with k = 3

ID AREA POSITION SALARY SSN

1 Database Systems Associate Professor [61k, 120k] 708-79-1698
2 Information Security Assistant Professor [61k, 120k] 606-67-6789
3 Database Systems Associate Professor [61k, 120k] 626-23-1459
4 Information Security Assistant Professor [61k, 120k] 373-55-7788
5 Information Security Professor [121k, 180k] 626-87-6503
6 Operating Systems Research Assistant [11k, 30k] 708-66-1552
7 Operating Systems Research Assistant [11k, 30k] 810-74-1079
8 Operation Systems Research Assistant [11k, 30k] 606-37-7706
9 Database Systems Associate Professor [61k, 120k] 373-79-1698
10 Information Security Assistant Professor [61k, 120k] 999-03-7892
11 Information Security Professor [121k, 180k] 708-90-1976
12 Information Security Professor [121k, 180k] 606-17-6512

Theorem 1. If Tk[QI] is k-anonymous, then Tk[QI’] is also k-anonymous,
where QI’ ⊆ QI [8].

Proof. Assume Tk[QI] is being k-anonymous and Tk[QI’] does not satisfy k-
anonymity. Then there exists a record t(QI’) that appears in Tk[QI’] less than k
times. It is trivial to observe that t(QI) also appears less than k times in Tk[QI].
That contradicts the assumption. Therefore, if Tk[QI] satisfies k-anonymity, so
does Tk[QI’]. ��

3 The Protocol: DPP2GA

Before presenting the protocol, we present an alternative view of k-anonymity.
Define Tk to be the k-anonymous data computed from T . Let x
 y denote that
x is directly generalized from y. E.g., in Table 2 the Salary for ID 1: [61k, 120k]

 $90,000.

Privacy-Preserving Distributed k -Anonymity 171

Database Systems (DS) Information Security (IS) Operating Systems (OS)

Computer Science

Handhold Systems (HS)
Distributed Systems (DS)

Query Processing (QP)
Data Warehousing (DW)
Data Mining (DM)

Digital Forensics (DF)
Intrusion Detection (ID)

(a) VGH of AREA

Assistant Professor (AsP)
Associate Professor (AoP)
Professor (Prof)

Teaching Assistant
Research Assistant

Faculty

Professors Assistants

(b) VGH of POSITION

 [11k, 180k]

[11k, 60k] [61k, 120k] [121k, 180]

$135,000
$145,000
$150,000$100,000

 $91,000
 $95,000

$78,000
$78,000
$90,000

$17,000
$15,500

 $15,000

[11k, 30k] [31k, 60k] [61k, 90k] [91k, 120k] [121k, 150k] [151k, 180k]

(c) VGH of SALARY

Fig. 1. Value Generalization Hierarchies

Theorem 2. Tk achieved through generalization satisfies k-anonymity if and
only if ∀t′ ∈ Tk, P rob[t′
 t ∈ T] ≤ 1

k .

Proof. ⇒: Given generalized values t′, if t′ ∈ Tk then there is a set S of identical
t′i ∈ Tk s.t. |S| ≥ k and t′ = t′i (by the definition of k-anonymity). Each t′i ∈
S
 t ∈ T . Since we cannot distinguish between the t′is, the probability that we
have a particular t′i = 1

S ≤ 1
k . Thus the probability that t′ is generalized from a

particular ti is Prob[t′
 ti] = Prob[t′ = t′i] ≤ 1
k .

⇐: Let Prob[t′
 t ∈ T] ≤ 1
k , and t′ be the record with the highest such

probability for a generalization from t. Since the generalization is done according
to a hierarchy, t must generalize to a (uniquely determined) single node in each
hierarchy. This defines the only allowed values for t′. Thus all t′i ∈ Tk have
Prob[t′i
 t] = 0 or Prob[t′i
 t] = Prob[t′
 t] ≤ 1

k . Since t must uniquely generalize
to one of the t′i, the sum of probabilities must be 1. Thus there must be at least
k t′i ∈ Tk that are identical to t′, so k-anonymity holds for t′. ��

From Theorem 2, the privacy constraint P in our application domain can
be formally defined as: inferences from < Ti,

∏
i(f), Tk > do not enable party

i to conclude ∃t′ ∈ Tk (or a t′ seen in
∏

i(f)) such that Prob[t′
 t ∈ T] > 1
k .

Informally, < Ti,
∏

i(f), Tk > does not make Tk less k-anonymous. We will re-
visit this privacy constraint when proving that the proposed protocol is privacy-
preserving.

Since the protocol can utilize any k-anonymity algorithm to compute locally
anonymous data, we call the proposed approach Distributed Privacy-Preserving
two-Party Generic Anonymizer (DPP2GA). The protocol is presented in Section
3.1, Section 3.2 proves the correctness of the protocol and Section 3.3 proves the
protocol satisfies the k-anonymity privacy constraint.

172 W. Jiang and C. Clifton

3.1 DPP2GA

The protocol is executed between two parties: P1 and P2. Let T refer to Table
1 and QI = {AREA, POSITION, SALARY}. T is vertically partitioned into
T 1 ≡ T [ID, AREA, POSITION] and T 2 ≡ T [ID, SALARY, SSN] stored at P1
and P2 respectively. Also, assume P1 and P2 are semi-honest in that they follow
the execution of the protocol but may later use the information seen to try to
violate privacy. (Discussion of the privacy properties under stronger adversarial
models omitted due to space constraints.)

The key idea of the protocol is based on Theorem 1. Initially, each party Pi
(i = 1 or 2) makes his data k-anonymous locally (for simplicity, Datafly is used
for illustration). Based on this locally k-anonymous data, a set γi is produced
containing IDs partitioned into subsets. Let γi[p] indicates the pth subset in γi,
then all records Pi whose keys are contained in γi[p] have the same value with
respect to QI. For any γi, the following properties hold:

– γi[p] ∩ γi[q] = ∅, for any 1 ≤ p, q ≤ |γi| and p �= q
–

⋃
p γi[p] is the same across all γis

Note that although each element γi[p] in γi contains record keys, it does make
sense to say that γi[p] contains a subset of records or data tuples because each
key is related to a single tuple. Define T iγi be the generalized data at Pi based
on which γi is computed. For example, refer to Table 3, the columns [AREAp,
POSITIONq] indicate the generalized data of T 1[AREA, POSITION], where p+q
indicates the number of times T 1[AREA, POSITION] has been generalized (by
Datafly). Also, the last generalization of T 1[AREA, POSITION] was performed
on the attribute whose superscript was incremented comparing to its previous
value. T 2[SALARY] can be interpreted similarly. According to Table 3, we have:

γ1
1 = {{1, 3, 9}, {2, 4, 10}, {5, 11, 12}, {6, 7, 8}}

γ2
1 = {{1, 4, 10}, {2, 3, 9}, {5, 11, 12}, {6, 7, 8}}

Table 3. P1 and P2 ’s Generalized Data (left and right respectively)

ID AREA1 POSITION0 AREA1 POSITION1

1 DB AoP DB Professors
2 IS AsP IS Professors
3 DB AoP DB Professors
4 IS AsP IS Professors
5 IS Prof IS Professors
6 OS RA OS Assistant
7 OS RA OS Assistant
8 OS RA OS Assistant
9 DB AoP DB Professors
10 IS AsP IS Professors
11 IS Prof IS Professors
12 IS Prof IS Professors

ID SALARY1 SALARY2

1 [61k, 90k] [61k, 120k]
2 [91k, 120k] [61k, 120k]
3 [91k, 120k] [61k, 120k]
4 [61k, 90k] [61k, 120k]
5 [121k, 150k] [121k, 180k]
6 [11k, 30k] [11k, 30k]
7 [11k, 30k] [11k, 30k]
8 [11k, 30k] [11k, 30k]
9 [91k, 120k] [61k, 120k]
10 [61k, 90k] [61k, 120k]
11 [121k, 150k] [121k, 180k]
12 [121k, 150k] [121k, 180k]

Privacy-Preserving Distributed k -Anonymity 173

The two parties then compare γ1
1 and γ2

1 . If they are equal (this notion of equality
will be defined shortly), joining data T 1γ1

1
and T 2γ2

1
creates globally k-anonymous

data. If γ1
1 and γ2

1 are not equal, each party generalizes his local data one step
further and creates a new γi. Repeat the above steps until the two parties find a
pair of equal γis. Let’s define the notion of equality between any two γis.

Definition 3. If γi
α ≡ γj

β, then there are no p, q such that 0 < |γi
α[p]∩γj

β [q]| < k.

According to the above definition, γ1
1 �= γ2

1 because |{1, 3, 9} ∈ γ1
1 ∩ {2, 3, 9} ∈

γ2
1 | = 2 < k (where k = 3). Thus, P1 and P2 generalize their data one step

further and compute two new γis:

γ1
2 = {{1, 3, 9}, {2, 4, 5, 10, 11, 12}, {6, 7, 8}}

γ2
2 = {{1, 2, 3, 4, 9, 10}, {5, 11, 12}, {6, 7, 8}}

Since γ1
2 ≡ γ2

2 , the join of T 1γ1
2

(columns [AREA1, POSITION1] in Table 3) and
T 2γ2

2
(column [SALARY2] in Table 3) satisfies 3-anonymity.

Due to privacy issues, the comparison between γis are not performed directly.
Instead, P1 encrypts γ1 and sends EKP1(γ1) to P2. P2 then encrypts EKP1(γ1)
and sends a copy of EKP2(EKP1(γ1)) back to P1. γ2 is treated similarly. After
this exchange, both parties have copies of

[
EKP2(EKP1(γ1)), EKP1(EKP2(γ2))

]
.

Note that the encryption is applied to individual value, and we also adopt the
commutative encryption scheme described in [19], but any other commutative
encryption scheme can also be used. The key property of this scheme is that
EKP2(EKP1(v)) = EKP1(EKP2(v)): encryption order does not matter.

Algorithm 2. DPP2GA
Require: Private Data T1, QI = (A1, . . . , An), Constraint k, Hierarchies V GHAi ,

where i = 1, . . . , n, assume k ≤ |T1|
1: P1 generalizes his data to be locally k-anonymous;
2: int c ← 0;
3: repeat
4: c = c + 1;
5: P1 computes γ1

c ;
6: P1 computes EKP1(γ1

c) and sends it to P2;
7: P1 receives EKP2(γ

2
c) and computes ΓP2 = EKP1(EKP2(γ

2
c));

8: P1 receives ΓP1 = EKP2(EKP1(γ1
c));

9: until ΓP1 ≡ ΓP2

10: return Tk[QI] ← T1γ1
c

�� T2γ2
c
;

Key steps in our approach are highlighted in Algorithm 2. The algorithm is
written as executed by P1. Note that synchronization is needed for the counter c,
and the encryption keys are different for each round. When the loop is executed
more than once, the algorithm requires local data to be generalized one step
further before computing the next γ1

c at Step 5. At step 10, the symbol
�
represents the one-to-one join operator on the ID attribute to create globally
k-anonymous dataset from the two locally k-anonymous datasets.

174 W. Jiang and C. Clifton

3.2 Proof of Correctness

In this section, we prove Algorithm 2 achieves global k-anonymity. Refer to
notations adopted in Section 3.1, let γ1

c , γ2
c synchronously computed from P1

and P2’s locally k-anonymous data and use the equality operator ≡ defined in
Definition 3. Define T 1γ1

c
and T 2γ2

c
as the locally k-anonymous data related to

γ1
c and γ2

c respectively.

Theorem 3. If γ1
c ≡ γ2

c , then Tk[QI] ← T 1γ1
c

� T 2γ2
c

satisfies global
k-anonymity.

Proof. Let’s prove the above theorem by contrapositive. In other words, prove
the following statement: If Tk[QI] does not satisfy global k-anonymity, then γ1

c �=
γ2

c . Suppose Tk[QI] is not k-anonymous, then there exists a subset of records
S = {t1, . . . , tj} ⊂ Tk[QI] such that |S| < k or j < k. Let tj [γ1

c] denote the
portion of the record tj related to γ1

c stored at P1 and tj [γ2
c] denote the portion of

the record related to γ2
c stored at P2. Then {t1[γ1

c], . . . , tj[γ1
c]} must be contained

in some subset γ1
c [p], and {t1[γ2

c], . . . , tj [γ2
c]} must be contained in some subset

γ2
c [q]; as a result, |γ1

c [p] ∩ γ2
c [q]| < k. According to Definition 3, the equality

between γ1
c and γ2

c does not hold. Thus, the contrapositive statement is true, so
Theorem 3 holds. ��

3.3 Proof of Privacy Preservation

Referring to Step 9 in Algorithm 2, although equality is tested on the encrypted
version of γ1

c and γ2
c , inference problems do exist.

For simplicity and consistency, let’s use γ1
c and γ2

c instead of ΓP1 and ΓP2 for
the following analysis. The inference problem exists only when γ1

c �= γ2
c . More

specifically, we analyze the inference problem when 0 < |γ1
c [p] ∩ γ2

c [q]| < k (for
some p and q) because this inference seemingly violates global k-anonymity.

We classify inference problems into two types: final inference problem (FIP)
and intermediate inference problem (IIP). FIP refers to the implication when the
inequality occurs at Step 9 of Algorithm 2 only once. IIP refers to the implication
when the inequality occurs multiple times. Let Tk[QI] be the k-anonymous data
computed by Algorithm 2.

Theorem 4. FIP does not violate the privacy constraint P (previously stated
in this section); in other words, FIP does not make Tk[QI] less k-anonymous.

Proof. If γ1
c �= γ2

c , then according to Definition 3, there must exist an intersection
set Ic = γ1

c [p] ∩ γ2
c [q] such that 0 < |Ic| < k. Since the equality test at Step 9 of

Algorithm 2 is performed on the encrypted versions of γ1
c and γ2

c , we are not able
to know the exact records in Ic. Because of the definition of FIP, γ1

c+1 ≡ γ2
c+1

holds. Since γi
c+1 computed from more generalized data than γi

c, the following
conditions hold:

– γ1
c [p] ⊆ γ1

c+1[p
′], where 1 ≤ p′ ≤ |γ1

c+1|
– γ2

c [q] ⊆ γ2
c+1[q

′], where 1 ≤ q′ ≤ |γ2
c+1|

Privacy-Preserving Distributed k -Anonymity 175

When the final generalized data released, for the worst case scenario, we may
be able to identify unencrypted records related to γ1

c+1[p
′] and γ2

c+1[q
′]. Define

Ic+1 = γ1
c+1[p′] ∩ γ2

c+1[q′]. According to the above conditions and γ1
c+1 ≡ γ2

c+1,
Ic ⊂ Ic+1 and |Ic+1| ≥ k.

Since the equality test was performed on encrypted data, Prob[x
y] = |Ic|
|Ic+1| ,

where x ∈ Ic+1 and y ∈ Ic. If x is not directly generalized from y of any Ic, then
Prob[x
 t ∈ T] ≤ 1

k because x is k-anonymous. If x
 y, then Prob[x
 t ∈ T] =
Prob[x
 y] · Prob[y
 t]. y is |Ic|-anonymous, so Prob[y
 t] = 1

|Ic| . Then we have

Prob[x
 t ∈ T] = |Ic|
|Ic+1| · 1

|Ic| ≤ 1
k . ��

Next, we show a concrete example that illustrates why FIP does not violate k-
anonymity. Refer to γ1

1 , γ2
1 , γ1

2 , γ2
2 in Section 3.1. Let γi

c = γi
1 and γi

c+1 = γi
2 where

i ∈ {1, 2}. As stated previously, we have γ1
1 �= γ2

1 , so let γ1
c [p] = {1, 3, 9} and

γ2
c [q] = {2, 3, 9}. Then we have Ic = γ1

c [p] ∩ γ2
c [q] = {3, 9}, γ1

c+1[p
′] = {1, 3, 9},

γ2
c+1[q

′] = {1, 2, 3, 4, 9, 10} and Ic+1 = γ1
c+1[p

′]∩γ2
c+1[q

′] = {1, 3, 9}. Note that in
this example, we can directly observe record IDs. However, in the real execution
of the protocol, each party can only see the encrypted ID values. Now let’s see if
the data records contained in Ic violate the property stated in Theorem 2. Let
x
 y ∈ Ic, then Prob[x
 t ∈ T] = Prob[x
 y] · Prob[y
 t] = |Ic|

|Ic+1| · 1
|I| = 1

3 = 1
k .

Theorem 5. IIP does not violate the privacy constraint P ; in other words, IIP
does not make Tk[QI] less k-anonymous.

Proof. Use the notations defined in the proof of Theorem 4. According to the
definition of IIP, γ1

c �= γ2
c and γ1

c+1 �= γ2
c+1. Define Ic = γ1

c [p] ∩ γ2
c [q] such that

0 < |I| < k. Similar to the previous analysis, the following two conditions hold:

– γ1
c [p] ⊆ γ1

c+1[p′], where 1 ≤ p′ ≤ |γ1
c+1|

– γ2
c [q] ⊆ γ2

c+1[q
′], where 1 ≤ q′ ≤ |γ2

c+1|
Define Ic+1 = γ1

c+1[p
′]∩ γ2

c+1[q
′]. If Ic+1 is k-anonymous or |Ic+1| ≥ k, then this

inference problem caused by Ic is the same as FIP.
Now consider the case where |Ic+1| < k. Because γi

c+1 computed from more
generalized data than γi

c, Ic ⊆ Ic+1. If |Ic| = |Ic+1|, the inference effect caused
by Ic does not propagate to the equality test between γ1

c+1 and γ2
c+1. If |Ic| <

|Ic+1|, define x ∈ Ic+1 and y ∈ Ic. If x is not directly generalized from y, then
Prob[x
 t ∈ T] = 1

|Ic+1| because x is |Ic+1|-anonymous. Nevertheless, if x
 y,

then Prob[x
 t ∈ T] = Prob[x
 y] ·Prob[y
 t] = |Ic|
|Ic+1| · 1

|Ic| = 1
|Ic+1| . As a result,

Prob[x
 t ∈ T] is the same for all records in Ic+1. The inference effect caused
by Ic is independent from one equality test to the next one. Consequently, the
effect of IIP is the same as that of FIP. ��

The equality test between γ1
c and γ2

c is not the focal point of this paper. It is
fairly simple to derive, so we do not provide any specifics about how to perform
the equality test. In addition, we note that if |Ic| ≥ k, the records in the Ic do
not violate the privacy constraint due to the definition of k-anonymity.

176 W. Jiang and C. Clifton

4 Conclusion / Future Work

Privacy of information in databases is an increasingly visible issue. Partitioning
data is effective at preventing misuse of data, but it also makes beneficial use
more difficult. One way to preserve privacy while enabling beneficial use of data
is to utilize k-anonymity for publishing data. Maintaining the benefits of parti-
tioning while generating integrated k-anonymous data requires a protocol that
does not violate the k-anonymity privacy constraint. In this paper, we have laid
out this problem and presented a two-party protocol DPP2GA that is proven to
preserve the constraint. It is a generic protocol in a sense that any k-anonymity
protocol can be used to compute locally k-anonymous data.

One disadvantage of DPP2GA is that it may not produce as precise data
(with respect to the precision metric defined in [8]) as other k-anonymity al-
gorithms do when data are not partitioned. For instance, DPP2GA could be
modified to simulate Datafly. At Step 9 of Algorithm 2, when the equality does
not hold, only the party with the attribute that has most distinct values globally
should generalize the data. Then the equality test would be performed on the
newly computed Γ 1

c+1 with previously used Γ 2
c . The data generated this way are

the same as those computed by Datafly.
Even though this approach may produce more precise data, it does introduce

additional inference problems because some Γ i
c+j may be compared more than

once. It is not obvious that this additional inference must (or can) violate k-
anonymity with respect to individual parties, but proving this formally is not an
easy task. One key design philosophy of DPP2GA is to provably eliminate such
inference problems, so DPP2GA sacrifices a certain degree of precision. More pre-
cise protocols with fewer or no inference problems are a worthwhile challenge for
future research. Another observation we have during the design of DPP2GA is
that more precise data can also be generated by removing already k-anonymous
data at the end of each round (resulting in different data being generalized to dif-
ferent levels). Again, providing a formal method to analyze the inference problem
might be very difficult, but this provides a valuable future research direction.

DPP2GA is not a SMC protocol because it introduces certain inference prob-
lems, such as FIP and IIP. However, based on our analyses, both FIP and IIP
do not violate the k-anonymity privacy constraint. Formally defining and un-
derstanding the differences between privacy-preserving and Secure Multiparty
Computation may open up many new opportunities for designing protocols that
preserve privacy.

Acknowledgements

We wish to thank Professor Elisa Bertino for comments and discussions that
lead to this work.

References
1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: Proceedings of

the 2000 ACM SIGMOD Conference on Management of Data, Dallas, TX, ACM
(2000) 439–450

Privacy-Preserving Distributed k -Anonymity 177

2. Moore, Jr., R.A.: Controlled data-swapping techniques for masking public use
microdata sets. Statistical Research Division Report Series RR 96-04, U.S. Bureau
of the Census, Washington, DC. (1996)

3. Dobkin, D., Jones, A.K., Lipton, R.J.: Secure databases: Protection against user
influence. ACM Transactions on Database Systems 4 (1979) 97–106

4. Yao, A.C.: Protocols for secure computation. In: Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, IEEE (1982) 160–164

5. Yao, A.C.: How to generate and exchange secrets. In: Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, IEEE (1986) 162–167

6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a com-
pleteness theorem for protocols with honest majority. In: 19th ACM Symposium
on the Theory of Computing. (1987) 218–229

7. Sweeney, L.: k -anonymity: a model for protecting privacy. International Journal
on Uncertainty, Fuzziness and Knowledge-based Systems 10 (2002) 557–570

8. Sweeney, L.: Achieving k -anonymity privacy protection using generalization and
suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based
Systems 10 (2002) 571–588

9. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptog-
raphy. Volume 2. Cambridge University Press (2004)

10. Lindell, Y., Pinkas, B.: Privacy preserving data mining. Journal of Cryptology 15
(2002) 177–206

11. Du, W., Zhan, Z.: Building decision tree classifier on private data. In Clifton, C.,
Estivill-Castro, V., eds.: IEEE International Conference on Data Mining Work-
shop on Privacy, Security, and Data Mining. Volume 14., Maebashi City, Japan,
Australian Computer Society (2002) 1–8

12. Vaidya, J., Clifton, C.: Privacy preserving näıve bayes classifier for vertically parti-
tioned data. In: 2004 SIAM International Conference on Data Mining, Lake Buena
Vista, Florida (2004) 522–526

13. Kantarcıoǧlu, M., Clifton, C.: Privately computing a distributed k-nn classifier.
In Boulicaut, J.F., Esposito, F., Giannotti, F., Pedreschi, D., eds.: PKDD2004:
8th European Conference on Principles and Practice of Knowledge Discovery in
Databases, Pisa, Italy (2004) 279–290

14. Kantarcıoǧlu, M., Jin, J., Clifton, C.: When do data mining results violate privacy?
In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Seattle, WA (2004) 599–604

15. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k -
anonymity and its enforcement through generalization and suppression. In: Proceed-
ingsof the IEEESymposiumonResearch inSecurityandPrivacy,Oakland,CA(1998)

16. Sweeney, L.: Computational Disclosure Control: A Primer on Data Privacy Pro-
tection. PhD thesis, Massachusetts Institute of Technology (2001)

17. Hundepool, A., Willenborg, L.: μ- and τ -argus: software for statistical disclosure
control. Third International Seminar on Statistical Confidentiality (1996)

18. Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly sys-
tem. Proceedings, Journal of the American Medical Informatics Association (1997)

19. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory IT-24 (1978) 106–110

Towards Database Firewalls�

Kun Bai, Hai Wang, and Peng Liu

The School of Information Science and Technology,
Pennsylvania State University,

University Park 16802 PA
{kbai, haiwang, pliu}@ist.psu.edu

Abstract. Authentication based access control and integrity constraints
are the major approaches applied in commercial database systems to
guarantee information and data integrity. However, due to operational
mistakes, malicious intent of insiders or identity fraud exploited by out-
siders, data secured in a database can still be corrupted. Once attacked,
database systems using current survivability technologies cannot con-
tinue providing satisfactory services according to differentiated informa-
tion assurance requirements. In this paper, we present the innovative
idea of a database firewall, which can not only serve differentiated infor-
mation assurance requirements in the face of attacks, but also guarantee
the availability and the integrity of data objects based on user require-
ments. Our approach provides a new strategy of integrity-aware data
access based on an on-the-fly iterative estimation of the integrity level
of data objects. Accordingly, a policy of transaction filtering will be dy-
namically enforced to significantly slow down damage propagation with
minimum availability loss.

1 Introduction

Data integrity, availability and confidentiality are the three major issues that
have been paid much attention in database security research. To protect the data
integrity, multi-layer approaches are proposed, from hardware, OS, DBMS to
transaction level. Mainly, there are two research focuses. One is from-scratch, the
other is off-the-shelf. Approaches presented in [1],[2],[3] are to close the security
holes on hardware, OS and DBMS, respectively, from the from-scratch direction.
[4] and [5] propose techniques to deal with data corruption and storage jamming
effectively on OS-level intrusions. Unfortunately, these technologies can not be
applied to handle authorized but malicious transaction.

[6] introduces an intrusion-tolerant database (ITDB) system architecture on
the transaction-level. It is noticeable that ITDB architecture is complicated be-
cause of the specific database vulnerability known as damage spreading. That is,
the result of a transaction can affect the execution of some later transactions,
directly or indirectly, through read and write operations.
� This work was supported by NSF CCR-0233324, NSF ANI-0335241, and Department

of Energy Early Career PI Award.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 178–192, 2005.

c© IFIP International Federation for Information Processing 2005

Towards Database Firewalls 179

Since infected data objects can cause more damage through read and write
operations, which, in turn, could lead to wrong decision and disastrous conse-
quences, data corruption becomes a severe security problem in critical data ap-
plications, such as air traffic control, banking and combat-field decision making
system. Furthermore, data corruption is not only an issue of data integrity issue,
but also a concern of data availability. For example, in some cases, the purpose
of an attack is just to deny the service. Generally, when the real-world database
application is under an attack, the services the system provides have to be shut
down to recover from the disaster. Thus, the system availability sacrificed in
order to maintain the data integrity. A vast majority of research has been done
on how to survive data corruption from malicious attacks and recover the data
integrity and availability in an off-line manner. However, limited attention has
been drawn to provide various database services in agreement with differentiated
information assurance requirements while the system is being healed.

In this paper, we present a novel idea of database firewall that, in contrast
to previous research, uses different strategies to prevent damage from spreading
to other territories of the database in terms of tables, records and columns.
The idea is to quickly estimate the integrity levels of data objects and use such
integrity levels to smartly filter off the transactions that would spread damage
according to a specific firewall policy upon the time a malicious transaction is
detected. A unique feature of our approach is that transaction filtering is not
universally enforced and the enforcement domain is dynamically adjusted so that
maximum availability can be provided without jeopardizing integrity. According
to a user requirement of quality of information assurance (QoIA), we not only
provide a significant improvement of data availability, but also guarantee the
integrity of data objects stored in the database. The database firewall framework
is illustrated in the context of the transaction level in ITDB architecture.

The rest of this paper is organized as follows. In section (2), we review the
background and related work. In section (3), we present the design issue of the
database firewall. In section (4), we propose our naive estimator model and
estimation algorithm. In section (5), we demonstrate some preliminary results.
In section (6), we conclude the paper and future work.

2 Background and Related Work

Intrusion detection system (IDS) has attracted many researchers ([8],[9],[10]). In
general, IDSs monitor system activities to discover attempts to gain illicit ac-
cess to systems or corrupt data objects in systems. Roughly, the methodologies
of IDS are in two categories, statistical profile and known patterns of attacks.
However, intrusion detection systems have a few noticeable limitations: (1) In-
trusion detection makes the system attack-aware but not attack-resistant. (2)
Achieving accurate detection is usually difficult or expensive. (3) The average
detection latency in many cases is too long to effectively confine the damage. To
overcome these limitations, a broader perspective has been introduced, namely
an intrusion tolerance database system [6].

180 K. Bai, H. Wang, and P. Liu

Other than the ITDB approach, traditional recovery mechanisms execute
complete rollbacks to undo the work of benign transactions as well as malicious
ones when the malicious transactions are detected. Therefore, although rolling
back a database to a previous checkpoint can remove all the corrupted data,
the work of all the legitimate transactions which commit after the checkpoint is
lost. This kind of approach would further exacerbate the situation of denial of
service. [11] provides a recovery algorithm that, given a specification of malicious,
unwinds not only the effects of each malicious transaction but also the effects
of any innocent transaction that is directly or indirectly affected by a malicious
transaction. A significant contribution of [11] is that the work of remaining
benign transactions is saved. However, the fact is that transaction execution
is much faster than detection and reparation. This indicates that the entire
process of recovery could both take a relatively long time to finish and also repeat
repairing certain data objects over and over again due to damage spreading.
Thus, the data availability could be significantly lost due to this long latency.

[12] present an innovative idea known as multiphase damage containment.
Upon the time a malicious transaction (denoted as Bi) is detected, in contrast
to reactive damage containment, [12] uses one containing phase (denoted as
initial containment) to proactively contain the data objects that might have been
corrupted. In addition to this first phase, one or more later uncontaining phases
(denoted as containment relaxation) will release the objects that are mistakenly
contained during the first phase. This approach can guarantee that no damage
caused by malicious transaction Bi will spread to any new update. However, an
inherent limitation of multiphase containment is that this method could cost
substantial data availability loss. Because the initial containment phase needs
to instantly confine every data object possibly infected by Bi within a time
window starting upon the commit of the malicious transaction Bi and ending at
the detection of Bi, there is no time for the confining phase to precisely pinpoint
the set of damaged data objects.

To overcome the limitations of the multiphase containment approach and to
provide more data availability, delivering services by taking QoIA requirements
into account seems to be a solution. In order to keep services available during
attacks, it will be beneficial to continue allowing access to confined data ob-
jects during the repair time window. However, this needs to be conducted very
carefully since a confined data object could have been corrupted. Thus, certain
security rules and policies of access are required to achieve this original inten-
tion. [13] has taken the first step towards this goal. In this paper, we extend
this topic and present database firewall technique as a solution to increase the
data availability without imposing risks to applications users and degrading the
system performance and data integrity.

3 Database Firewall Design

In this section, we first formalize several important concepts and the various
problems studied in this paper, and then present the framework of database

Towards Database Firewalls 181

firewall. The idea of a database firewall can be better described in the context
of an intrusion tolerant database system (ITDB) on the transaction level. Since
this framework is an extension of the ITDB architecture, it inherits the features
from ITDB that it could not directly defend against attacks from low level,
such as OS and DBMS level attacks. However, when most attacks come from
malicious transactions, our framework is effective. Moreover, the existing low
level mechanisms can be easily integrated into our database firewall framework.

3.1 Theoretical Model

A database system is a set of data objects, denoted as DB={o1, o2, . . . , on}. A
transaction Gi is a partial order with ordering relation <i, where

1. Gi ⊆ {(ri[ox], wi[ox])|ox is a data object} ∪(ai, ci);
2. if ri[ox], wi[ox] ∈ Gi, then either ri[ox] <i wi[ox], or wi[ox] <i ri[ox];
3. ai ∈ Gi iff ci /∈ Gi.

and r,w,a,c relate to the operation of read, write, abort, and commit, respec-
tively. The (usually concurrent) execution of a set of transactions is modeled
by a structure called a history. Formally, let G = {G1, G2, . . . , Gn} be a set
of transactions. A complete history H over G is a partial order with ordering
relation <H , where:

1. H = ∪n
i=1Gi;

2. <H⊇ ∪n
i=1 <i.

Since aborted transactions have nothing to do with database firewalls, for
the sake of simplicity we assume every transaction commits. Two transactions
conflict if they both have an operation on the same object, and one of them
is write. Also, the correctness of a history is typically captured by the notion
of serializability[14]. One assumption is that strict two-phase locking (2PL) is
used to produce serializable histories where the commit order indicates the serial
order among transactions.

First, how an object is damaged is defined in a conservative way. That is,
every object updated by a malicious transaction is damaged, and that if a good
transaction reads a damaged object, then every object updated by the good
transaction is damaged. Next, a transaction dependent relation is denoted as
follows. In a history composed of only committed transactions, a transaction Gi

is dependent upon another transaction Gj if there exists an object ox such that
Gi reads ox after Gj updates it, and there is no transaction that updates ox

between the time Gj updates ox and Gj reads ox. Finally, it is assumed that
every data object modified by Gi will be read by Gi first. Thus, there is no blind
writes.

3.2 Motivation and Challenges

As networks enable more and more applications and are available to more and
more users, they become ever more vulnerable to a wider range of security

182 K. Bai, H. Wang, and P. Liu

threats. Thus, to combat those threats and ensure that applications are not
compromised, security technologies such as network firewalls play a critical role
in today’s networks. Likewise, a broad span of research from authorization, to
inference control, to multilevel secure database, and to multilevel secure trans-
action processing has addressed primarily on how to protect the security of a
database. However, a very important vulnerability of database security, known
as damage spreading, has been omitted by these researches. Database firewall
technique is needed not only because malicious transactions can compromise
data objects, but also because innocent transactions can accidentally spread the
damage. Formally, damage spreading occurs because any good transaction read-
ing a corrupted data object ox can spread the damage on ox to the data objects
it updates. In this way, the spreading can be exponential. Still, the effect caused
by a malicious transaction itself to a database is limited. Thus, it is the transac-
tions that spread the effect that matter. Efforts have been made in existing data
containment and damage assessment technologies to stop spreading and recover
systems. However, data containment and damage assessment take a substantial
amount of time. Thus, the loss of data availability is significant. Database fire-
wall technique takes a step further to reinforce the above approaches by filtering
the incoming transactions to simultaneously stop potential damage spreading at
the doorway and to improve the data availability according to a certain security
policy.

In sum, a database firewall should include at least three components: Integrity
Estimator, Firewall Manager and Access Policy Manager. One of the challenges
to guarantee the success of database firewalls is to design an efficient integrity
level estimation algorithm, which can quickly and accurately estimate the data
integrity without losing security. In this paper, a naive approach to achieve this
goal is presented.

3.3 Architecture of Database Firewall

To develop the database firewall framework that can provide more data avail-
ability, there are several fundamental issues needed to be addressed and solved.
First, how to formalize the integrity level model and estimate the data integrity
during attacks. Second, how to constitute the security policy and access rulesets
using estimated data integrity level. Third, how to manage the tradeoff between
performance and security.

Database Firewall Components. As shown in figure (1), the database fire-
wall architecture is built upon the top of a traditional ”off-the-shelf” DBMS.
Within the framework, Intrusion Detector (ID) identifies malicious transactions
based on the operation records stored in the log. Damage Assessor (DA) locates
the damage caused by the detected malicious transactions. Damage Repairer
(DR) repairs the located damage using some specific cleaning transactions. In-
tegrity Estimator (IE) estimates the integrity level of data objects. Access Policy
Manager (APM) works as a proxy for decision making of data objects access.
Firewall Manager (FM) functions when Intrusion Detector detects malicious

Towards Database Firewalls 183

Intrusion Detector

Database

Log

Integrity Estimator

Database Firewall Components

Damage Assessor

Access Policy Manager

A Traditional Database System

Recovery Manager

Scheduler

Database Applications

DB−Firewall Manager

Damage Repairer

Fig. 1. Database Firewall Architecture

transactions. After the firewalls are built up, Firewall Manager triggers Integrity
Estimator to start estimating the integrity of data objects and consequently force
Access Policy Manager to set up access rulesets to restrict the access to the data
items that are confined in firewalls according to a new policy. At each step of in-
tegrity estimation, the firewalls update themselves in co-response to the changes
of data integrity level. Accordingly, any new transaction submitted by a user
will comply with the new policy. Through several steps, Integrity Estimator will
finally converge to the final solution, which has either a set of precise integrity
of data objects or a set of approximate integrity of date objects.

3.4 Transaction Filtering Policies and Mechanism

In this section, an innovative mechanism for implementing security control which
guards the door of database systems and prevents potential damage spreading
from occurring is introduced. By conventional definition of firewall in network
domain, a firewall is a system or group of systems that enforce an access control
policy between two or more networks. Its operations are mainly based on three
technologies: packet filtering, proxy server and stateful packet filtering. Similarly,
in database security domain, particularly in our database firewall framework, a
firewall operates based on transaction filtering technique. In addition, unlike a
network firewall, which checks packet status, transaction filtering relies on the
integrity level of data objects.

Integrity Level Model. When a malicious transaction Bi is detected, the data
objects in the database could be in several different situations. In this section,
an idea is presented to define the model illustrating the integrity of data objects.

184 K. Bai, H. Wang, and P. Liu

1. Data objects Integrity. A data object could be either good or corrupted
after the database system is attacked. Thus, it is straightforward to denote
that the integrity of an object oi (1 ≤ i ≤ n) is good at particular time t as
I(oi, t) ∈ {G, B}, where G is Good and B is Bad for short. It is apparent
that when a malicious transaction is captured, any transaction whose commit
time is out of a time window, starting from the time point when Bi enters
the database to the moment of its committing, is not infected, and the data
objects belonging to the transaction are regarded as good objects.

However, the status of those data objects that belong to transactions which
commit within the time window are a little more complicated. It is difficult
to attain such knowledge that data integrity can be precisely calculated in
a short period of time. Methods, such as [12], mentioned in previous sec-
tion (2), can precisely distinguish the integrity of each data object through
several phases. However, safety comes at the sacrifice of significant data avail-
ability. This contradicts the goal of database firewall framework. Therefore,
instead of deterministically marking the integrity of data objects, a practical
integrity model that uses probabilistic estimation is favored. This model is
applicable because the damage spreading is strongly related to the writeset
of the malicious transaction Bi, denoted as WBi , and also relies on the trans-
action arrival and dependency patterns. For this reason, previous histories
can be used to estimate the probability that a data object is good as the
data integrity during an attack.

2. Practical Integrity Model. In this model, a data object oi’s integrity at
a particular time t is shown in the equation.

I(oi, t) = (1− 1
R(t)

)× 100%, R(t) ≥ 1 (1)

Where, R is the number of patterns matched with or similar to an attack pat-
tern. We call I(oi, t) the data object oi’s integrity level, and 0 ≤ I(oi, t) ≤ 1.
Integrity level of data object oi indicates that the probability of oi is good
when a specific attack pattern occurs. For example, when R(t) = 1, I(oi, t) =
0, it means the identical patterns are found, and the data object oi is cor-
rupted. Thus, the integrity of a data object oi could be in one of the following
three categories:

I(oi, t) =

⎧⎨
⎩

100% t �∈ [tiS , tiE] estimated
50% t ∈ [tiS , tiE] estimated
0% t ∈ [tiS , tiE] identified

(2)

Here, for the definition of tiS , tiE, please refer to section 3.4. With the above
analysis about data integrity, in order to estimate the integrity of a data ob-
ject, our research becomes to find answers to following three questions: What
is an attack pattern? How does the integrity estimator use the patterns? How
do we match two attack patterns? These concerns will be addressed in a later
section (4).

Towards Database Firewalls 185

Database Firewall Security Policy. A specific and strongly worded security
policy is vital to the pursuit of internal data integrity. This policy is a subset
of the database access contorl policy and never will rule over an access contorl
policy, such as authorization, but should govern everything from acceptance of
accessing data objects to response scenarios in the event a security incident
should occur, such as policy updating upon a new attack.

Ideally, a database firewall security policy dictates how transactions traffic
is handled and how filtering ruleset is managed and updated. Before a policy
is created, a risk analysis on the database system must be performed to gain
knowledge for the vulnerabilities associated with databases. For instance, we
know one of the vulnerabilities in database security is the damage spreading. It
is when a transaction, even if it is a legitimate one, accesses a corrupted data
object that the damage will be spread to any other data object this transaction
touches, directly or indirectly. Then, to limit the potential damage spreading,
firewall policy needs to create a ruleset to restrict the entrance of transactions
that could compromise other data objects while letting other transactions enter
to achieve maximum throughput.

For example, suppose a transaction G1(t, tp) = r1[ox]r1[oy]w1[oy] requires to
enter the database, where tp is transaction type. If it is known that the data ob-
ject ox has been corrupted at this momment, then our policy checker will screen
the transaction and be aware if the request can be granted using the ruleset.

Definition 1 : Integrity Filtering List, Î= {i1(oi1
x1

, oi1
x2

, .., oi1
xm

),i2(oi2
y1

, oi2
y2

, .., oi2
yn

),
..}, where i is a set with data objects on same integrity level, and oi is a data
object associated with the integrity level i. The ruleset is defined as follows:
Rule 1 : ∀ transaction G, if ∃ data object ox ∈ RG, and RG

⋂
Î �= ∅, and if WG

�= ∅, DENY;
Rule 2 : ∀ transaction G, if ∃ data object ox ∈ RG, and RG

⋂
Î �= ∅, and if WG

= ∅, and if i < Q then DENY, otherwise GRANT;
Rule 3 : ∀ transaction G, if � ∃ data object ox ∈ RG, and RG

⋂
Î = ∅, GRANT;

Here, Q is QoIA required by applications. RG, WG is the readset, writeset of a
transaction, respectively. What we have presented here is a sample ruleset. We
should be aware that firewall rulesets tend to become increasingly complicated
with age.

Transaction Filtering Mechanism. In many cases when an attack is de-
tected, not every data object in database is corrupted. Thus, simply applying
the firewall ruleset to screen every incoming transactions is not wise. Here, we
introduce a novel concept called firewall time window.

In the database firewall framework, for each detected attack, Firewall Man-
ager has a life cycle with three different phases: Firewall Generation, Firewall
Mergence and Firewall Withdraw. During the first phase, upon the time when
a malicious transaction Bi is detected, Firewall Manager is notified to generate
a firewall. A firewall time window [tiS , tiE] is denoted as Wi. Here, the [tiS , tiE] is
defined as follows:

186 K. Bai, H. Wang, and P. Liu

Definition 2 : Firewall Time Window Wi of Bi, denoted as [tiS , tiE], is defined as
follows: tiS is the time when Bi starts; tiE is the time when malicious transaction
Bi is detected.

For example, suppose a transaction G1(t, tp) = r1[ox]r1[oy]w1[ox]w1[oz] re-
quires to enter a database, if it is found that tuox

is within the scope of firewall
time window [tS , tE], the ruleset is further checked for security concerns. Oth-
erwise, the permission of entrance to the database can simply be granted. Here,
tuox

is the time when data object ox was updated.

Firewall Updating Mechanism. At phase two, if there are multiple malicious
transactions detected during a period of time, there might exist multiple fire-
walls, and Firewall Manager will force the multiple firewalls to merge together
according to certain rules. By doing this, Access Policy Manager can efficiently
manage multiple versions of access policy. A set of malicious transactions is de-
noted as Bi1, Bi2, ..., Bik. For each firewall time window, the mergence rules are
defined as follows:
Mergence Rule 1 : Firewall time window [tiS , tiE] is ahead of [tjS , tjE] if tiE < tjS .
Firewall time window Wi and Wj are overlap if no one is ahead of another. Wi

includes Wj if tiS < tjS and tiE > tjE .
The rule of firewall mergence is defined as follows:
Mergence Rule 2 : A set of firewall time windows can be merged as one if for
any two time windows Wim and Win, (m < n), there is a sequence of firewall
time windows Wj1, Wj2, ...,Wjk, ...,Wjl, such that they are within the set where
Wim and Wj1 overlap, Wjk and Wj(k+1) overlap, and Wj(k+1) and Wjl overlap.

By applying this firewall mergence ruleset, the framework dynamically ad-
justs the security policies and rulesets corresponding to the changes of firewalls.

In the third phase, there is a condition when it is satisfied, the Firewall Man-
ager will stop restricting access to any data objects within the firewall time win-
dows (That is, when Damage Repairer finishes repairing the located corrupted
data objects). In response to the withdraw of firewall, Access Policy Manager
will reset the access policy to the lowest level of restriction of data access, and the
database system performs in the normal way until the next malicious transaction
is detected.

4 Integrity Level Estimation

One critical issue to guarantee success of Integrity Level Estimation success is
timing. The more time the estimation algorithm spends, the more accurate the
estimation result can be, but the less data availability the database system can
provide. Thus, instead of releasing a final solution of integrity estimation at the
conclusion, the algorithm gives out several versions iteratively along the process.

Now, we propose our integrity estimator model and the first naive estimation
algorithm (1) that balances the tradeoff between performance and security.

Integrity Estimator. Figure (2) illustrates the details of estimator compo-
nent. Basically, there are two subcomponents: One is offline processor; the other

Towards Database Firewalls 187

Offline Processor

Online Processor
APM

DB−FM

IE

Fig. 2. Integrity Estimator Component

is online processor. Offline processor usually is executed after Damage Repairer
finishes repairing and then triggers the Database Firewall Manager to withdraw
the firewalls. In general, to gather knowledge about previous attacks and to save
time for online processor to quickly and precisely estimate the data integrity,
offline processor deals with all kinds of information it can obtain from history
logs, IDS reports, customer profiles and database schemes. In this paper, it is
assumed that offline processor only process the histories stored in database and
subtracts valuable attributes from them, such as the transaction dependency
graphes, attacking time and statistic data (the number of corrupted data ob-
jects, frequency of a data object being corrupted, the number of distinct values
and transaction types, for example). The above information is called an Attack-
ing Pattern, or Fingerprint. Once an attacking is detected, online processor in
Integrity Estimator starts estimating data integrity based on both the knowledge
the offline processor has obtained and the information of new attacking history.
We define Attacking Pattern and Spreading Pattern as follows:

Definition 3 : Attacking Pattern p = (Rj , Wj , a
1
j , a

2
j , . . . , a

m−1
j , am

j , am+1
j , . . .).

Definition 4 : Spreading Pattern P is a dependency related sequence of trans-
actions, Pi = {pBi , p1, p2, . . . , pn−1, pn, pn+1 . . .}. Where, Rj , Wj is the readset,
writeset of a transaction, respectively; Bi is a malicious transaction, and ai is a
valuable attribute that depicts a particular dimension of a transaction, such as
occurrence frequency of a special value or the number of distinct values. And,
Wn−1

⋂
Rn �= ∅.

Algorithm (1) describes the naive approach of how to estimate data object
integrity. In general, this algorithm is a pattern-match based approach. A vec-
tor containing spreading patterns is created by offline processor based on the
histories it obtains. Basically, this algorithm scans the spreading patterns to
compare the attacking pattern from a newly detected attack with the one in
each spreading pattern in the vector. If a match is found, the R will be increased
by one; otherwise, the unmatched spreading pattern is trimmed off the vector.

188 K. Bai, H. Wang, and P. Liu

In addition, the confined data set C and the number of matched patterns R up-
date correspondingly. Since this is a pattern-matched approach, an unavoidable
problem is what to do in the absence of a matched pattern. From the mathe-
matics perspective, R in equation 1 can not be zero. But, in the algorithm if R
is equal to zero, it indicates the newly detected attacking pattern is one that
had never occurred before. In this scenario, the algorithm stops estimating and
notifies Firewall Manager to reset the firewall time window because damage had
probably already been spread out by this moment. A possible solution to this
problem is to apply a containment approach, such as multi-pahse containment
method, to precisely distinguish the integrity of each data object, invoke the
offline processor to consume the new attack and add this pattern to the vector.

Algorithm 1 Integrity Level Estimation Algorithm Pseudo Code
Require: V [k] : spreading pattern vector. Pnew :newly detected attack � S is the

corrupted data objects of spreading pattern i in V
1: function ILEstimator(V, Pnew)
2: C = ∅, R = 0 � C → Confined data objects set
3: for i ← 1, n do � Scan the pattern vector
4: p ← Pnew [i]
5: for j ← 1, k do � Compare each spreading pattern
6: pv ← V [j]
7: if pv ≡ p then
8: R(t) ← (R(t) + 1)
9: C ← C ∪ SV [j]

10: else
11: V ← V − V [j] � Trim the unmatched pattern off the vector
12: C ← C ∩ SV [j]

13: end if
14: end for
15: if R(t) = 0 then
16: break;
17: else
18: ∀ox ∈ C ← (1 − 1

R(t)
) � Set the integrity of data objects

19: end if � Mark the integrity of data objects
20: APM updates new policy
21: end for
22: end function

5 Experiments and Results

In this section, the experiment results are demonstrated . In order to measure
the effectiveness and performance of our proposed naive method, comprehensive
experiments have been conducted on synthetic data sets generated according to
a modified TPCC standard.

Towards Database Firewalls 189

5.1 Generation of Experimental Data

For the experiment, synthetic data set has been used. All data are generated
based on a modified TPCC dependency relationship, as shown in figure (3). Also,
the data sets have 1M transactions history. 300 different patterns are summa-
rized out of this history. For each pattern, the number of transactions varies in
a range from 2000 to 3500. Furthermore, there are two possible consequences
regarding an approaching attack. One, a new attack is a duplicate of a previous
one, which implies that there is a previous version recorded in the history. Thus,
it becomes a question whether or not identical twins can be found out of the
previous patterns. Two, a new attack is a mutant of an existing version of attack.
Thus, it becomes whether or not the similar ones can be distinguished. In addi-
tion, in these experiments, it is assumed there is only one malicious transaction
Bi at each time. So, firewall mergence is not taken into consideration at current
stage.

5.2 Experiment Results

Figure (4-[a,b,c].1) illustrates the results of the first possible attack pattern,
which is a copy of a previous attack, from three different perspectives, objects
integrity, system availability and estimation validation, respectively. Figure (4-
a.1) presents the results of using our naive method. Obj A, Obj B and Obj C
are the representatives of three sets of data objects. Along the estimation pro-
cess, data objects in set Obj A are first marked as I = {1} because they are
those data objects that are not touched by transactions; thus, they do not be-
long to the patterns that are partials of or similar to the newly detected attack
pattern. Those data objects in set Obj B are assigned to be I = {1} later than
Obj A because the estimator distinguishes that these objects do not belong to
corrupted data set when more knowledge is obtained, and then remark their
integrity. Obj C is the data object set with all corrupted data objects, and it

T1

T2

T7

T6

T5

T4

T3

Fig. 3. Example Transaction Dependency Graph

190 K. Bai, H. Wang, and P. Liu

shrinks because some objects are remarked and moved to Obj A and Obj B
along the estimation process. Figure (4-b.1) shows the system availability in
terms of the number of accessible data objects with a QOIA requirement of
100%. Corresponding to Figure (4-a.1), it can be seen the system availability
increases as the integrity of data objects are remarked and moved to Obj A and
Obj B. At step 11, the estimator finds the final solution of data integrity, and
the availability reaches its highest level. Finally, when the system recovers itself
from attacking, the availability goes back to normal level. In this experiment,
it is assumed that applications only access data objects with marked integrity
equal to I = {1}. For some applications that are aggressive and are willing to
accept multiple levels quality of information assurance (QoIA), the system avail-
ability will be even higher. Figure (4-c.1) illustrates the progress of estimation
validations. It can be seen that at the initial stage of estimation, because of
limited knowledge about the newly detected attack, estimation has a relatively
high estimation variance (normalized in the range of 0 to 1). However, it will
quickly converge to zero (the diagonal denotes the actual errors, which is zero)
as the procedure goes on.

Figure (4-[a,b,c].2) demonstrates the results of the second consequence of
an attack from the same three aspects. Similarly, Figure (4-a.2) presents the
results of data integrity using the naive method. In contrast to Figure (4-a.1),
Obj C does not drop down to zero because the estimator can only find out several
similar patterns instead of one, which indicates that a new type of attack is found.
Therefore, the estimator will be conservative and inform Firewall Manager to
reset firewall time window to contain data objects in Obj C in order to prevent
damage leakage. Beyond the last step, the database will not continue rely on
estimation. Instead, [12] can take over and continue the work. In Figure (4-b.2),
corresponding to the changes of integrity of data objects, the system availability
increases accordingly. Figure (4-c.2) demonstrates from another perspective that,
unlike the convergence shown in Figure (4-c.1), the estimation error does not
decline to zero beyond a certain time point when the estimator could not be
more accurate on data object integrity. However, even this is a case, we still
achieve the goal of improving the system availability.

6 Conclusion and Future Work

This paper presents an innovative idea of database firewall. Unlike the traditional
recovery mechanisms, which shutdown the entire system and recovery itself in
an offline manner, our framework can help a database system continue delivering
services even when an attack is detected. We have developed a naive but effective
approach to use histories and attacking patterns to probabilistically estimate the
integrity level of data objects in the face of an attack, instead of deterministically
finding the data integrity. However, this naive approach assumes a relative simple
attacking pattern. In real world applications, this might be the case. In addition,
efficient estimation of data object integrity is also a great challenge. A quick and
accurate estimation algorithm is critical to the success of database firewalls.

Towards Database Firewalls 191

0 1 2 3 4 5 6 7 8 9 10 11

Estimation steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
at

a
ob

je
ct

s
in

te
gr

ity
 le

ve
l (

*1
00

%
)

Obj_A
Obj_B
Obj_C

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Estimation steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
at

a
ob

je
ct

s
in

te
gr

ity
 le

ve
l (

*1
00

%
)

Obj_A
Obj_B
Obj_C

a.1. Objects Integrity a.2. Objects Integrity

0 1 2 3 4 5 6 7 8 9 10 11

Estimation Steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
at

a
ob

je
ct

s
av

ai
la

bi
lit

y
(*

10
0%

)

Data availability (QoIA 100%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Estimation steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

D
at

a
ob

je
ct

s
av

ai
la

bi
lit

y
(*

10
0%

)

Data availability (QoIA 100%)

b.1. System Availability b.2. System Availability

Estimation steps

0

1

R
an

ge
 o

f
es

tim
at

io
n

er
ro

r Estimation errors
Actual errors−Zero

Estimation steps

0

1

R
an

ge
 o

f
es

tim
at

io
n

er
ro

r Estimation errors
Actual errors−Zero

c.1. Estimation Validation c.2. Estimation Validation

Fig. 4. Two different kinds of attacks from three aspects: integrity, availability, vali-

dation: 1. When a newly detected attack is matched with previous attacks. 2. When a

newly detected attack is similar to the previous attacks

In future work, we plan to formalize the model of the attacking pattern and
damage propagation, as well as redesign the integrity level estimation algorithm.
A number of further SQL and DBMS enhancements are needed to fully exploit

192 K. Bai, H. Wang, and P. Liu

this interesting topic. We have found that the estimation approach we present
may not work efficiently when there are several similar attack patterns or when
a new type attack is detected. One possible solution to this problem could be,
for example, using a sampling and similarity search technique to find out the
final data object integrity solution.

References

1. S. Smith, E. Palmer, and S. Weingart, ”Using a high-performance, programmable
secure coprocessor,” in Proc. International Conference on Financial Cryptography,
Anguilla, British West Indies, 1998.

2. G. C. Necula, ”Proof-carrying code,” in Proc. 24th ACM Symposium on Principles
of Programming Languages, 1997.

3. Z. Shao, B. Saha, and V. Trifonov, ”A type system for certified binaries,” in Proc.
29th ACM Symposium on Principles of Programming Languages, 2002.

4. D. Barbara, R. Goel, and S. Jajodia, ”Using checksums to detect data corruption,”
in Proceedings of the 2000 International Conference on Extending Data Base Tech-
nology, Mar 2000.

5. J. McDermott and D. Goldschlag, ”Towards a model of storage jamming,” in Pro-
ceedings of the IEEE Computer Security Foundations Workshop, Kenmare, Ire-
land, June 1996, pp. 176–185.

6. P. Liu, ”Architectures for intrusion tolerant database systems.” in ACSAC, 2002,
pp. 311–320.

7. P. W. P. J. Grefen and P. M. G. Apers, ”Integrity control in relational database
systems: an overview,” Data Knowl. Eng., vol. 10, no. 2, pp. 187–223, 1993.

8. H. S. Javitz and A. Valdes, ”The sri ides statistical anomaly detector,” in Proceed-
ings IEEE Computer Society Symposium on Security and Privacy, Oakland, CA,
May 1991.

9. T. Garvey and T. Lunt, ”Model-based intrusion detection,” in Proceedings of the
14th National Computer Security Conference, Baltimore, MD, October 1991.

10. K. Ilgun, R. Kemmerer, and P. Porras, ”State transition analysis: A rule-based
intrusion detection approach,” IEEE Transactions on Software Engineering, vol.
21, no. 3, pp. 181–199, 1995.

11. P. Ammann, S. Jajodia, and P. Liu, ”Recovery from malicious transactions,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, no. 5, pp. 1167–1185,
2002.

12. P. Liu and S. Jajodia, ”Multi-phase damage confinement in database systems for
intrusion tolerance,” in Proc. 14th IEEE Computer Security Foundations Work-
shop, Nova Scotia, Canada, June 2001.

13. J. Zhang and P. Liu, ”Delivering services with integrity guarantees in survivable
database systems,” in IFIP WG 11.3 16th International Conference on Data and
Applications Security, Cambridge, UK, vol. 256, July 28-31.

14. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, Reading, MA, 1987.

Complete Redundancy Detection in Firewalls

Alex X. Liu� and Mohamed G. Gouda

Department of Computer Sciences,
The University of Texas at Austin,

Austin, Texas 78712-0233, USA
{alex, gouda}@cs.utexas.edu

Abstract. Firewalls are safety-critical systems that secure most private
networks. The function of a firewall is to examine each incoming and out-
going packet and decide whether to accept or to discard the packet. This
decision is made according to a sequence of rules, where some rules may
be redundant. Redundant rules significantly degrade the performance
of firewalls. Previous work detects only two special types of redundant
rules. In this paper, we solve the problem of how to detect all redundant
rules. First, we give a necessary and sufficient condition for identifying
all redundant rules. Based on this condition, we categorize redundant
rules into upward redundant rules and downward redundant rules. Sec-
ond, we present methods for detecting the two types of redundant rules
respectively. Our methods make use of a tree representation of firewalls,
which is called firewall decision trees.

Keywords: Firewall, Redundant Rules, Network Security.

1 Introduction

1.1 Firewall Basics

Serving as the first line of defense against malicious attacks and unauthorized
traffic, firewalls are crucial elements in securing the private networks of most
businesses, institutions, and even home networks. A firewall is placed at the point
of entry between a private network and the outside Internet so that all incoming
and outgoing packets have to pass through it. A packet can be viewed as a tuple
with a finite number of fields; examples of these fields are source/destination
IP address, source/destination port number, and protocol type. A firewall maps
each incoming and outgoing packet to a decision according to its configuration.
A firewall configuration defines which packets are legitimate and which are il-
legitimate by a sequence of rules. Each rule in a firewall configuration is of the
form

〈predicate〉 → 〈decision〉
The 〈predicate〉 in a rule is a boolean expression over some packet fields and the
physical network interface on which a packet arrives. The 〈decision〉 of a rule can
� Corresponding author.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 193–206, 2005.

c© IFIP International Federation for Information Processing 2005

194 A.X. Liu and M.G. Gouda

be accept, or discard, or a combination of one of these decisions with other options
such as a logging option. For simplicity, we assume that the 〈decision〉 in a rule
is either accept or discard. Since the focus of this paper is firewall configuration,
later we use “firewall” to mean “firewall configuration” if not otherwise specified.

A packet matches a rule if and only if (iff) the packet satisfies the predicate
of the rule. The predicate of the last rule in a firewall is usually a tautology to
ensure that every packet has at least one matching rule in the firewall. Firewall
rules often conflict. Two rules in a firewall conflict iff they not only overlap but
also have different decisions. Two rules overlap iff there is at least one packet that
can match both rules. Due to conflicts among rules, a packet may match more
than one rule in a firewall, and the rules that a packet matches may have different
decisions. To resolve conflicts among rules, for each incoming or outgoing packet,
a firewall maps it to the decision of the first (i.e., highest priority) rule that the
packet matches.

1.2 Redundant Rules

Firewalls often have redundant rules. A rule in a firewall is redundant iff removing
the rule does not change the function of the firewall, i.e., does not change the
decision of the firewall for every packet. For example, consider the firewall in
Figure 1, whose geometric representation is in Figure 2. This firewall consists of
four rules r1 through r4. The domain of field F1 is [1, 100].

We have the following two observations concerning the redundant rules in
the firewall in Figure 1.

1. Rule r3 is redundant. This is because the first matching rule for all packets
where F1 ∈ [30, 50] is r1, and the first matching rule for all packets where
F1 ∈ [51, 60] is r2. Therefore, there are no packets whose first matching

r1 : F1 ∈ [1, 50] → accept
r2 : F1 ∈ [40, 90] → discard
r3 : F1 ∈ [30, 60] → accept
r4 : F1 ∈ [51, 100]→ discard

Fig. 1. A simple firewall

r1 :

r2 :

r3 :

r4 :

1 50

40 90

30 60

51 100

accept

accept

discard

discard

Fig. 2. Geometric representation of the firewall in Figure 1

Complete Redundancy Detection in Firewalls 195

rule is r3. We call r3 an upward redundant rule. A rule r in a firewall is
upward redundant iff there are no packets whose first matching rule is r.
Geometrically, a rule is upward redundant in a firewall iff the rule is overlayed
by some rules listed above it.

2. Rule r2 becomes redundant after r3 is removed. Note that r2 is the first
matching rule for all packets where F1 ∈ [51, 90]. However, if we remove r2

(assuming that r3 has been removed), the first matching rule for all those
packets becomes r4 instead of r2. This does not change the function of the
firewall since both r2 and r4 have the same decision. We call r2 a downward
redundant rule. A rule r in a firewall is downward redundant iff for each
packet, whose first matching rule is r, the first matching rule below r has
the same decision as r.

Redundant rules significantly degrade the performance of firewalls. A fire-
wall maps a packet to the decision of the first rule that the packet matches
using packet classification algorithms. A packet classification algorithm maps
each packet to the right decision using an internal data structure built from a
firewall of a sequence of rules. The fewer the rules in a firewall are, the faster a
packet classification algorithm can map a packet to the right decision. To map a
given packet to the decision of the first rule that the packet matches, according to
the complexity bounds from computational geometry [15], the “best” software-
based packet classification algorithm uses either O(nd) space and O(log n) time
or O(n) space and O(logd−1 n) time, where n is the total number of rules and d
(d > 3) is the total number of fields that the firewall examines for every packet.
Clearly, for software-based packet classification algorithms, either space or run-
ning time grows quickly as the number of rules increases. Reducing the space
that a software-based packet classification algorithm needs also helps to reduce
the running time of the algorithm because small space consumption could enable
the use of very limited on-chip cache to store the data structure of the algorithm.
All in all, for software-based packet classification algorithms, it is advantageous
to reduce the number of rules in a firewall. For hardware-based packet classi-
fication algorithms, it is also advantageous to reduce the number of rules in a
firewall. Consider the example of a TCAM (Ternary Content Addressable Mem-
ory). A TCAM uses O(n) space and constant time in mapping a given packet
to the decision of the first rule the packet matches. Moreover, TCAM consumes
less power as the number of rules decreases.

1.3 Related Work

Previous work on firewalls has primarily focused on firewall design (see [5,6,10,
13, 8]) and firewall analysis (see [14, 16, 11, 12, 7]). None of these papers address
the issue of redundant rules. The problem of detecting redundant rules only
receives attention in [9, 2, 3, 4].

In [9], two special types of redundant rules are identified: backward redundant
rules and forward redundant rules. A rule r in a firewall is backward redundant
iff there exists another rule r′ listed above r such that all packets that match r

196 A.X. Liu and M.G. Gouda

also match r′. Clearly, a backward redundant rule is an upward redundant rule,
but not vice versa. For example, rule r3 in Figure 1 is upward redundant, but not
backward redundant. A rule r in a firewall is forward redundant iff there exists
another rule r′ listed below r such that the following three conditions hold: (1)
all packets that match r also match r′, (2) r and r′ have the same decision, (3)
for each rule r′′ listed between r and r′, either r and r′′ have the same decision,
or no packet matches both r and r′′. Clearly, a forward redundant rule is a
downward redundant rule, but not vice versa. For example, rule r2 in Figure
1, assuming r3 has been removed previously, is downward redundant, but not
forward redundant. It has been observed in [9] that 15% of the rules in real-life
firewalls are backward redundant or forward redundant.

The redundant rules identified in [2,3,4] are similar to those identified in [9],
except that for the case of backward redundant rules, they require that the two
rules r and r′ must have the same decision.

The bottom line is that the set of redundant rules identified by previous work
is incomplete. In other words, given a firewall, after we remove the redundant
rules identified in previous work, the firewall still possibly has redundant rules.
So, how to detect all the redundant rules in a firewall? This is a hard problem
and this problem has never been addressed previously.

1.4 Our Contribution

In this paper, we solve the problem of detecting all redundant rules in a firewall.
First, we give a necessary and sufficient condition for identifying all redundant
rules. Based on this condition, we categorize redundant rules into upward re-
dundant rules and downward redundant rules. Second, we present methods for
detecting the two types of redundant rules respectively. Our methods make use
of a tree representation of firewalls, which is called firewall decision trees.

Note that removing redundant rules can be done by firewall software inter-
nally. Therefore, the external firewall configuration, i.e., the original sequence
of rules which is viewed by firewall administrators, would remain the same. In
other words, the procedure of removing redundant rules can be transparent to
firewall administrators. Also note that applying our procedure of removing re-
dundant rules does not prevent a firewall administrator from updating a firewall
configuration. When the configuration of a firewall is changed due to some rules
being inserted, deleted or modified, firewall software always needs to rebuild its
internal data structure from the new sequence of rules.

2 Firewall Redundant Rules

We define a packet over the fields F1, · · · , Fd as a d-tuple (p1, · · · , pd) where each
pi is a value in the domain D(Fi) of field Fi, and each D(Fi) is an interval
of nonnegative integers. For example, the domain of the source address in an
IP packet is [0, 232 − 1]. We use Σ to denote the set of all packets over fields
F1, · · · , Fd. It follows that Σ is a finite set and |Σ| = |D(F1)| × · · · × |D(Fn)|.

Complete Redundancy Detection in Firewalls 197

A firewall over the fields F1, · · · , Fd is a sequence of rules, and each rule is of
the following format:

(F1 ∈ S1) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉
where each Si is a nonempty subset of D(Fi) and 〈decision〉 is either accept or
discard . For simplicity, in the rest of this paper, we assume that all packets and
all firewalls are over the fields F1, · · · , Fd, if not otherwise specified.

Some existing firewall products, such as Linux’s ipchains [1], require each
Si in a rule to be represented in a prefix format. An example of a prefix is
192.168.0.0/16, where 16 means that the prefix is the first 16 bits of 192.168.0.0.
In this paper we use “set”, instead of “prefix”, to describe firewall rules for two
reasons. First, sets and prefixes are algorithmically interconvertible. For example,
the set {2, 3, · · · , 8} can be converted to 3 prefixes: 001∗, 01∗, 1000. Second, it is
easier to argue the mathematical properties of sets than those of prefixes.

A packet (p1, · · · , pd) matches a rule (F1 ∈ S1)∧· · ·∧ (Fd ∈ Sd)→ 〈decision〉
iff (p1 ∈ S1) ∧ · · · ∧ (pd ∈ Sd) holds.

A sequence of rules 〈r1, · · · , rn〉 is comprehensive iff for any packet p in Σ,
there is at least one rule in 〈r1, · · · , rn〉 that p matches. A sequence of rules needs
to be comprehensive for it to serve as a firewall. From now on, we assume that
each firewall is comprehensive. Henceforth, the predicate of the last rule in a
firewall can always be replaced by (F1 ∈ D(F1)) ∧ · · · ∧ (Fd ∈ D(Fd)) without
changing the function of the firewall. In the rest of this paper, we assume that
the predicate of the last rule in a firewall is (F1 ∈ D(F1))∧· · ·∧(Fd ∈ D(Fd)). It
follows from this assumption that any postfix of a firewall is comprehensive, i.e.,
given a firewall 〈r1, r2, · · · , rn〉, we know that 〈ri, ri+1, · · · , rn〉 is comprehensive
for each i, 1 ≤ i ≤ n.

We use f(p) to denote the decision to which a firewall f maps a packet p.
Two firewalls f and f ′ are equivalent, denoted f ≡ f ′, iff for any packet p in Σ,
f(p) = f ′(p) holds. This equivalence relation is symmetric, self-reflective, and
transitive. Using the concept of equivalent firewalls, we define redundant rules
as follows.

Definition 1 (Redundant Rule). A rule r is redundant in a firewall f iff the
resulting firewall f ′ after removing rule r is equivalent to f .

Before introducing our redundancy theorem, we define two important con-
cepts that are associated with each rule in a firewall: matching set and resolving
set.

Definition 2 (Matching Set and Resolving Set). Consider a firewall f that
consists of n rules 〈r1, r2, · · · , rn〉. The matching set of a rule ri in this firewall is
the set of all packets that match ri. The resolving set of a rule ri in this firewall
is the set of all packets that match ri, but do not match any rj where j < i.

For example, consider rule r2 in Figure 1: its matching set is the set of all
the packets whose F1 field is in [40, 90]; and its resolving set is the set of all the
packets whose F1 field is in [51, 90].

198 A.X. Liu and M.G. Gouda

The matching set of a rule ri is denoted M(ri), and the resolving set of a
rule ri is denoted R(ri, f). Note that the matching set of a rule depends only on
the rule itself, while the resolving set of a rule depends both on the rule and on
all the rules listed above it in a firewall.

The following theorem states several important properties of matching sets
and resolving sets.

Theorem 1 (Resolving Set Theorem). Let f be any firewall that consists
of n rules: 〈r1, r2, · · · , rn〉. The following four conditions hold:

1. Equality:
⋃i

j=1 M(rj) =
⋃i

j=1 R(rj , f) for each i, 1 ≤ i ≤ n

2. Dependency: R(ri, f) = M(ri)−
⋃i−1

j=1 R(rj , f) for each i, 1 ≤ i ≤ n
3. Determinism: R(ri, f) ∩R(rj , f) = ∅ for each i �= j
4. Comprehensiveness:

⋃n
i=1 R(ri, f) = Σ �

The redundancy theorem below gives a necessary and sufficient condition for
identifying redundant rules. Note that we use the notation 〈ri+1, ri+2, · · · , rn〉(p)
to denote the decision to which the firewall 〈ri+1, ri+2, · · · , rn〉 maps packet p.

Theorem 2 (Redundancy Theorem). Let f be any firewall that consists of
n rules: 〈r1, r2, · · · , rn〉. A rule ri is redundant in f iff one of the following two
conditions holds:

1. R(ri, f) = ∅,
2. R(ri, f) �= ∅, and for any p that p ∈ R(ri, f), 〈ri+1, ri+2, · · · , rn〉(p) yields

the same decision as that of ri. �

Note that removing rule ri from firewall f only possibly affects the decision of
the packets in R(ri, f). If R(ri, f) = ∅, then ri is clearly redundant. If R(ri, f) �=
∅, and for any p that p ∈ R(ri, f), 〈ri+1, ri+2, · · · , rn〉(p) yields the same as that
of ri, then ri is redundant because removing ri does not affect the decision of
the packets in R(ri, f).

The redundancy theorem allows us to categorize redundant rules into upward
and downward redundant rules.

Definition 3. A rule that satisfies condition 1 in the redundancy theorem is
called upward redundant. A rule that satisfies condition 2 in the redundancy
theorem is called downward redundant.

Consider the example firewall f in Figure 1. Rule r3 is an upward redundant
rule because R(r3, f) = ∅. Let f ′ be the resulting firewall by removing rule r3

from f . Then rule r2 is downward redundant in f ′.

3 Firewall Decision Trees and Rules

In [8], Firewall Decision Diagrams are proposed as a useful notation for specify-
ing firewalls. In this paper, we use a special type of firewall decision diagrams,
called Firewall Decision Trees (FDTs), as the core data structure for detecting
redundant rules.

Complete Redundancy Detection in Firewalls 199

Definition 4 (Firewall Decision Tree). A Firewall Decision Tree t over fields
F1, · · · , Fd is a directed tree that has the following four properties:

1. Each node v in t has a label, denoted F (v), such that

F (v) ∈
{{F1, · · · , Fd} if v is nonterminal,
{accept , discard} if v is terminal.

2. Each edge e in t has a label, denoted I(e), such that if e is an outgoing edge
of node v, then I(e) is a nonempty subset of D(F (v)).

3. A directed path in t from the root to a terminal node is called a decision path
of t. Each decision path contains d nonterminal nodes, and the i-th node is
labelled Fi for each i that 1 ≤ i ≤ d.

4. The set of all outgoing edges of a node v in t, denoted E(v), satisfies the
following two conditions:
(a) Consistency: I(e) ∩ I(e′) = ∅ for any two distinct edges e

and e′ in E(v),
(b) Completeness:

⋃
e∈E(v) I(e) = D(F (v)) �

Figure 3 shows an example of an FDT over the two fields F1 and F2, where
D(F1) = D(F2) = [1, 100]. In the rest of this paper, including this example, we
use “a” as a shorthand for accept and “d” as a shorthand for discard.

F1

F2F2

[1, 19] [20, 50]

[51, 100]

[1, 100] [1, 34] [35, 65]

[66, 100]

ad d

Fig. 3. An FDT

A decision path in an FDT t is represented by (v1e1 · · · vkekvk+1) where v1

is the root of t, vk+1 is a terminal node of t, and each ei is a directed edge from
node vi to node vi+1 in t. A decision path (v1e1 · · · vkekvk+1) in an FDT defines
the following rule:

F1 ∈ I(e1) ∧ · · · ∧ Fn ∈ I(en) → F (vk+1)

For example, the leftmost path in Figure 3 defines the following rule:

F1 ∈ [1, 19] ∪ [51, 100]∧ F2 ∈ [1, 100]→ d

We use Γ (t) to denote the set of all the rules defined by all the decision
paths in FDT t. If we use t to denote the FDT in Figure 3, then Γ (t) = {(F1 ∈

200 A.X. Liu and M.G. Gouda

[1, 19]∪[51, 100])∧(F2 ∈ [1, 100])→ d, (F1 ∈ [20, 50])∧(F2 ∈ [1, 34]∪[66, 100])→
d, (F1 ∈ [20, 50]) ∧ (F2 ∈ [35, 65])→ a}.

For any packet p, there is one and only one rule in Γ (t) that p matches because
of the consistency and completeness properties of FDT t. The semantics of an
FDT t is that for any packet p in Σ, t maps p to the decision of the only rule that
p matches in Γ (t). We use t(p) to denote the decision to which an FDT t maps
a packet p. An FDT t and a sequence of rules f are equivalent, denoted t ≡ f ,
iff for any packet p, t(p) = f(p) holds. Clearly, given an FDT t, any firewall that
consists of all the rules in Γ (t) is equivalent to t. The order of the rules in such
a firewall is immaterial because there are no overlapping rules in Γ (t).

In the process of checking upward redundant rules, the data structure that
we maintain is called a partial FDT. A partial FDT is a tree that may not have
the completeness property of an FDT, but has all the other properties of an
FDT. For example, Figure 4 shows a partial FDT.

F1

F2F2

[20, 50] [10, 19]

[51, 60]

[35, 65] [15, 34] [15, 45]

a dd

Fig. 4. A partial FDT

We use Γ (t) to denote the set of all the rules defined by all the decision paths
in a partial FDT t. For any packet p that p ∈ ⋃

r∈Γ (t) M(r), there is one and
only one rule in Γ (t) that p matches. We use t(p) to denote the decision of the
unique rule that p matches in Γ (t).

Given a partial FDT t and a sequence of rules 〈r1, r2, · · · , rk〉 that may be
not comprehensive, we say t is equivalent to 〈r1, r2, · · · , rk〉 iff the following two
conditions hold:

1.
⋃

r∈Γ (t) M(r) =
⋃k

i=1 M(ri),
2. for any packet p that p ∈ ⋃

r∈Γ (t) M(r), t(p) is the same as the decision of
the first rule that p matches in the sequence 〈r1, r2, · · · , rk〉.

For example, the partial FDT in Figure 4 is equivalent to the sequence of rules
〈(F1 ∈ [20, 50])∧ (F2 ∈ [35, 65])→ a, (F1 ∈ [10, 60])∧ (F2 ∈ [15, 45])→ d〉.

4 Removing Upward Redundancy

In this section, we discuss how to remove upward redundant rules. By definition,
a rule is upward redundant iff its resolving set is empty. Therefore, in order to

Complete Redundancy Detection in Firewalls 201

remove all upward redundant rules from a firewall, we need to calculate resolving
set for each rule in the firewall. How to represent a resolving set? In this paper,
we represent the resolving set of a rule by an effective rule set of the rule. An
effective rule set of a rule r in a firewall f is a set of rules where the union of all
the matching sets of these rules is exactly the resolving set of rule r in f . More
precisely, an effective rule set of a rule r is defined as follows:

Definition 5. Let r be a rule in a firewall f . A set of rules {r′1, r′2, · · · , r′k} is an
effective rule set of r iff the following three conditions hold:

1. R(r, f) =
⋃k

i=1 M(r′i),
2. r′i and r have the same decision for 1 ≤ i ≤ k. �

For example, consider the firewall in Figure 1. Then, {F1 ∈ [1, 50]→ accept}
is an effective rule set of rule r1, {F1 ∈ [51, 90] → discard} is an effective rule
set of rule r2, ∅ is an effective rule set of rule r3, and {F1 ∈ [91, 100]→ discard}
is an effective rule set of rule r4. Clearly, once we obtain an effective rule set
of a rule r in a firewall f , we know the resolving set of the rule r in f , and
consequently know whether the rule r is upward redundant in f . Note that by
the definition of an effective rule set, if one effective rule set of a rule r is empty,
then any effective rule set of the rule r is empty. Based on the above discussion,
we have the following upward redundancy theorem:

Theorem 3 (Upward Redundancy Theorem). A rule r is upward redun-
dant in a firewall iff an effective rule set of r is empty. �

Based on the above upward redundancy theorem, the basic idea of our upward
redundancy removal method is as follows: given a firewall 〈r1, r2, · · · , rn〉, we
calculate an effective rule set for each rule from r1 to rn. If the effective rule set
calculated for a rule ri is empty, then ri is upward redundant and is removed.
Now the problem is how to calculate an effective rule set for every rule in a
firewall.

An effective rule set for each rule in a firewall is calculated with the help
of partial FDTs. Consider a firewall that consists of n rules 〈r1, r2, · · · , rn〉. We
first build a partial FDT, denoted t1, that is equivalent to the sequence 〈r1〉,
and calculates an effective rule set, denoted E1, of rule r1. Then we transform
the partial FDT t1 to another partial FDT, denoted t2, that is equivalent to the
sequence 〈r1, r2〉, and during the transformation process, we calculate an effective
rule set, denoted E2, of rule r2. The same transformation process continues until
we reach rn. When we finish, an effective rule set is calculated for every rule.

Here we use ti to denote the partial FDT that we constructed from the rule
sequence 〈r1, r2, · · · , ri〉, and Ei to denote the effective rule set that we calculated
for rule ri. By the following example, we show the process of transforming the
partial FDT ti to the partial FDT ti+1, and the calculation of Ei+1. Consider
the firewall in Figure 5 over fields F1 and F2, where D(F1) = D(F2) = [1, 100].
Figure 6 shows the geometric representation of this firewall, where each rule is
represented by a rectangle. From Figure 6, we can see that rule r3 is upward

202 A.X. Liu and M.G. Gouda

r1 : (F1 ∈ [20, 50]) ∧ (F2 ∈ [35, 65]) → a
r2 : (F1 ∈ [10, 60]) ∧ (F2 ∈ [15, 45]) → d
r3 : (F1 ∈ [30, 40]) ∧ (F2 ∈ [25, 55]) → a
r4 : (F1 ∈ [1, 100]) ∧ (F2 ∈ [1, 100]) → d

Fig. 5. A firewall of 4 rules

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

 Packet Field F
1

 P
ac

ke
t

F
ie

ld
 F

2

 r
4

 r
2

 r
1

 r
3

 r
4

 r
2

 r
1

 r
3

 r
4

 r
2

 r
1

 r
3

Fig. 6. Geometric representation of the rules in Figure 5

redundant because r3, whose area is marked by dashed lines, is totally overlaid
by rules r1 and r2. Later we will see that the effective rule set calculated by our
upward redundancy removal method for rule r3 is indeed an empty set.

Figure 7 shows a partial FDT t1 that is equivalent to 〈r1〉 and the effective
rule set E1 calculated for rule r1. In this figure, we use v1 to denote the node
with label F1, e1 to denote the edge with label [20, 50], and v2 to denote the
node with label F2.

Now we show how to append rule r2 to t1 in order to get a partial FDT
t2 that is equivalent to 〈r1, r2〉, and how to calculate an effective rule set E2

for rule r2. Rule r2 is (F1 ∈ [10, 60]) ∧ (F2 ∈ [15, 45]) → d. We first compare
the set [10, 60] with the set [20, 50] labelled on the outgoing edge of v1. Since
[10, 60]−[20, 50] = [10, 19]∪[51, 60], r2 is the first matching rule for all the packets
that satisfy F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45], so we add one outgoing edge
e to v1, where e is labeled [10, 19] ∪ [51, 60] and e points to the path built from
F2 ∈ [15, 45]→ d. The rule defined by the decision path containing e, i.e., F1 ∈
[10, 19]∪ [51, 60]∧F2 ∈ [15, 45] → d, should be put in E2 because for all packets
that match this rule, r2 is their first matching rule. Since [20, 50] ⊂ [10, 60], r2

is possibly the first matching rule for a packet that satisfies F1 ∈ [20, 50]. So we
further compare the set [35, 65] labeled on the outgoing edge of v2 with the set

Complete Redundancy Detection in Firewalls 203

F1

F2

[20, 50]

[35, 65]

E1 = {F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a}

a

Fig. 7. Partial FDT t1 and the effective rule set E1 calculated for rule r1 in Figure 5

[15, 45]. Since [15, 45]− [35, 65] = [15, 34], we add a new edge e′ to v2, where e′ is
labeled [15, 34] and e′ points to a terminal node labeled d. Similarly, we add the
rule, F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d, defined by the decision path containing
the new edge e′ into E2. The partial FDT t2 and the effective rule set E2 of rule
r2 is shown in Figure 8.

F1

F2 F2

[20, 50] [10, 19]

[51, 60]

[35, 65] [15, 34] [15, 45]

E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d
F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d}

a d d

Fig. 8. Partial FDT t2 and the effective rule set E2 calculated for rule r2 in Figure 5

Let f be any firewall that consists of n rules: 〈r1, r2, · · · , rn〉. The partial
FDT that is equivalent to 〈r1〉 consists of only one decision path that defines the
rule r1.

Suppose that we have constructed a partial FDT ti that is equivalent to the
sequence 〈r1, r2, · · · , ri〉, and have calculated an effective rule set for each of these
i rules. Let v be the root of ti, and assume v has k outgoing edges e1, e2, · · · , ek.
Let rule ri+1 be (F1 ∈ S1) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈ Sd) → 〈decision〉. Next we
consider how to transform the partial FDT ti to a partial FDT, denoted ti+1, that
is equivalent to the sequence 〈r1, r2, · · · , ri, ri+1〉, and during the transformation
process, how to calculate an effective rule set, denoted Ei+1, for rule ri+1.

First, we examine whether we need to add another outgoing edge to v. If
S1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek)) �= ∅, we need to add a new outgoing edge ek+1

with label S1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek)) to v. This is because any packet,
whose F1 field satisfies S1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek)), does not match any
of the first i rules, but matches ri+1 provided that the packet also satisfies

204 A.X. Liu and M.G. Gouda

(F2 ∈ S2)∧ (F3 ∈ S3)∧ · · · ∧ (Fd ∈ Sd). The new edge ek+1 points to the root of
the path that is built from (F2 ∈ S2)∧ (F3 ∈ S3)∧ · · · ∧ (Fd ∈ Sd)→ 〈decision〉.
The rule r, (F1 ∈ S1 − (I(e1) ∪ I(e2) ∪ · · · ∪ I(ek))) ∧ (F2 ∈ S2) ∧ · · · ∧ (Fd ∈
Sd) → 〈decision〉, defined by the decision path containing the new edge ek+1 has
the property M(r) ⊆ R(ri+1, f). Therefore, we add rule r to Ei.

Second, we compare S1 and I(ej) for each j (1 ≤ j ≤ k) in the following
three cases:

1. S1 ∩ I(ej) = ∅: In this case, we skip edge ej because any packet whose value
of field F1 is in set I(ej) doesn’t match ri+1.

2. S1∩I(ej) = I(ej): In this case, for a packet p whose value of field F1 is in set
I(ej), the first rule that p matches may be one of the first i rules, and may be
rule ri+1. So we append (F2 ∈ S2)∧ (F3 ∈ S3)∧· · ·∧ (Fd ∈ Sd)→ 〈decision〉
to the subtree rooted at the node that ej points to in a similar fashion.

3. S1 ∩ I(ej) �= ∅ and S1 ∩ I(ej) �= I(ej): In this case, we split edge e into two
edges: e′ with label I(ej) − S1 and e′′ with label I(ej) ∩ S1. Then we make
two copies of the subtree rooted at the node that ej points to, and let e′ and
e′′ point to one copy each. Thus we can deal with e′ by the first case, and
e′′ by the second case.

In the process of appending rule ri+1 to partial FDT ti, each time that we
add a new edge to a node in ti, the rule defined by the decision path containing
the new edge is added to Ei+1. After the partial FDT ti is transformed to ti+1,
according to the transformation process, the rules in Ei+1 satisfy the following
two conditions: (1) the union of all the matching sets of these rules is the resolving
set of ri+1, (2) all these rules have the same decision as ri+1. Therefore, Ei+1 is
an effective rule set of rule ri+1.

By applying our upward redundancy removal method to the firewall in Figure
5, we get an effective rule set for each rule as shown in Figure 9. Note that E3 = ∅,
which means that rule r3 is upward redundant, therefore r3 is removed.

1 : E1 = {F1 ∈ [20, 50] ∧ F2 ∈ [35, 65] → a};
2 : E2 = {F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [15, 45] → d

F1 ∈ [20, 50] ∧ F2 ∈ [15, 34] → d};
3 : E3 = ∅;
4 : E4 = {

F1 ∈ [1, 9] ∪ [61, 100] ∧ F2 ∈ [1, 100] → d
F1 ∈ [20, 29] ∪ [41, 50] ∧ F2 ∈ [1, 14] ∪ [66, 100]→ d
F1 ∈ [30, 40] ∧ F2 ∈ [1, 14] ∪ [66, 100] → d
F1 ∈ [10, 19] ∪ [51, 60] ∧ F2 ∈ [1, 14] ∪ [46, 100]→ d}

Fig. 9. Effective rule sets calculated for the firewall in Figure 5

Complete Redundancy Detection in Firewalls 205

5 Removing Downward Redundancy

One particular advantage of detecting and removing upward redundant rules
before detecting and removing downward redundant rules in a firewall is that an
effective rule set for each rule is calculated by the upward redundancy removal
method; therefore, we can use the effective rule set of a rule to check whether
the rule is downward redundant. Note that knowing an effective rule set of a
rule equals knowing the resolving set of the rule.

Our method for removing downward redundant rules is based on the following
theorem.

Theorem 4. Let f be any firewall that consists of n rules: 〈r1, r2, · · · ,
rn〉. Let t′i (2 ≤ i ≤ n) be an FDT that is equivalent to the sequence of
rules 〈ri, ri+1, · · · , rn〉. The rule ri−1 with the effective rule set Ei−1 is down-
ward redundant in f iff for each rule r in Ei−1 and for each decision path
(v1e1v2e2 · · · vdedvd+1) in t′i where rule r overlaps the rule that is defined by this
decision path, the decision of r is the same as the label of the terminal node
vd+1.

Now we consider how to construct an FDT t′i, 2 ≤ i ≤ n, that is equivalent
to the sequence of rules 〈ri, ri+1, · · · , rn〉. The FDT t′n can be built from rule rn

in the same way that we build a path from a rule in the upward redundancy
removal method.

Suppose we have constructed an FDT t′i that is equivalent to the sequence of
rules 〈ri, ri+1, · · · , rn〉. First, we check whether rule ri−1 is downward redundant
by Theorem 4. If rule ri−1 is downward redundant, then we remove ri, rename the
FDT t′i to be t′i−1, and continue to check whether ri−2 is downward redundant.
If rule ri−1 is not downward redundant, then we append rule ri−1 to the FDT
t′i such that the resulting tree is an FDT, denoted t′i−1, that is equivalent to the
sequence of rules 〈ri−1, ri, · · · , rn〉. This procedure of transforming an FDT by
appending a rule is similar to the procedure of transforming a partial FDT in
the upward redundancy removal method. The above process continues until we
reach r1; therefore, all downward redundant rules are detected and removed.

Applying our downward redundancy removal method to the firewall in Figure
5, assuming r3 has been removed, rule r2 is detected to be downward redundant,
therefore r2 is removed. The FDT in Figure 3 is the resulting FDT by appending
rule r1 to the FDT that is equivalent to 〈r4〉.

6 Concluding Remarks

We make two major contributions in this paper. First, we give a necessary and
sufficient condition for identifying all redundant rules, based on which we cat-
egorize redundant rules into upward redundant rules and downward redundant
rules. Second, we present methods for detecting the two types of redundant rules
respectively. Our methods make use of a tree representation of firewalls, which
is called firewall decision trees.

206 A.X. Liu and M.G. Gouda

The results in this paper can be extended for use in many systems where a
system can be represented by a sequence of rules. Examples of such systems are
rule-based systems in the area of artificial intelligence and access control in the
area of databases. In these systems, we can extend the results in this paper to
remove redundant rules and thereby make the systems more efficient.

References

1. ipchains, http://www.tldp.org/howto/ipchains-howto.html.
2. E. Al-Shaer and H. Hamed. Firewall policy advisor for anomaly detection and rule

editing. In IEEE/IFIP Integrated Management IM’2003, pages 17–30, March 2003.
3. E. Al-Shaer and H. Hamed. Management and translation of filtering security

policies. In IEEE International Conference on Communications, pages 256–260,
May 2003.

4. E. Al-Shaer and H. Hamed. Discovery of policy anomalies in distributed firewalls.
In IEEE INFOCOM’04, pages 2605–2616, March 2004.

5. Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall man-
agement toolkit. In Proceeding of the IEEE Symposium on Security and Privacy,
pages 17–31, 1999.

6. Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall man-
agement toolkit. Technical Report EES2003-1, Dept. of Electrical Engineering
Systems, Tel Aviv University, 2003.

7. M. Frantzen, F. Kerschbaum, E. Schultz, and S. Fahmy. A framework for under-
standing vulnerabilities in firewalls using a dataflow model of firewall internals.
Computers and Security, 20(3):263–270, 2001.

8. M. G. Gouda and A. X. Liu. Firewall design: consistency, completeness and com-
pactness. In Proceedings of the 24th IEEE International Conference on Distributed
Computing Systems (ICDCS’04), pages 320–327.

9. P. Gupta. Algorithms for Routing Lookups and Packet Classification. PhD thesis,
Stanford University, 2000.

10. J. D. Guttman. Filtering postures: Local enforcement for global policies. In Pro-
ceedings of IEEE Symp. on Security and Privacy, pages 120–129, 1997.

11. S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for improving the depend-
ability of firewall and filter rule lists. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN’00), pages 576–585, 2000.

12. S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen. Analysis of
vulnerabilities in internet firewalls. Computers and Security, 22(3):214–232, 2003.

13. A. X. Liu and M. G. Gouda. Diverse firewall design. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (DSN’04), pages 595–604,
June 2004.

14. A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In Proceedings
of IEEE Symp. on Security and Privacy, pages 177–187, 2000.

15. M. H. Overmars and A. F. van der Stappen. Range searching and point location
among fat objects. Journal of Algorithms, 21(3):629–656.

16. A. Wool. Architecting the lumeta firewall analyzer. In Proceedings of the 10th
USENIX Security Symposium, pages 85–97, August 2001.

A Comprehensive Approach to

Anomaly Detection in Relational Databases

Adrian Spalka1 and Jan Lehnhardt2

1 Dept of Computer Science III, University of Bonn
Römerstr. 164, 53117 Bonn, Germany

adrian@iai.uni-bonn.de
2 NOVOTERGUM AG

Im Park 20, 50996 Köln, Germany
j.lehnhardt@novotergum.ag

Abstract. Anomaly detection systems assume that a certain deviation
from the regular behaviour of a system can be an indicator for a secu-
rity violation. They proved their usefulness to networks and operating
systems for a long time, but are much less prominent in the field of
databases. Relational databases operate on attributes within relations,
ie, on data with a very uniform structure, which makes them a prime
target for anomaly detection systems. This work presents such a sys-
tem for the database extension and the user interaction with a DBMS;
it also proposes a misuse detection system for the database scheme. In
a comprehensive investigation we compare two approaches to deal with
the database extension, one based on reference values and one based on
Δ-relations, and show that already standard statistical functions yield
good detection results. We then apply our methods to the user interac-
tion, which is split into user input and DBMS behaviour. All methods
have been implemented in a semi-automatic anomaly detection tool for
the MS SQL Server 2000.

Keywords: Database security, anomaly detection, misuse detection, re-
lational databases.

1 Introduction

Today’s relational databases and database management systems (DBMS) offer
a variety of protection mechanisms. As a prerequisite, users must pass the iden-
tification and authentication to obtain access to a DBMS. A user’s powers at
the DBMS-level, eg, the ability to perform data definition operations, to backup
databases or to act as an administrator, are often constrained with privileges.
Also at the DBMS-level is an access control system, which decides on a user’s
access to individual databases within the DBMS. Security at the database-level
relies mostly on the mechanisms provided by SQL, the standard language for
relational databases. Database developers are assumed to enforce confidential-
ity through authorisation, ie a restriction of access to relations and views with

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 207–221, 2005.

c© IFIP International Federation for Information Processing 2005

208 A. Spalka and J. Lehnhardt

grant/revoke statements. The preservation of availability resorts to technical
means, such as backups and execution time limits for queries.

Let us now turn our attention to the two concepts of integrity and accuracy.
The (present) extension of a database, ie the data in its relations, should be
an accurate image of the present state of the corresponding real-world section.
A database supports accuracy by means of integrity, which is defined by a set
of constraints. In SQL, data types and primary-key constraints are examples
of declarative integrity constraints and triggers are used to specify operational
integrity constraints.

From a database’s viewpoint, integrity constraints separate the definitely
inaccurate data sets from the possibly accurate data sets, which are admitted as
extensions. In practice, the set of possible extensions of a database is very large.
And thus, though we know that the extension is always possibly accurate, all
its data can still be wrong. Well, every reasonably large database has a small
fraction of inaccurate data – a well designed business process can cope with it.
However, the larger this fraction grows the larger is its negative impact.

Anomaly detection is a technique that generates hints of probably wrong data
and harmful operations. In a first step an anomaly detector examines the regular
state and behaviour of a system and computes from them a set of reference data,
which captures their characteristic properties. Then, the same computations are
applied to the system in operation and the current set is compared with the
reference set. Whenever the difference exceeds a specified threshold, the anomaly
detector reports an anomaly, viz an unusual deviation.

Networks benefit from this idea for a long time. Intrusion detection systems
(IDS) are the most popular type of anomaly detectors (there are countless refer-
ences). But also operating systems are a prominent target for anomaly detectors
(cf eg [2], [4] and [8]).

Anomaly detection works best, ie produces the fewest wrong hints and
alarms, on systems with clear patterns of regularity. The identification or ex-
traction of these patterns is the most difficult task in the design of an anomaly
detection system (ADS) for networks and operating systems – with well designed
relational databases many of them come for free.

Our ADS is based on the following facts and assumptions:
– An attribute in a relation has a simple data type. This guarantees a basic

uniformity of its values, which can be exploited by specific functions.
– The extension of a database changes in a smooth way.
– A user executes syntactically related commands, which place a specific load

on the DBMS.
– Some elements in a database scheme, eg integrity constraints and indexes,

are particularly important for the security of the database.

Speaking in terms of operating systems, an ADS can operate in real-time or
in batch-mode. A real-time operation depends mainly on three conditions:

– the ADS can monitor or collect system data at short time intervals
– the ADS can evaluate this data with a low overhead
– the ADS can make a decision on a possible anomaly based on this data

A Comprehensive Approach to Anomaly Detection in Relational Databases 209

Our assumptions about a database do not meet these conditions. Long run-
ning transactions but also single SQL-statements, which affect a large number
of tuples, obstruct a timely collection of data. The search for an anomaly can
involve large parts of a database and, thus, may require a lot of time. And, lastly,
many deviations from the assumed smoothness will only be caused by substan-
tial amounts of data. We therefore design our ADS as a batch-mode system,
which is executed at a time of low activity in the database, eg during night. The
distance between two runs of the ADS is dictated by the environment in which
the database is used. In general, once a day or once a week should be a good
choice. We regard our ADS as an augmentation to preventive security systems
for the ADS only checks if anomalies or misuse have occurred1.

Our ADS is composed of three components:

– An anomaly detector for the database extension
– An anomaly detector for the user interaction
– A misuse detector for the database scheme

The main emphasis in the construction of the ADS is placed on the first
component. Here we offer two approaches. The first one is based on the compar-
ison of reference values, which are obtained with a combination of fairly basic
statistical functions on the elements of single attributes. It yields surprisingly
good results, so that we dropped – or at least postponed – the initial intention of
applying data mining techniques to the extension. Although its time and space
requirements are very modest, the detection process works best on databases in
which deletions or updates of a large number of tuples occur only seldom. The
second approach uses Δ-relations that record the history of changes of the values
of the monitored attributes between two runs of the ADS. On the positive, it
can be tuned to precisely detect every kind of misuse; on the negative, it can
require considerable additional space.

The above-developed analysis techniques are then used in the second compo-
nent for anomaly detection in the user interaction. It computes reference values
from two sources: the user input, ie the SQL-command strings, and the result-
ing behaviour of the DBMS. This component can detect operations that are
admitted by the authorisation controls of the DB/DBMS and yet violate a com-
pany’s security policy, eg due to the abuse of rights by the legitimate user or
masquerading by an intruder.

The third component should have become an ADS for the database scheme,
but (according to [1]) it turned out to be a misuse detection system (MDS).
Here we are interested in commands, in particular SQL data definition language
(DDL) statements, that severely impair the security, including the availability,
of a database. We store a list of possibly dangerous commands in a library of
signatures and compare the current command to it. Each entry in the library
is associated with a critical element in the schema and a possibly damaging
1 We would like to mention that our ADS, like every threshold-based protection sys-

tem, will raise a false alarm in case of an unusual normal change, and will fail to
detect an attack that complies with our normality-rules.

210 A. Spalka and J. Lehnhardt

command on it. This allows us, for example, to relate a performance degradation
with a dropped index.

The first two components of the outlined ADS are implemented for the MS
SQL Server 2000. Presented with a graphical user interface, a user can select
relations or attributes that should be monitored. The ADS then generates the
appropriate relations and monitoring routines. The derived reference values offer
a guide to the user for the initial setting of alarm thresholds. At present, an email
is sent to the administrator if the ADS detects a violation. But the ADS also
provides a full graphical evaluation of its run or a history of runs.

The subsequent section comments on previous and related work in this area.
The ADS component for database extension is presented in detail in section 3
and that for user interaction in section 4. Section 5 describes the approach to
misuse detection for the database scheme. Section 6 illustrates the operation of
our ADS on an example database. Lastly, a summary concludes this work.

2 Previous and Related Work

There are numerous works on IDS for operating systems and networks, but not
on databases. And there are numerous works on database security, but not on
anomaly detection. Hence, we are confronted with a fairly small group of works
related to our approach.

The DEMIDS system presented in [3] uses anomaly detection methods for
the detection of misuse. It focuses on the misuse of privileges. At the core are
frequent item-sets, which are computed in the training phase of DEMIDS for
each user. These sets comprise relations, attributes and values which a user
most often uses in his SQL-commands. The authors develop a distance measure
between such a set and a command. In the real-time monitoring stage DEMIDS
uses this measure to compute the distance between a user’s frequent item-set
and his actual query. If a threshold is exceeded, the system raises an alarm.

Our work is influenced by some ideas of the DAS system described in [5]. In
the training phase DAS computes data related to a database’s extension. With
a data centric-view, the authors concentrate on numerical data types. They use
the min, max, avg and stddev SQL-functions during the monitoring phase to
detect unusual changes in the extension. Our work extends this approach to
derive a variant of the frequent item-sets.

We would also like to mention DIDAFIT, a system introduced by [6]. It deals
with SQL injection attacks, in particular on web-applications, which construct
SQL-commands from parameters supplied by the user. DIDAFIT can be applied
to exisiting applications, which are prone to this type of attacks, without re-
programming the input validation. It modifies the semantics of an SQL-command
with random data, derives for a user a general form of his commands and checks
the difference between this form and the current SQL-command.

Lastly, [7] consider temporal objects in databases that register sensor data
and present a method for checking for anomalies in the registration intervals.

A Comprehensive Approach to Anomaly Detection in Relational Databases 211

3 Anomaly Detection in the Database Extension

This section describes two approaches to the detection of anomalies in the
database extension.

3.1 Anomaly Detection Based on Reference Values

The anomaly detection based on reference values uses the following method.
In the first step the user specifies the attributes, which should be monitored
for anomalies. Then our ADS computes for the data of each attribute a set
of reference values. The number and type of the values depend on the data
type of the attribute. Now the user can specify thresholds for each reference
value. 2 When the ADS is executed again, eg a day later, it performs the same
computations on the data in the database and compares the current values with
the previously computed reference values. If the difference exceeds the threshold,
the ADS raises an alert; otherwise we assume that the database has evolved in
a regular fashion and the current values replace the old reference values.

We now identify for each data type the corresponding parameters that can be
used to capture the behaviour of that data. The MS SQL Server 2000 supports
the following six groups of data types:

– bit
– integer, floating point and money
– ascii strings
– unicode and binary strings
– date and time
– unique id

We exclude several data types from our consideration. The type times-
tamp/rowversion represents system-generated global identifiers and sql variant
is a generic data type, which expose no useful regularity; the types cursor and
table are not used in relations (only in stored procedures).

We now describe all reference values; a suitable subset of these values is
associated with each group of data types, which is summarised in a table at the
end of this section.

– OC: Overall Count.
It represents the number of tuples in a relation. It is the only value associated
with relations; all other values are associated with attributes. Let OC1 denote
the old value and OC2 the current value. Then OC raises an alarm if the
absolute change in the number of tuples, OC1−OC2, or the relative change,
OC1/OC2, exceeds the bounds defined by the threshold.

– NNC: Non-NULL-Count.
It holds the number of non NULL values in the extension of an attribute.
Its alarm conditions are analogous to those of OC.

2 We later address the problem of finding the right thresholds.

212 A. Spalka and J. Lehnhardt

– NNR: Non-NULL-Ratio.
It is defined as NNC/OC. It detects insertions of a large number of null
values. Its alarm conditions are analogous to those of OC.

– MIN , MAX , AV G, STDEV and RANGE.
These values are the results of the SQL functions minimum, maximum, av-
erage and standard deviation, and RANGE = MAX−MIN applied to the
extension of an attribute. Their alarm conditions are analogous to those of
OC. The thresholds for MIN , MAX and RANGE are often set to zero.

– RCi, i = 1, . . . , 6: Range Counters.
The range counters monitor the distribution of the number of values of an
attribute in the following six ranges:

• RC1: number of values below MIN
• RC2: number of values between MIN and AV G− STDEV
• RC3: number of values between AV G− STDEV and AV G
• RC4: number of values between AV G and AV G + STDEV
• RC5: number of values between AV G + STDEV and MAX
• RC6: number of values above MAX

With these counters we can detect, eg, the insertion of an unusually large
number of small values. Again, RCi raises an alarm if the absolute or relative
value changes too much.

– CATCi: Category Counters.
Defined analogously to RCi, the category counters divide the extension of
ASCII string-type and date/time-type attributes into several partitions and
monitor the population in each partition. We use the following categories:

• For date/time-type attributes: Month, day, weekday, hour, minute, sec-
ond and millisecond

• For ASCII string-type attributes: the fraction of letters, digits and other
characters

With these counters we can detect, eg, the insertion of an unusually large
number of date data with the month January. An abnormal absolute or
relative change results in an alarm.

– ZLC: Zero-Length String Count.
It holds the number of non-NULL ASCII-strings with a length of zero. This is
important because these instances have to be excluded from the computation
of letter, digit and other character fractions. Again, an abnormal absolute
or relative change results in an alarm.

– PBC: Positive Bit Count.
It holds the number of non-NULL values in a bit-type attribute’s exten-
sion with positive bit value. It reports an anomaly if the positive bit count
increases or decreases absolutely or relatively too much.

– For each of the values RCi, CATCi, ZLC and PBC there is an additional
value that describes the ratio of this value to NNC.

• RRi = RCi/NNC, i = 1, . . . , 6: Range Ratios
• CATRi = CATCi/NNC: Category Ratios

A Comprehensive Approach to Anomaly Detection in Relational Databases 213

• ZLR = ZLC/NNC: Zero-Length String Ratio
• PBR = PBC/NNC: Positive Bit Ratio

An abnormal absolute or relative change results in an alarm.

There are a few subtleties in the computation of the deviations. The rule for
NNC is simple:

ΔNNC = NNC2 −NNC1

and
rΔNNC =

ΔNNC

NNC1

But an analogous computation of the relative change of the MIN value does
not yield the expected result. Consider an attribute that stores the year of birth
of students. Suppose that the minimum value is 1972 and maximum is 1982. If a
senior student born in 1932 joins the group, then (1932− 1972)/1972 = −0, 02,
which is negligible. More important and really anomalous is the fact that the
new minimum extended the range of this attribute by 400%. Thus, we here use
the formula (1932− 1972)/(1982− 1972) = −4, ie:

−rΔMIN = −MIN2 −MIN1

MAX1 −MIN1

Finally, let us take a look at the average. A comparison of the old and new
average values does not reveal an important anomaly. Suppose that a small
number of anomalous tuples is inserted. Then AV G1−AV G2 is likely to remain
inconspicuous. To detect this anomaly we must compare AV G1 with the average
of these new tuples, ie with

1
ΔNNC

NNC2∑
i=NNC1+1

xi

These observations apply also to the standard deviation (but yield a much
more complex formula).

The subsequent table summarises the use of the various parameters for the
data types.

OC NNC NNR MIN,MAX RANGE AVG,STDEV RCi RRi

Numeric X X X X X X X
ASCII string X X X X X X X
Binary X X X X X X X
Date and Time X X X X X X X
Bit X X
Unique ID X X
Relation X

This approach yields the best results with growing-only relations. If updates
and deletions of a large number of tuples are permitted, anomalous operations
may remain undetected. To give an example, let us monitor only the number

214 A. Spalka and J. Lehnhardt

CATC CATR PBC PBR ZLC ZLR

Numeric

ASCII string X X X X

Binary X X

Date and Time X X

Bit X X

Unique ID

Relation

of tuples in a relation, and suppose that the normal behaviour of this relation
is a growth of ten tuples between two runs of the ADS. Here we cannot detect
an insertion of a million of tuples that is followed by a deletion of a million of
tuples.

3.2 Anomaly Detection Based on Δ-Relations

The concept of Δ-relations is an extension to our approach that can detect
various anomalies on relations regardless of the number of inserted, updated or
deleted tuples. The Δ-relations record all changes to a relation, including old
values of updated tuples and deleted tuples. Δ-relations can require a lot of
storage, but they provide a precise and comfortable means to discover several
anomalies. For example, an unusually high number of inserted tuples followed
by a similar number of deleted tuples can now be detected. Moreover, we can
identify the tuples that exceed a threshold.

Anomaly detection with the support of Δ-relations works as follows. For
every relation that should be monitored four Δ-relations are created:

– INS: stores inserted tuples
– DEL: stores deleted tuples
– UPB: stores updated tuples before the update
– UPA: stores updated tuples after the update

There are two ways of using the data in the Δ-relations.
The first way computes a fictitious ‘After’-state. Here we take all tuples from

one Δ-relation, eg INS, and assume that only changes to these tuples have been
made to the relation in its state before the current run of the ADS. This gives
us a fictitious relation state after the run, which then can be compared to the
before-state with the methods described in the previous section.

Δ-relations require some modifications to the way of detecting anomalies. On
the one hand, it is now very simple to deal with values that record numbers of
tuples, since we can directly compare the numbers in the relations. For example,
we can count the number of deleted tuples by counting the number of tuples in
the DEL relation (and omit a comparison of old and new states). The compu-
tation of MIN , MAX and RANGE remains unaltered, and that of AV G and

A Comprehensive Approach to Anomaly Detection in Relational Databases 215

STDEV is straight forward. On the other hand, the computation of ratios is
more complex. For example, we now have

|ΔO| = |NNC2/OC2 −NNC1/OC1|
All the reference values can now be computed also for the Δ-relations and

used in the anomaly detection.
The second way of using the data in the Δ-relations is direct comparison.

Here the reference values for a Δ-relation are directly compared to the reference
values of the associated relation in the state before the changes. Unfortunately,
this approach is much too prone for erroneous alarms, in particular, if the Δ-
relations are small. To give an example, consider an attribute of type bit. Suppose
that 60% of values in its extension are 1 and that only a single element with the
value 1 is inserted. This results in value of PBR = 100% for Δ-relation INS,
which deviates by 40% absolutely from the value of PBR for the associated
relation in its state before the change and by 66.7% relatively. Both deviations
are like to raise a false alarm.

3.3 The Determination of Threshold Values

We suggest three ways for the determination of suitable thresholds.
We can set all thresholds manually to values that are dictated by our experi-

ence with the database. While it may be easy to decide on the relative thresholds,
eg 5% or 10%, a careful determination of absolute thresholds can be very labour
intensive – our system may require far more than 100 such values.

Secondly, we can assume that the initial database state, viz the state that
is given to our anomaly detector for the first time, is normal. Then compute all
reference values for the first time and derive the thresholds from them.

And, lastly, we can conduct a training phase with presumably regular activ-
ities and compute all reference values several times. Then consider the devel-
opment of the reference values and determine the thresholds on these grounds.
Still, we recommend a manual graphical analysis of this development to verify
the plausibility of the thresholds.

4 Anomaly Detection in the User Interaction

Anomaly detection in the user interaction can make use of the same methods as
anomaly detection in the database extension for the following reasons.

During the analysis cycle the ADS collects user interaction data with the au-
diting tools of the DBMS. This audit data consists of several sets of values that
can be stored as tuples in a database table; we call this table the TraceTable. A
single tuple represents a single user operation. Since the TraceTable is an ordi-
nary relation with several attributes, the extension of which grows between two
runs of the ADS, we can apply the analysis methods for the database extension
to it. Note that we do not need to use Δ-relations.

In the auditing phase the following elements of a user operation are audited
and stored in TraceTable:

216 A. Spalka and J. Lehnhardt

– the user name
– the SQL command string
– the command’s start time
– the command’s duration
– the CPU time used by the command
– the number of affected tuples
– SQLCommandClass, a special attribute that classifies the SQL command

with one of the follwing values:ADMIN, DDL, PRIVILEGE, DML, READ,
EXEC and NULL.

During each run of the ADS all reference values are computed for this relation
and compared in the familiar fashion with the corresponding old values.

The SQLCommandClass and the start time represent the part of the user in-
teraction that is controlled by the user. Thus, these attributes reveal an anomaly
in the user input.

SQLCommandClass is of type ASCII string and all applicable reference val-
ues are computed for it. However, this attribute can take only one of seven
values and, therefore, CATCi and CATRi provide the most valuable hints to an
anomaly. The attribute start time is of type datetime and is treated accordingly.
An example of easily detectable anomalies are: a user submitted today too many
DDL-commands or at an unusual time of day.

The system behaviour is the DBMS reaction to the user input. To check it
for anomalies, we must analyse the duration, CPU time and number of affected
tuples. All of them are of a numerical data type; thus, the reference values for
anomaly detection in numerical attributes are applied to them.

5 Misuse Detection in the Database Scheme

To develop a comprehensive ADS for relational databases, we must also consider
anomalies in the database scheme. Our approach relies on a library of attack
signatures and is in fact a misuse detection system.

We first examine all database objects (MS SQL Server has 12: database, de-
fault, function, index, privilege, procedure, rule, schema, statistics, table, trigger
and view) and all operations on them. Then we classify them with respect to
the threat that they pose to a database and store a list of dangerous commands.
The commands issued by users are compared to this list.

Let us take a look at a few dangerous commands. The database object is
clearly critical. The drop database command is dangerous, for it does not only
deletes the database from the system catalog but also the database files stored
on disk. We do not consider the alter database command dangerous, because it
can delete only empty database files. An index for a table is critical. A single
drop index command can severely degrade availability, but also a large number
of create index commands can affect performance.

A Comprehensive Approach to Anomaly Detection in Relational Databases 217

6 A Brief Example of Anomaly Detection in a Database

We now present some screen shots of our ADS. It is applied to an example
database, which is populated with data of about 300 CDs with their 4000 songs.

Figure 1 shows data that relate to the length of the songs’ titles. The dia-
gram visualises the distribution of the lengths. The Overall Watch section shows
reference data for the old extension. The Delta Watch section shows the changes
that occurred to the database in the meantime. We see that the standard devi-
ation has increased by nearly 5%, which is due to an increase of the population
in the R5-area by nearly 27%. In Figure 2, the Overall Watch section shows the
data of the current extension. Note the dotted line in the R5-area, it depicts
the value of the old extension. Figure 3 compares in the diagram the old values,
represented by the dotted lines, to the new values, shown in solid colours. Here
we can easily spot changes to the MIN , MAX , AV G and STDEV values, as
well as changes in the numbers of tuples in the respective areas. This provides a
visual indication of anomalies.

Figure 4 analyses the fraction of letters in the songs’ titles. We see that the
numbers remained fairly the same and give no reason for a concern.

Figure 5 shows an analysis of the distribution of months in a date type
attribute.

Fig. 1.

218 A. Spalka and J. Lehnhardt

Fig. 2.

Fig. 3.

A Comprehensive Approach to Anomaly Detection in Relational Databases 219

Fig. 4.

Fig. 5.

220 A. Spalka and J. Lehnhardt

Fig. 6.

And, lastly, Figure 6 shows a longer history of a reference value, the non-
Null count. We see in the left panel the absolute numbers and in the right panel
the corresponding differences. We note that a continuous increase is followed
by an abrupt decrease. The lower right panel allows the selection of numerous
parameters.

7 Conclusion

In this work we have presented an anomaly/misuse detection system for re-
lational databases. It can monitor the extension, the user interaction and the
scheme. For each data type of the attributes there are numerous values which
capture characteristic properties of the attribute’s extension. For predominantly
growing relations these reference values can help to detect a variety of anomalies.
This technique can be applied to Δ-relations to detect even more anomalies in ar-
bitrary relations, however, their space requirements must be carefully calculated.
Reference values are also the key to anomaly detection in the user interaction.
The ADS can detect many anomalies in the user input and in the reaction of
the DBMS. Lastly, we sketched a misuse detector for the database scheme.

The ADS is implemented for the MS SQL Server 2000 and can be applied to
any existing database.

On the conceptual side, we would like to examine in future the analysis of
groups of attributes with data mining techniques and the suitability of our ADS
for real-time detection.

A Comprehensive Approach to Anomaly Detection in Relational Databases 221

References

1. Axelsson, Stefan. ‘Intrusion Detection Systems: A Survey and Taxonomy’. Technical
Report 99.15 Dept. of Computer Engineering, Chalmers University of Technology,
Sweden, 2000.

2. Burgess, Mark, H̊arek Haugerud, Sigmund Straumsnes and Trond Reitan. ‘Measur-
ing system normality’. ACM Transactions on Computer Systems 20.2(2002):125-160.

3. Chung, Christina Yip, Michael Gertz, and Karl Levitt. ‘DEMIDS: A misuse detec-
tion system for database systems’. IFIP WG11.5 3rd Working Conference on In-
tegrity and Internal Control in Information Systems, pp 159-178. Kluwer Academic
Publishers, 1999.

4. Gao, Debin, Michael K. Reiter and Dawn Song. ‘Gray-box extraction of execution
graphs for anomaly detection’. 11th ACM Conference on Computer and Communi-
cations Security, pp 318-329. ACM Computer Press, 2004.

5. Gertz, Michael. ‘Data Content Monitoring for Security, Integrity and Availability: A
Mission-Critical Line of Defense’. IICIS 2002: IFIP WG11.5 5th Working Confer-
ence on Integrity and Internal Control in Information Systems, pp 189-201. Kluwer
Academic Publishers, 2003.

6. Lee, Sin Yeung, Wai Lup Low, Pei Yuen Wong. ‘Learning Fingerprints for a Database
Intrusion Detection System’. ESORICS 2002: 7th European Symposium on Research
in Computer Security. LNCS vol 2502, pp 264 - 279. Springer-Verlag, 2002.

7. Lee, Victor C.S., John A. Stankovic, Sang H. Son. ‘Intrusion Detection in Real-
time Database Systems Via Time Signatures’. RTAS 2000: 6th IEEE Real Time
Technology and Applications Symposium, pp 124-133. IEEE Computer Society Press,
2000.

8. Michael, C.C., and Anup Ghosh. ‘Simple, state-based approaches to program-
based anomaly detection’. ACM Transactions on Information and System Security
5.3(2002):203-237.

An Authorization Architecture for Web Services

Sarath Indrakanti and Vijay Varadharajan

Information and Networked Systems Security Research,
Department of Computing, Macquarie University,

Sydney, NSW, 2109, Australia
{sindraka, vijay}@ics.mq.edu.au

Abstract. This paper considers the authorization service requirements
for the service oriented architecture and proposes an authorization ar-
chitecture for Web services. It describes the architectural framework, the
administration and runtime aspects of our architecture and its compo-
nents for secure authorization of Web services as well as the support
for the management of authorization information. The proposed archi-
tecture has several benefits. It is able to support legacy applications
exposed as Web services as well as new Web service based applications
built to leverage the benefits offered by the service oriented architec-
ture; it can support multiple access control models and mechanisms and
is decentralized and distributed and provides flexible management and
administration of Web services and related authorization information.
The proposed architecture can be integrated into existing middleware
platforms to provide enhanced security to exposed Web services. The ar-
chitecture is currently being implemented within the .NET framework.

1 Introduction

In general, security for the Service Oriented Architecture (SOA) [1] is a broad and
complex area covering a range of technologies. At present, there are several efforts
underway that are striving to provide security services such as authentication
between participating entities, confidentiality and integrity of communications.
A variety of existing technologies can contribute to this area such as TLS/SSL
and IPSec. There are also related security functionalities such as XML Signature
and XML Encryption and their natural extensions to integrate these security
features into technologies such as SOAP and WSDL.

WS-Security specification [2] describes enhancements to SOAP messaging to
provide message integrity, confidentiality and authentication. There is also work
on XKMS defining interfaces to key management and trust services based on
SOAP and WSDL. However, while there is a large amount of work on general
access control and more recently on distributed authorization [3][4] research in
the area of authorization for Web services is still at an early stage. There is
not yet a specification or a standard for Web services authorization. There are
attempts by different research groups to define authorization frameworks and
policies for Web services [5][6][7][8][9]. Currently most Web service based ap-
plications, having gone through the authentication process, make authorization

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 222–236, 2005.

c© IFIP International Federation for Information Processing 2005

An Authorization Architecture for Web Services 223

decisions using application specific access control functions. This results in the
practice of frequently re-inventing the wheel and motivates us to have a closer
look at authorization requirements for the SOA.

1.1 Authorization Requirements for the SOA

Broadly speaking, the SOA is made up of Web services and business workflows
built using Web services. These workflows are called business processes [10]. Fig-
ure 1 shows the layers comprising the SOA. In general, Web services and business
processes have different authorization requirements. Authorization services for
business processes must provide orchestration services to coordinate the autho-
rization decisions from individual partner’s authorization policy evaluators. Each
partner must be allowed to control its own authorization policies and also not
require disclosing them to all the partners. Even in cases where the binding to
actual end-points of partner services happens dynamically at runtime, the au-
thorization architecture must be able to orchestrate the partners’ authorization
policy evaluators and arrive at an authorization decision.

Authorization services for the Web services layer have different design re-
quirements as Web services present a complex layered system. For instance, a
service could be a front-end to an enterprise system and the enterprise system
accesses information stored in databases and files. Web services may be used
by enterprises to expose the functionality of legacy applications to users in a
heterogeneous environment. Or new business applications could be written to
leverage benefits offered by the SOA.

A Web service’s method may invoke one or more abstract operations, each
operation having its own responsible Authorization Policy Evaluator (APE). For
instance, a purchase order service may have three methods – submit order, cancel
order and confirm order as shown in Figure 2. Submit order and cancel order
methods perform two operations say a Web operation and a mail operation,

Fig. 1. Layers in the Service

Oriented Architecture

Fig. 2. WS operations and Au-

thorization Policy Evaluators

224 S. Indrakanti and V. Varadharajan

and confirm order performs say three operations a Web operation, a database
operation and a mail operation. Each operation may have its own responsible
APE to control access to the operation.

We envisage an authorization architecture for the SOA to provide extensions
to both the security layers of Web services as well as business processes as in-
dicated by the grey colored boxes in Figure 1. In this paper, we propose our
Web Services Authorization Architecture (WSAA). WSAA provides authoriza-
tion services for Web services. It extends the Web services security layer in the
SOA. We also extend the Web services description and messaging layers (indi-
cated by dark-grey colored boxes in Figure 1) to provide authorization support
for Web services. We will describe our authorization services for the business
process layer in a separate paper.

In section 2, we outline our design principles and goals underlying the design
of WSAA. In Section 3, we give an overview of WSAA and discuss the design
of our architecture. In Section 4, we briefly describe the extensions required to
the Web service Description and Messaging Layers. We briefly describe the au-
thorization algorithms used by WSAA in Section 5 and give a brief introduction
to our implementation work in Section 6. We highlight the benefits of our archi-
tecture in Section 7 and discuss some related work in Section 8. Finally, we give
some concluding remarks in Section 9.

2 Design Principles

In this section, we outline some of the key design principles and goals behind
our proposed architecture.

(a) Different Access Control (AC) Models: WSAA should be able to support
a range of AC models. This is necessary as it is not realistic to expect every Web
service based application to use the same AC model. In fact, where Web services
are used to expose the functionality of legacy enterprise applications, it is likely
that organizations will prefer to use their currently existing AC mechanisms that
they have been using before exposing them as Web services. Therefore, we believe
an authorization architecture must be generic enough to support different AC
models including traditional Discretionary Access Control (DAC), Mandatory
Access Control (MAC), Role Based Access Control (RBAC), and Certificate
based AC models.

(b) Authorization Architecture Design: Conceptually, there are two stages
for authorization [3] namely the administration phase and the runtime or the
evaluation phase. The administration phase involves facilities and services for
the specification of authorization policies, updating and deleting of policies and
their administration. The runtime phase is concerned with the use of these au-
thorization policies in the evaluation of the access requests.

(c)Authentication: In WSAA, we assume that authentication is a prerequisite
to authorization and that a principal (client) and its request has undergone some
reliable authentication service before being subjected to the authorization service.

(d) Authorization Policy Evaluation: Every AC mechanism that is supported
by WSAA defines an interface or end-point (defines the input parameters as

An Authorization Architecture for Web Services 225

well as the output result) to the Authorization Policy Evaluator (APE). APE
is responsible for achieving end-point decisions on access control. An APE also
defines a set of abstract operations such as Web operations, database operations
or file operations to which it provides access control.

Note: A Web service method is a high-level task that the Web service exposes
to its clients. WSAA provides access control indirectly to operations performed
by a Web service method. We map each Web service method to a set of abstract
operations. One or more of these operations are then mapped to an APE, which is
responsible for controlling access to these operations. These abstract operations
help security administrators and Web service developers have a common ground
to map the resources (Web services themselves and any other resources such
as databases, files, applications, etc.) to APEs and therefore to authorization
policies.

e) Authorization Policies: Languages have long been recognized in comput-
ing as ideal vehicles for dealing with expression and structuring of complex and
dynamic relationships. A language-based approach is helpful for not only sup-
porting a range of AC policies but also in separating out the policy represen-
tation from policy enforcement. Hence one of our design principles is to enable
the support of a range of policy languages for specifying AC policies. The policy
language(s) used may support both fine-grained as well as coarse-grained policies
depending on the requirement. The respective authorization policy administra-
tors manage these policies.

(f) Authorization Credentials: WSAA provides support for defining what AC
related credentials are required and how to collect them. Some AC mechanisms
may pull the credentials from the respective authorities and send them to the
responsible APEs. Other AC mechanisms may expect the principal to collect
the credentials from the respective authorities and send them to the responsible
APEs. WSAA supports both the push and pull model approaches to credentials
collection and decision-making.

3 Design of the Proposed Architecture

3.1 Overview

Let us now first briefly describe an overview of the proposed architecture (re-
fer to Figure 3). WSAA comprises of an administrative domain and a runtime
domain. We manage Web services in the administration domain by arranging
them into collections and the collections themselves into a hierarchy. We provide
administration support to manage a collection of Web services. We also pro-
vide support for the arrangement (adding, removing) of Web services within the
collections and the movement of Web services within collections. Authorization
related components can be managed in the administration domain. Also security
administrators can assign a set of APEs to authorize requests to Web services.
To make the authorization process efficient, we have a runtime domain where
the authorization related information such as what credentials are required to

226 S. Indrakanti and V. Varadharajan

Fig. 3. Web Services Authorization Architecture (WSAA)

invoke a particular Web service and how to collect those credentials, is compiled
and stored. This information is automatically compiled from time to time when
necessary using the information from the administration domain and it can be
readily used by components in the runtime domain.

The Registry Server located anywhere in the Internet is responsible for main-
taining relations between services and their service providers. When a client re-
quests the Registry Server (UDDI directory for instance) for a specific service,
the latter responds with a list of Web services that implement the requested
service.

3.2 System Components

We define the set of Certificate and Credential Authorities, Dynamic Attribute
Services, Authorization Policy Evaluators and Authorization Decision
Composers as objects in our system. The Authorization Manager (AZM) for
an organization is responsible to manage these components. S/he uses the Au-
thorization Administration API (AA-API) to manage them and the related data
is stored in the Authorization Administration Database (AAD). These objects
are formally defined in definitions 1–4.

Certificate and Credential Authority (CCA) is responsible to provide au-
thentication certificates and/or authorization credentials required to authenti-
cate and/or authorize a client.
Dynamic Attribute Service (DAS) provides system and/or network at-
tributes such as bandwidth usage and time of the day. A dynamic attribute

An Authorization Architecture for Web Services 227

may also express properties of a subject that are not administered by security
administrators. For example, a nurse may only access a patient’s record if s/he
is located within the hospital’s boundary. A DAS may provide the nurse’s “loca-
tion status” attribute at the time of access control. Dynamic attributes’ values
change more frequently than traditional “static” authorization credentials. Un-
like authorization credentials, dynamic attributes must be obtained at the time
an access decision is required and their values may change within a session.
Authorization Policy Evaluator (APE) is responsible for making authoriza-
tion decision on one or more abstract system operations. Every APE may use a
different access control mechanism and a different policy language. However, it
defines an interface for the set of input parameters it expects (such as subject
(client) identification, object information, and the authorization credentials) and
the output authorization result.
Authorization Decision Composer (ADC) combines the authorization deci-
sions from APEs using an algorithm that resolves authorization decision conflicts
and combines them into a final decision.

Definition 1. Certificate and Credential Authority (CCA)
We define Certificate and Credential Authority (CCA) as a tuple cca = {i, l,
CR, pa, ra(pa)}, where i is a URN, l is a string over an alphabet Σ∗ representing
a network location of the CCA such as a URL, CR is the set of credentials cca
provides, pa is an input parameter representing a subject, ra uses pa and gives
out an output (result) that is the set of credentials for the subject.

Definition 2. Dynamic Attribute Service
We define Dynamic Attribute Service as a tuple das = {i, l, AT, pd, rd(pd)},
where i is a URN, l is a string over an alphabet Σ∗ representing a network
location of the DAS such as a URL, AT is the set of attributes that das provides,
pd is input parameter(s) representing attribute(s) name, rd uses pd and gives
out an output (result) that is the value of the attribute(s).

Definition 3. Authorization Policy Evaluator
We define Authorization Policy Evaluator as a tuple ape = {i, l, pe, re(pe), OP,
DAS, CCA}, where i is a URN, l is a string over an alphabet Σ∗ representing a
network location of the APE such as a URL, pe is the set of input parameters
such as subject and object details, re is a function that uses pe and gives out
an output (result) of authorization decision. OP is the set of abstract system
operations for which ape is responsible. DAS is the set of dynamic attribute
services responsible for providing dynamic runtime attributes to ape. ape uses
these attributes to make authorization decisions. CCA is the set of certificate
and credential authorities that provide the credentials required by ape.

Definition 4. Authorization Decision Composer
We define Authorization Decision Composer as a tuple adc = {i, l, a, pc, rc(pc)},
where i is a URN, l is a string over an alphabet Σ∗ representing a network
location of the ADC such as a URL, a is the name of a pre-defined algorithm adc
uses to combine the decisions from the individual authorization policy evaluators.
pc is an input parameter representing the decisions from individual APEs, rc uses

228 S. Indrakanti and V. Varadharajan

pc and authorization decision composition algorithm a to combine the decisions
and gives out an output (result) that is the value of the final authorization
decision.

The runtime domain consists of the Client Proxy, Security Manager, Authenti-
cation Server and the Authorization Server components.

Client Proxy (CP) collects the required authentication and authorization cre-
dentials from the respective authorities on behalf of the client before sending a
Web service request and handles the session on behalf of the client with a Web
service’s Security Manager component.
Security Manager (SM) is a runtime component responsible for both au-
thentication and authorization of the client. A client’s CP sends the necessary
authentication and authorization credentials to the SM. It is responsible for
managing all the interactions with a client’s CP. It uses the Authorization API
to invoke the Authorization Server.
Authentication Server (ANS) receives the authentication credentials from
SM and uses some mechanism to authenticate the client. We treat ANS as a
black box in our architecture as our focus in this paper is on authorization of
the client. We included this component in the Web services security layer for
completeness.
Authorization Server (AZS) decouples the authorization logic from appli-
cation logic. It is responsible for locating all the APEs involved, sending the
credentials to them and receiving the authorization decisions. Once all the de-
cisions come back, it uses the responsible ADCs to combine the authorization
decisions. Where required, AZS also collects the credentials and attributes on
behalf of clients from the respective CCAs and DASs.

3.3 Web Services Model

We consider a Web service model based on the model discussed in [11] where
Web Service, Web Service Method and Web Service Collection are viewed as
objects (definitions 5–7). Web service collections are used to group together a
set of possibly related Web service objects.

Definition 5. Web Service
We define a Web Service as a tuple ws = {i, b, l, S, OPws, M, MD, wsm,
sm}, where i is a non-empty string over an alphabet Σ∗ representing a globally
unique identifier such as a URN, b is a string over an alphabet Σ∗ representing
a network protocol binding such as SOAP over HTTP, l is a string over an
alphabet Σ∗ representing a network location such as a URL, S is a finite set
of states representing the internal state of the object at a given time, OPws is
the set of abstract operations performed by the methods of the ws object. M is
the set of supported Web service methods, MD is the set of metadata providing
additional description for ws, wsm is the Web Service Manager responsible for
managing ws object. sm is the Security Manager responsible for ws object. S,
M, OPws or MD can be the empty set φ.

An Authorization Architecture for Web Services 229

Definition 6. Web Service Method
We define a Web Service Method as a tuple m = {i, ws, OPwsm, pm, rm(pm),
MD}, where i is a URN, ws is the Web service object the method belongs to,
OPwsm is the set of abstract operations wsm performs. OPwsm is a subset of
the set OPws defined in the ws object. pm is the set of input parameters, string
over an alphabet Σ ∗, rm is a function Σ∗ → Σ∗ that maps pm onto a result
string over an alphabet Σ∗ representing the output (result) or return value(s)
of a computation. pm and rm(pm) may be the empty string ε. MD is a set of
metadata providing additional description for wsm. OPwsm or MD can be the
empty set φ. A wsm has to be a member of exactly one ws.

Definition 7. Web Service Collection
We define a Web Service Collection (WSC) as a tuple wsc = {i, WS,
WSCCHILDREN , p, MD, wcm, sm}, where i is a URN, WS is a finite set of
(possibly related) Web service objects in wsc, WSCCHILDREN is a finite set of
Web service collections that are children of wsc, p is the parent WSC (a WSC
can have only one parent collection), MD is a finite set of metadata providing
additional description and semantics for wsc. sm is the security manager respon-
sible for wsc. wcm is the Web service Collection Manager responsible for wsc.
sm is null for all Web service collections in a hierarchy except for the root Web
service collection, or the one without a parent p. A root wsc object’s sm is re-
sponsible for authentication and authorization of requests to all the ws objects
under its descendant collections. Figure 4 shows an example of a hierarchy of
Web service collections.

3.4 Authorization Administration and Policy Evaluation

A Web Service Manager (WSM) is responsible to manage the authorization in-
formation for the Web services s/he is responsible for. We consider a Web service

Fig. 4. Web Service Collection Hierarchy

230 S. Indrakanti and V. Varadharajan

method to be a high-level task that is exposed to clients. Each task (method) is
made up of a number of system operations. These operations can be of different
abstract types as shown in the example in Figure 2. It is reasonable to assume
a WSM knows the set of tasks a Web service under his/her control performs.
Similarly a WSM knows the set of operations each of these tasks (methods) per-
form. Using the APE definitions from AAD (database), WSM associates APEs
to Web services and their methods. This association is made in the Web Ser-
vice Authorization and the Web Service Method Authorization objects. WSM
uses the AA-API to create and manage these objects. Similarly, a Web service
Collection Manager (WCM) manages APE and authorization decision composer
(ADC) information (using AA-API) in a separate tuple called Web Services Col-
lection Authorization (WSCA) for all the collections s/he manages. We formally
define these objects in definitions 8–10. These objects are stored in AAD.

Similar to Web service methods, a Web service can also have one or more
APEs responsible for the Web service itself. Web service level policies are first
evaluated before its method level authorization policies are evaluated. A Web
service’s APEs evaluate Web service level authorization policies. These policies
will typically not be as fine-grained as method level policies. A WSM may choose
to create a new ADC for one or more Web services s/he manages or may decide
to use one from the set of existing ADCs from AAD if it serves the purpose.

Similar to Web services and their methods, a Web service collection can
also have one or more APEs responsible for authorizing access to the collection
itself. Collection level policies are first evaluated before a Web service’s policies
are evaluated. A Web service collection’s APEs evaluate collection level policies.
These policies will typically be course-grained when compared to the Web service
and Web service method level policies. Every root Web service collection has an
ADC associated with it responsible for combining the decisions from all APEs
involved. The coarse-grained authorization policies for all the relevant ancestor
Web service collections (of an invoked Web service) are first evaluated, followed
by the Web service level policies and finally the fine-grained Web service method
level policies are evaluated. For example (refer to Figure 4), when a client invokes
WS1’s method M1, WSC1’s authorization policies are first evaluated by APE1

and APE2, followed by WSC2 (APE3) and then WSC3 (APE4) policies. If APE1,
APE2, APE3 and APE4 give out a positive decision, WS1’s authorization policies
are evaluated by APE6. If APE6 gives out a positive decision, then finally M1’s
authorization policies are evaluated by APE7 and APE8. WS1’s ADC, ADCWS1

combines the decisions from APE6, APE7 and APE8 and if the final decision is
positive, WSC1’s ADC, ADCWSC1 combines the decisions from APE1, APE2,
APE3, APE4 and ADCWS1 . If the final decision from ADCWSC1 is positive, the
client will be able to successfully invoke WS1’s method M1.

Definition 8. Web Service Method Authorization
We define Web Service Method Authorization as a tuple wsma = {i, wsm,
APEwsm}, where i is a URN, wsm is the method to which wsma object is

An Authorization Architecture for Web Services 231

defined. APEwsm is the set of APEs responsible for authorizing requests from a
client to wsm.

Definition 9. Web Service Authorization
We define Web Service Authorization as a tuple wsa = {i, ws, APEws, adcws},
where i is a URN, ws is the Web service to which wsa is defined. APEws is the
set of APEs responsible for authorizing requests from a client to ws. adcws is an
ADC for ws. It is responsible to combine the decisions from APEs (in the set
APEws).

Definition 10. Web Service Collection Authorization
We define Web Service Collection Authorization as a tuple wsca = {i, wsc,
APEwsc, adcroot}, where i is a URN, wsc is the Web service collection for which
wsca object is defined. APEwsc is the set of APEs responsible for wsc. adcroot is
an ADC for wsc. If wsc is not a root Web service collection, then adcroot is null.
In other words, adcroot exists only for a root wsc.

3.5 Runtime Authorization Data

We addressed who assigns (and how) APEs and ADCs for Web services and
Web service collections. The next question is, at runtime, how does a client
know (where necessary) how to obtain the required authorization credentials
and dynamic runtime attributes before invoking a Web service? What are the
responsible APEs (and the credentials and attributes they require), CCAs (the
credentials they provide) and DASs (the attributes they provide)? How does the
Authorization Server (AZS) know what the set of responsible ADCs (adcws and
adcroot) for a particular client request is?

To answer these questions, we have an Authorization Runtime Database
(ARD) in the runtime domain. ARD consists of the runtime authorization re-
lated information required by clients and the Authorization Server. Credential
Manager (CRM) is an automated component that creates and stores the autho-
rization runtime information (using CRM algorithm) in ARD using the informa-
tion from WAD (defined in section 3.6) and AAD. The runtime authorization
information consists of three tuples defined in definitions 11–13. CRM is invoked
from time to time, when a Web service object is added to or removed from a
collection, moved within a hierarchy of collections or when the shape of the
tree itself changes, to update these tuples in ARD. Refer to [12] for the CRM
algorithm.

Definition 11. Method-Credential-CCA tuple
We define the Method-Credential-CCA tuple as mcc = {i, wsm, CR, cca, ape},
where i is a URN, wsm is a Web service method to which the tuple is defined,
CR is the set of credentials to be obtained from the CCA cca to get authorized to
invoke wsm. This means each wsm object can have one or more of these (tuple)
entries in ARD. ape is the APE that requires these credentials.

Definition 12. Method-Attribute-DAS tuple
We define Method-Attribute-DAS tuple as matd = {i, wsm, AT, das, ape}, where
i is a URN, wsm is a Web service method to which the tuple is defined, AT is

232 S. Indrakanti and V. Varadharajan

the set of attributes to be obtained from the DAS das. This means each wsm
object can have one or more of these (tuple) entries in ARD. ape is the APE
that requires these attributes.

Definition 13. WS-ADC tuple
We define WS-ADC tuple as wsd = {i, ws, adcws, adcroot}, where i is a URN,
ws is a Web service, adcws is the ADC for ws. adcroot is the ADC for the root
Web service collection in which ws is located.

3.6 Web Services Administration

A Web Service Manager (WSM) manages Web services and Web service methods
and a Web service Collection Manager (WCM) manages Web service collections
using the Administration API (see Figure 3). These objects are stored in the
Web service Administration Database (WAD).

To effectively manage the collections, we arrange a set of related Web Service
Collection (WSC) objects in a tree-shaped hierarchy as shown in Figure 4. Each
WSC in the hierarchy has a responsible Web service Collection Manager (WCM).
There is only one Security Manager for a hierarchy of WSCs. In a WSC hierarchy
tree, the root WSC’s manager is called the Root Web service Collection Manager
(RWCM). A RWCM is responsible for providing the Security Manager details
(such as its location) in the WSDL statement of every Web service located under
the collections s/he manages.

Let us consider an organization with a single hierarchy (such as the one shown
in Figure 4) of Web service collections. In Figure 4, the root WSC is WSC1 and
the RWCM is WCM1. We can consider a newly initiated system to simply consist
of the root WSC, WSC1 and a few Web Service (WS) objects under it managed
by WCM1. WCM1 can add new WS objects from WAD into WSC1. S/he can
delete or move WS objects within the collections s/he is responsible for. There
are other issues to consider such as 1) Who decides the location of a WS object
(and how is the location changed)? 2) Who decides the shape of the tree itself?
There are various design choices to consider to answer these questions.

Due to space limitations, we have not included the discussion on such design
choices in this paper. We refer the reader to [12] for a detailed discussion on Web
services administration features provided by our architecture.

4 Extensions to the Description and Messaging Layers

WS-AuthorizationPolicy statement: We extend WSDL (description layer)
to include a Web service’s Authorization Policy as well as the location of its Se-
curity Manager. WS-SecurityPolicy [13] statement consists of a group of security
policy “assertions”, that represent a Web Service’s security preference, require-
ment, capability or other property. Similarly, we define WS-AuthorizationPolicy
as a statement that contains a list of authorization assertions. The assertions
include which credentials (and from which CCA) and attributes (and from

An Authorization Architecture for Web Services 233

which DAS) a client’s CP has to collect before invoking a Web Service. WS-
PolicyAttachment [14] standard can be used to link the WS-AuthorizationPolicy
to a Web Service’s WSDL statement.
Security Manager Location: When a client wants to invoke a Web service
WS1, its Client Proxy requires its Security Manager’s location. Therefore, we
need to give this information in WS1’s WSDL statement. We introduce a new
element SecurityManager to the WSDL document that encapsulates the Security
Manager location information required by the Client Proxies.
SOAP Header Extension: We provide extensions to the SOAP header (mes-
saging layer) to carry authorization related credentials and attributes. WS-
Security [2] enhancements for confidentiality, integrity and authentication of
messages have extended SOAP header (SOAP-SEC element) to carry related
information. Similarly we suggest extending SOAP header to carry authoriza-
tion credentials and attributes to carry authorization related information. When
a client wants to invoke a Web service object, its client proxy creates an au-
thorization header object and adds it to SOAP Header before making a SOAP
request.

Refer to [12] for XML schema skeletons for WS-AuthorizationPolicy, ex-
tended WSDL statement and extended SOAP Header. We have not included
the schemas in this paper due to space restrictions.

5 Authorization Algorithms

WSAA supports three algorithms. The first, push-model algorithm supports
authorizations where a client’s Client Proxy, using WS-AuthorizationPolicy, col-
lects and sends the required credentials (from CCAs) and attributes (from DASs)
to a Web service’s Security Manager. The second, pull-model algorithm supports
authorizations where the AZS itself collects the required credentials and APEs
collect the required attributes. The third, combination-model supports both the
push and pull models of collecting the required credentials and attributes.

An organization must deploy one of these algorithms depending on the access
control mechanisms used. If all the access control mechanisms used by the set
of APEs are based on a pull model, then the organization must deploy the
pull-model algorithm. If all the access control mechanisms used are based on
a push model, then the organization must deploy the push-model algorithm.
However, when some of an organization’s APEs use the pull-model and others
use the push-model, the combination-model algorithm must be deployed. The
authorization algorithms along with their respective system sequence diagrams
can be found in [12].

6 Implementation

We are currently implementing WSAA as a middleware layer within the .NET
framework [15]. We have developed UML design specifications and specifed a case

234 S. Indrakanti and V. Varadharajan

study in the healthcare domain to demonstrate the features proposed in this pa-
per with an implementation. We will describe our design specifications and the
implementation of WSAA along with the case study in detail in a separate paper.

7 Benefits of the Proposed Architecture

Some of the key advantages of the proposed architecture are as follows:

(a) Support for Various Access Control (AC) models: WSAA supports mul-
tiple AC models. The access policy requirements for each model can be specified
using its own policy language. The policies used for authorization can be fine-
grained or coarse-grained depending on the requirements. AC mechanisms may
either use the push model or pull model or even a combination of both for
collecting client credentials.

(b) Support for Legacy and New Web Service Based Applications: Existing
legacy application systems can still function and use their current AC mecha-
nisms when they are exposed as Web services to enable an interoperable het-
erogeneous environment. At the same time WSAA supports new Web service
based applications built to leverage the benefits offered by the SOA. New AC
mechanisms can be implemented and used by Web service applications. A new
AC mechanism can itself be implemented as a Web service. All WSAA requires
is an end-point URL and interface for the mechanism’s APE.

(c) Decentralized and Distributed Architecture: A Web service can have one
or more responsible APEs involved in making the authorization decision. The
APEs themselves can be Web services specializing in authorization. This feature
allows WSAA to be decentralized and distributed. Distributed authorization
architecture such as ours provides many advantages such as fault tolerance and
better scalability and outweighs its disadvantages such as more complexity and
communication overhead.

(d) Flexibility in Management and Administration: Using the hierarchy ap-
proach of managing Web services and collections of Web services, authorization
policies can be specified at each level making it convenient for Web service col-
lection managers (WCM) and Web service managers (WSM) to manage their
objects as well as their authorization related information.

(f) Ease of Integration into Platforms: Each of the entities involved both in
administration and runtime domains is fairly generic and can be implemented
in any middleware including the .NET platform as well as Java based platforms.
The administration and runtime domain related APIs can be implemented in
any of the available middleware.

(g) Enhanced Security: In our architecture, every client principal request
passes through the Web service’s security manager and then gets authenticated
and authorized. The security manager can be placed in a firewall zone, which
enhances security of collections of Web service objects placed behind an organi-
zation’s firewall. This enables organizations to protect their Web service based
applications from outside traffic. A firewall could be configured to accept and
send only SOAP request messages with appropriate header and body to the
responsible security manager to get authenticated and authorized.

An Authorization Architecture for Web Services 235

8 Related Work

We briefly compare the related work in the area of design of authorization ar-
chitecture for Web service layer (of the SOA) to WSAA.

Kraft [5] proposes an AC model based on a “distributed access control proces-
sor” for Web services. The model is generic enough to support different models
of access control. This model however, does not provide support for adminis-
tration of authorization related information. It also does not provide support
to manage Web service collections and their authorization related information
using standard APIs, which our architecture provides.

Yague and Troya [6] present a semantic approach for access control for Web
services that is based on a Privilege Management Infrastructure (PMI). The au-
thorization policies can only be written in the Semantic Policy Language (SPL).
What is interesting in this model is that the authorization policies can be at-
tached dynamically based on the metadata of the resource being accessed.

Agarwal et al [7] define an access control model that combines DAML-S ,
an ontology specification for describing Web services and SPKI/SDSI , used to
specify access control policies and to produce name and authorization certifi-
cates for users. This is a certificate based AC model. The Access Control Lists
(ACLs) in this model are simple and one cannot specify fine-grained and complex
authorization policies using this model.

Ziebermayr and Probst propose an authorization framework [8] for “simple
Web services”. Their framework does not consider distributed authorization and
assumes that Web services provide access to data or sensitive information located
on one server and not distributed over the Web. This framework uses a simple
rule based access control model. A disadvantage with this framework is that it
cannot support authorizations for distributed Web services, which have access
to data and/or information over a number of Web servers.

Unlike WSAA, the models [6][7][8] only support one model of AC and there-
fore legacy applications exposed as Web services cannot use different models of
AC they have already been using. These models also do not provide management
and administration support for Web service objects. There is also no abstraction
of each Web service method’s task into a set of operations in all these models
[5][6][7][8]. This abstraction makes it easy to perform authorization administra-
tion as discussed earlier.

9 Concluding Remarks

We have proposed an authorization architecture for Web services that extends
the Web services security layer in the Service Oriented Architecture (SOA). We
have also provided extensions to the messaging and description layers to support
the proposed architecture. We have described the architectural framework, the
administration and runtime aspects of our architecture and its components for
secure authorization of Web services as well as the support for the management
of Web services as well as authorization related information. We are currently
implementing the proposed architecture within the .NET framework.

236 S. Indrakanti and V. Varadharajan

The architecture supports legacy applications exposed as Web services as
well as new Web service based applications built to leverage the benefits offered
by the SOA; it supports old and new access control models and mechanisms; it is
decentralized and distributed and provides flexible management and administra-
tion of Web service objects and authorization information. We believe that the
proposed architecture is easy to integrate into existing platforms and provides
enhanced security by protecting exposed Web services from outside traffic.

References

1. S. Wilkes and J. Harby. SOA Blueprints Concepts Draft v0.5. Technical report,
The Middleware Research Company, June 2004.

2. B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, et al. Web Services Se-
curity (WS-Security) Specification, http://www-106.ibm.com/developerworks/

webservices/library/ws-secure/, 2002.
3. V. Varadharajan. Distributed Authorization: Principles and Practice. In Coding

Theory and Cryptology, Lecture Notes Series, Institute for Mathematical Sciences,
National University of Singapore. Singapore University Press, 2002.

4. K. Beznosov, Y. Deng, B. Blakley, and J. Barkley. A Resource Access Decision
Service for CORBA-based Distributed Systems. In Proceedings of the 15th Annual
Computer Security Applications Conference, page 310. IEEE Computer Society,
1999.

5. R. Kraft. Designing a Distributed Access Control Processor for Network Services
on the Web. In ACM Workshop on XML Security, Fairfax, VA, USA, 2002.

6. M.I. Yague and J.M. Troya. A Semantic Approach for Access Control in Web
Services. In Euroweb 2002 Conference. The Web and the GRID: from e-science to
e-business, pages 483–494, Oxford, UK, 2002.

7. S. Agarwal, B. Sprick, and S. Wortmann. Credential Based Access Control for
Semantic Web Services. American Association for Artificial Intelligence, 2004.

8. T. Ziebermayr and S. Probst. Web Service Authorization Framework. In Interna-
tional Conference on Web Services (ICWS), San Diego, CA, USA, 2004.

9. S. Godik and T. Moses. eXtensible Access Control Markup Language v1.1
(XACML), 07 August, 2003.

10. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, et al. Business Pro-
cess Execution Language for Web Services v1.1 (BPEL4WS), http://www-
128.ibm.com/developerworks/library/ws-bpel/, 2003.

11. R. Kraft. A Model for Network Services on the Web. In The 3rd International
Conference on Internet Computing (IC 2002), volume 3, pages 536–541, 2002.

12. S. Indrakanti. On the Design of an Authorization Architecture for Web Services.
Technical report, Macquarie University, Sydney, Australia, January 2005.

13. G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk, et al. Web Ser-
vices Security Policy Language (WS-SecurityPolicy), http://www-106.ibm.com/

developerworks/library/ws-secpol/. 2002.
14. S. Bajaj, D. Box, D. Chappell, F. Curbera, et al. Web Services Policy At-

tachment (WS-PolicyAttachment), http://www-106.ibm.com/developerworks/

library/specification/ws-polatt/ , September 2004.
15. Microsoft Corporation. .NET Framework,

http://msdn.microsoft.com/netframework/. 2005.

Secure Model Management Operations

for the Web

Guanglei Song, Kang Zhang, Bhavani Thuraisingham, and Jun Kong

University of Texas at Dallas, Richardson, Texas 75083-0688 USA
{gxs017800, kzhang, bhavani.thuraisingham, jxk019200}@utdallas.edu

Abstract. The interoperability among different data formats over the
Internet has drawn increasing interest recently due to more and more
heterogeneous data models are used in different Web services. In or-
der to ease the manipulation of data models for heterogeneous data,
generic model management has been intensively researched and also
implemented in a prototype since its first introduction. Access control
specifications attached to each individual data model require significant
amount of efforts to manually specify. Based on a general security model
for access control specifications on heterogeneous data models and its vi-
sual representation, we present secure model management operators for
managing access control specifications.The secure model management
operators disccussed in the paper include a secure match operator and a
secure merge operator. We introduce a novel graphical schema matching
algorithm and extend the algorithm to make a secure match operator.
The paper also discusses secure merge principles for the integration of
data models.

1 Introduction

The huge success of the Web as a platform for information dissemination has
brought an increasing awareness of the fact that document exchange over the
Internet should meet security requirements such as fine-grained authenticity and
access control [24]. XML [4,5] and database [9] access control models have been
a hot research topic. Recently, the continuing demand for information sharing
has shifted interests from stand-alone XML repositories and databases to inter-
connected and large-scale cooperative systems [6].

Manually manipulating heterogeneous data models has been a time-
consuming and error-prone process. Therefore a new approach to metadata man-
agement, i.e. Model Management, has been proposed [2]. Model management
offers a high-level programming interface and avoids object-at-a-time primitives
by manipulating models with generic operators. Our previous work provides a
visual model management architecture, which eases the use of the generic oper-
ators [23]. The visual architecture, however, does not provide secure interfaces
for managing access control specifications, which are associated with data mod-
els. These specifications can only be managed manually, and the procedure for
managing secure models, therefore, cannot be fully realized by current model

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 237–251, 2005.

c© IFIP International Federation for Information Processing 2005

238 G. Song et al.

management systems. This paper focuses on the security properties of model
management, and explores various issues and solutions to achieve secure model
management of data models.

One challenge of secure model management comes from the heterogeneity of
data formats. Data encoded in different formats needs to be exchanged in co-
operative systems, thus achieving interoperability. Even though every individual
data model may have highly secure access control specifications and enforcement
mechanism, the federation of data models is not necessarily secure. Security of
a union of systems is determined by the weakest link. When information of
different models is interchanging, it opens a window for attack. The security
extensions presented in the paper ease the manipulation of models with access
control specifications and provide a guidance for generating safe mappings and
unions of models.

The remainder of the paper is organized as follows. Section 2 introduces a
uniform access control model and an illustrative example. Section 3 proposes
a graphical schema matching algorithm and the security extension to the algo-
rithm. Section 4 presents security extensions to other model management op-
erators. Section 5 discusses the future research directions. Section 6 compares
related works and Section 7 concludes the paper.

2 A Uniform Access Control Model

Our uniform access control model consists of a set of rules, each being a tuple of
five elements: subject, object, action, authorization, and propagation [24]. Access
control regulates access to the data, such as XML documents, and databases
called objects. Those who try to access these objects are called subjects. A subject
is represented by a unique user-defined identifier called UPath [24], e.g. tables
and columns of a relational schema, elements and attributes of an XML schema.
Actions include read, write, update, and delete. An authorization specifies the
negative or positive response to a request, i.e. allow or deny. The propagation
can be either local or recursive, referring to the influence of the object locally or
recursively to its child objects.

We visualize the access control rules by node-edge diagrams [24]. As shown in
Figure 1, a rule is represented as a link and a subject is represented by a labeled
rectangle connecting to objects (as labeled ellipses). A gray eclipse represents
recursive access, and a white eclipse indicates local access. The label of each
link, R or W, represents the activity. The circle and the cross on a link represent
allow and deny of access respectively.

Subject

O O

W

3O
2

1

Fig. 1. Visual representation of access control

Secure Model Management Operations for the Web 239

Item

Name

Price

ID

Discount

Description

I_Name

Item

I_Price

I_ID

Detail

Desc

Specific

Map1_2

=

====

=

=

=

=

Fig. 2. Online shopping schemas for two companies

Table 1. Access Rules for Model A

Subject Object Action Authorization Propagation

1 Customer /Item/ Read Allow R

2 Vendor /Item/ Read Allow R

3 Administrator /Item/ Read Allow R

4 Administrator /Item/Description Write Allow L

5 Administrator /Item/Discount Write Allow L

6 Administrator /Item/Price Write Allow L

Table 2. Access Rules for Model B

Subject Object Action Authorization Propagation

1 Cust /Item/ Read Allow R

2 Provider /Item/ Read Allow R

3 Admin /Item/ Read Allow R

4 Admin /Item/Detail Write Allow R

5 Admin /Item/Price Write Allow L

Consider the following example. Two companies Ac and Bc want to offer a
joint online solution for customers and vendors. Figure 2 shows the two schemas,
A and B, for companies Ac and Bc.

Companies Ac and Bc have local access control rules as shown in Tables 1
and 2 respectively.

A model management system eases the process by providing generic operators
like Match and Merge. Figure 3 shows the scenario of unifying the two models
by the two operators [24]. ACRA and ACRB are access control rules for models
MA and MB respectively. Mu is the unified model of MA and MB. ACRu is
a set of access control rules for model Mu. The system matches and merges
MA and MB to generate Mu, but cannot automatically generate ACRu. Users

240 G. Song et al.

Mu

ACR u

MA MB

ACR A ACR B

User

?

Fig. 3. Unified online shopping system

have to construct ACRu manually from scratch. It is highly risky to manually
manipulate access control rules in a large scale such as an online store site.
To ease the process, a security extension for model management operators (like
Match) is desirable for automatically managing access control rules.

3 Secure Schema Matching

This section introduces a new matching algorithm for graphical generation of
schema mappings, and adapts the algorithm by adding a security extension.

3.1 A Graphical Schema Matching Algorithm

Schema matching is to find semantic correspondences among elements of two
schemas. Most of the proposed approaches [20] concentrated on the similarity
of individual elements or at most neighborhood information, rather than on the
global semantics of the schemas. We propose a novel approach to the schema
matching problem utilizing global semantics. A schema is represented by an
acyclic directed graph, where nodes represent elements or attributes and links
represent the containment relationships.

a 1

a 2 a 3

b 1

b 2

b 3

a 1

a 2 a 3

b 1

b 2

b 3

III

Fig. 4. I.A mapping with semantic contradiction; II. A harmonic mapping

Schemas are represented by acyclic graphs, which do not allow containment
cycles that cause a semantic contradiction. If a semantic mapping between two
schemas has no semantic contradiction, we call the mapping harmonic. Figure

Secure Model Management Operations for the Web 241

S2
S1

Linguistic
Matcher

Data type
Matcher

Other
Matchers

Similarity
Table

Phase 1

Mapping
pairs

Cycle
detection

M1_2

Phase 2 Phase 3

Matcher repository

NOYES

Break

cycle?

Fig. 5. Mapping generation process in GGS

4 shows an example of mapping with semantic contradiction and the other be-
ing harmonic. Figure 4.I includes mapping pairs (a1, b2) and (a3, b1), while
a1contains a3and b1 contains b2. From the graphical representation of mapping,
the relationships between (a1, b2) and (a3, b1) produce a non-harmonic cross-
ing, which results in a semantic contradiction when applying the mapping. For
example, in case of merging elements of the schemas based on the mapping in
Figure 4.I, how can an algorithm decide whether the mapping (a1, b2) should
contain the mapping (a3, b1) or the other way? Also the mapping pairs are self-
contradictory due to a1 → a3 ↔ b1 → b2 → a1, i.e. a containment cycle, which
is contradictory to the acyclic representation of schemas.

A harmonic mapping, such as the one in Figure 4.II, is desirable. We present
a schema matching algorithm for producing harmonic mappings. Our schema
matching algorithm proceeds in 3 phases as shown in Figure 5:
1. Use various types of matchers to compare element names and calculate sim-

ilarity of data types and produce a similarity table for each pair of elements;
2. Produce an initial set of mapping pairs by selecting possible mappings from

the initial similarity table;
3. Search and break cycles that exist, and go to Phase 1 for the next iteration

until no cycle exists or when the number of iterations reaches a predefined
upper bound (beyond which the computational cost is no longer worthwhile
for users).

A single matcher generates a similarity table consisting of similarity values for
any two input elements. A similarity value is a number between 0 (strong dis-
similarity) and 1 (strong similarity). Our matching algorithm combines these
similarity tables by computing weighted averages. Assume n single similarity
tables, table1 to tablen, each having a similarity value Simi (a, b), i =1..n, for
any pair of elements (a, b). For each pair of elements (a, b) from schemas A and
B, the overall similarity Sim (a, b) can be calculated by:

242 G. Song et al.

Sim(a, b) =

n∑
i=1

(Simi(a,b)×wi)

n , where
n∑

i=1

(wi) = 1, and Simi is a similarity

table produced by matcher i.
Phase 2 generates mapping pairs based on the combined similarity table

by choosing the best match for each element in the table. Then in Phase 3,
our matching algorithm, as shown in Algorithm 3.1, detects cycles by checking
the decedents and ancestors of each element of a mapping pair to see if they
contribute a pair in the mapping. If so, a cycle exits.

Algorithm 3.1 cycle detection
Require: Table table

for each pair p(ai, bj) in pairs; do
Topsort(pairs);
if ((decedents(ai) X ancestors(bj)) U (ancestors (ai) X decedents (bj))) ∩ pairs
�= empty) then

returntrue;
end if

end for

If a cycle exists in the mapping pairs, the algorithm needs to choose a mapping
pair to adjust to remove the cycle. Conceptually, the pair that generates the most
crossings should be removed, i.e. the key contradiction pair. For the example in
Figure 4, the initial mapping pairs are produced from the similarity table as {(a1,
b2), (a2, b3), (a3, b1)}. The algorithm detects that mapping pair (a1, b3) produces
most contradictions with other mappings pairs, and therefore the pair as the key
mapping pair needs to be adjusted. Then our algorithm breaks the cycle by find-
ing the second most suitable mapping for the element in the table. Algorithm 3.2
describes the procedure: it finds the key contradiction by calculating the maximal
intersection set between mapping pairs and decedents and ancestors of a mapping
pair, and then chooses the second best mapping for the element.

Algorithm 3.2 breaking cycles
Require: Table table

for each pair p(ai, bj) in pairs; do
Topsort(pairs);
if (|((decedents(ai) X ancestors(bj)) U (ancestors (ai) X decedents (bj))) ∩ pairs
| is max) then

Choose the second biggest similarity for ai

end if
end for

After breaking cycles, the algorithm generates mapping pairs based on the
new similarity table and iteratively finds and breaks new crossings until no more

Secure Model Management Operations for the Web 243

Algorithm 3.3 the matching algorithm
Require: Data models m1 and m2

Table table = construct (m1, m2);
Itno = 0;
while into< bound do

if (cycle (table) then
Break(table);

end if
Into ++;

end while
Produce the mapping pairs from table;

crossing can be found or a threshold is reached. The pseudo code is described in
Algorithm 3.3.

3.2 Schema Matching with Security Property

The Match operator takes models A and B as input, and produces mapping
Map1 2, called object mapping, but not mapping for access control rules. Subject
matching matches the subjects of two access control rules. For example, “Cust”
in Table 1 is mapped to “Customer” in Table 2. Match with a security extension
takes two input models, each having a set of access control rules. The extended
Match operator is defined as follows:

Definition 1: (Mapo,Maps) = Match ((M 1, ACR1), (M2, ACR2)), where M1

and M2 are two data models, ACR1 and ACR2 are access control rules of models
M1 and M2 respectively.

Customer

Vendor

Administrator

Cust

Provider

Admin

Fig. 6. The Maps example

The result (Mapo,Maps) contains two mappings, Mapo between objects and
Maps between subjects. Figure 6 shows an example of subject mapping.

Object matching algorithms can be used for subject matching without con-
sidering security properties of access control rules, and thus may produce poor
and even risky mappings. A security extension of match should avoid risky map-
pings and produce safe mappings defined as follows.

244 G. Song et al.

Assume models M1 and M2 have access control rules ACR1 and ACR2 re-
spectively. S1 and S2 are subjects of ACR1 and ACR2. Map1 2 is the object
mapping between M1 and M2. Maps is a subject mapping between S1 and S2.

Definition 2: Maps is safe if and only if (∀ (s1, s2) ∈Maps ∀ (o1,
o2) ∈Map1 2 a ∈A (allow (s1, o1, a) iffallow (s2, o2, a))), where s1 and
s2 are subjects of S1 and S2, o1 and o2 are objects of M1 and M2, a is an action
in set A (all actions), allow (s1, o1, a) means that s1 is allowed to perform action
a on o1.

To produce safe subject mappings, three options can be considered:
1. Security filter: The most straightforward approach is to transplant an

object matching algorithm to match subjects with a security filter attached to
the back end. Once the filter finds a violation, it removes the mapping pair. The
approach is safe, but may impair effectiveness of the matching algorithm. For
example, as described in Section 2, if another element called Supervisor in model
B has full access to model B like Administrator of model A, and security filter
cannot match Supervisor with Administrator, since Administrator is chosen to
match Admin in the first place.

2. Security dimension: The approach provides security as another dimen-
sion of similarity. Careful scrutiny of this approach shows that violating map-
pings may be produced due to the influence of the other dimensions of similarity
(e.g. data type or naming similarity).

3. Security isomorphism: The approach calculates the similarity of sub-
jects based on not only subject names but also semantics of access control rules.
It compares the access control rules of every pair of subjects from the graphi-
cal representation and generates subject mapping based on the isomorphism of
ACRs.

Among the above three options, the security isomorphism algorithm gener-
ates more accurate mappings than security filter does, and can also be proved to
be safe. Therefore we choose the third approach as the security extension to our
matching algorithm presented in Section 3.1. The algorithm matches subjects’
access rules to calculate the similarity of two subjects. The similarity of two
subjects consists of SS (subject similarity) and AS (access similarity). If s is a
subject of access rules, we denote G (s) as a set of objects that S has access and
D (s) as the set of objects that S is prohibited from access.

Definition 3: The overlap set between two subjects is defined as: O (s1, s2) =
{(o1, o2)| o1 ∈G (s1) and o2 ∈ G (s2), and s1 and s2 are two subjects, and (o1,
o2) is a mapping}.
Definition 4: The access similarity between two subject nodes is defined as:
AS(s1, s2) = |O (s1, s2)|/ N, where N = |G(s1)| + |G(s2)| − |O (s1, s2)|, and no
mapping (o, p) exists such that o∈G(s1) and p∈D(s2) or o∈G(s2) and p∈D(s1).
Otherwise, AS(s1, s2) = -1.

As shown in Figure 7, the overlap set O (Vendor, Provider) = {(1, a)}. We
use Algorithm 3.4 to compute the similarity of two subjects, and then match
subjects by choosing the best match in the similarity table.

Secure Model Management Operations for the Web 245

Vendor

a b

R

Provider

1 2

RR R

Fig. 7. Matching for access control rules

Algorithm 3.4 Subject matching
Require: Data models o1, o2, subjects s1, s2

Use graphical global schema matching algorithm to produce subject similarity table
SS(s1, s2) and mapping M;
AS(s1,s2) = 0;
for each pair of subjects do

for every rule in ACR do
if allow(s1, o1, a) and allow(s2 , o2, a) and (o1,o2) ∈ M then

O(s1, s2) ⇓ (o1,o2);
end if
if violation exists then

AS(s1, s2)=-1; break;
end if
if (AS(s1,s2) != -1 then

AS(s1, s2) = | O(s1, s2)|/ N;
end if
if AS(s1, s2) >=0 then

SIM(s1, s2) = w* AS(s1, s2) + (1-w) * SS(s1, s2);
else

SIM(s1, s2) = -1;
end if

end for
end for
for each subject s1 in S1 do

if Max (SIM(s1, s2)) and SIM(s1,s2) >0 then
aps ⇓ (s1, s2);

end if
end for

Theorem 1: Algorithm 3.4 generates safe mappings.

Proof: The algorithm computes the similarity between any pair of subjects in
two input models based on the object mapping. Any possible violation will be
identified by marking the semantic similarity as -1. The AS value will finally pre-
vent mapping between any two violating subjects. Hence the algorithm generates
the mapping between those pairs of subjects that have no possible violation of
access control rules. According to Definition 2, the generated mapping is safe.

246 G. Song et al.

4 Merge with Security Property

Having the mapping between two models, one can merge the two models to gen-
erate a federation and exchange information. The security extension of Merge
eases the process by automatically generating access control rules for the out-
put data model. We define the Merge operator with security extension as the
following:

Definition 5: (M3, ACR3, Map1 3, Map2 3) = Merge (M1, M2, Map1 2, ACR1,
ACR2, Mapa), where M1 and M2 are input data models, and Map1 2 represents
the mapping between M1 and M2. Mapa represents the mapping between two
access control rules ACR1and ACR2. A Merge operator generates M3, Map1 3,

Item

Name ID Price Discount

Desc

Detail

Specific

Fig. 8. Result merged schema

and Map2 3. The result model M3 for the previous example is shown in Figure
8. Mapped elements in M1 and M2 are collapsed into one element in the new
model, such as Name and C Name into Name. Other than object merge, the
security extension of the Merge operator merges access control rules into a new
set of access control rules, i.e. ACR3. The process of merging two access control
rules is called access merge.

Access merge is based on subject mappings. As shown in Figure 6, Mapa

denotes the relationship between all possible subjects of two input access con-
trol rules. The two mapped subjects should be collapsed into one subject, such
as Customer and Cust into Customer, and share the same access authorization.
The access merge is represented by graph transformation as in visual model man-
agement [23], and should ensure a safe output by preventing violating accesses
while keeping maximum access for subjects.

Suppose the Merge operator takes input models M1 and M2. If the mapped
subjects have the same access to the same mapped objects in both models, then
the related two rules can be merged into one output rule, e.g. Rule 1 of ACR1

(in Table 1) and Rule 1 of ACR2 (in Table 2).
Apart from the above case, three other cases need to be handled carefully as

follows:
1. Unmapped subjects, subject S1 for M1 is not mapped and is a new

subject to M2. Since it is only effective on the elements in M1, we simply add
the related access control rules to the result.

Secure Model Management Operations for the Web 247

2. Unmapped objects, object O1 for M1 is not mapped and is a new object
to M2. We simply add the two rules to the result.

3. Conflict, conflict occurs when a prohibited access is allowed. The follow-
ing three access conflicts are discussed and corresponding solutions are presented.

a. Allow vs. Deny
Suppose Rule 1 allows subject S1 the access to object O1 in model M1 and

Rule 2 denies the access of S2 to O2, where S1 mapped to S2, O1 mapped to
O2. Conflict arises when two subjects and their respective objects are merged,
i.e. S1 and S2 into one subject (called S3) and O1 and O2 into one object (O3).
Whether to allow the access of S3 to O3 would be a delicate issue. Possible
solutions include:

(1) Deny the subject’s access in the resulting rule;
(2) Allow the subject’s access in the resulting rule;
(3) Separately create two rules for each subject, and remove the mapping

between the two subjects;
(4) Request a user intervention.
Allowing all the access will break the access control rule for M2. Solution (3)

separates mapped objects thus breaks the mapping. Solution (4) requires users’
intervention and will produce a result depending on the policy. Users’ interven-
tion requires a user interface with the security extension for model management
to be user friendly, i.e. a visual environment. Our solution is a hybrid of solutions
(1) and (4), i.e. denies the subject’s access and requests users’ intervention, thus
provides safe suggestions that are customizable.

b. Local vs. Recursive
The mapped subjects may have different propagations, e.g. Rule 1 allows

access of S1 to O1 locally while Rule 2 allows access of S2 to O2 recursively.
Possible solutions to the conflict include:

(1) Restrict the access to be local in the resulting rule;
(2) Allow the access to be recursive.
Solution (2) gives more access to users than solution (1) does, but can produce

possible violation. It would be safe to provide only local access with solution (1).

c. Read vs. Write
A conflict arises if a rule of mapped subjects has different actions to mapped

objects, e.g. Rule 1 allows read access of S1 to O1 while Rule 2 allows write
access of S2 to O2. Possible solutions include:

(1) Give only read access in the resulting rule;
(2) Allow write access.

For the similar reason as above, we choose solution (1) as the result.
Overall, our solution assures the maximum safe access for users, and prevents

security violation caused by Merge while still being flexible and adjustable by
security officers according to the application domains. Table 3 shows the resulting
access rules for merged models.

248 G. Song et al.

Table 3. Access Control Rules for Merged Model

Subject Object Action Authorization Propagation

1 Customer /Item/ Read Allow R

2 Vendor /Item/ Read Allow R

3 Administrator /Item/ Read Allow R

4 Administrator /Item/Detail Write Allow R

5 Administrator /Item/Price Write Allow L

5 Discussion and Directions for Future Research

We have discussed access control for model management, and have essentially
provided the foundation for work on secure model management.

5.1 Formalization and Other Operators

The access control models discussed here are somewhat informal. The next step
is to expand on the work proposed here and develop a formal model and prove
that security properties are maintained during the mappings. The access control
rules essentially control access that a user can have to the various documents.
However a user can receive legitimate responses and subsequently make sensitive
associations. Such a problem has come to be known as the inference problem.
Extensive work has been carried out on applying security constraint processing
for the inference problem [26]. We need to apply intelligent inference to the
access rules to achieve more personalized model management.

Other operators also need to extend with security properties, such as Model-
Gen. After the ModelGen operation, some objects of the original model may be
removed, and the security extension of the ModelGen operator needs to adjust
the access control rules for the generated model. We will extend other visual
model management operators with security properties as our future work.

5.2 Future Work

Future work will proceed in three directions. One is to apply the secure model
management for RDF (Resource Description Framework) document. RDF is
a critical part of the semantic web. The RDF data model is a syntax-neutral
way of rep-resenting RDF expressions. The basic data model consists of three
object types, resources, properties, and statements. A RDF model can be rep-
resented by a directed graph. Therefore, any node in the RDF model can have
multiple children and multiple parents. RDF is a foundation for processing meta-
data; it provides interoperability between applications that exchange machine-
understandable information on the Web. RDF emphasizes facilities which enable
the automated processing of Web resources. Since RDF is designed to describe
the re-sources and the relationship among them without assumption, the defini-
tion mechanism should be domain neutral, and can be applied to any domain.

Secure Model Management Operations for the Web 249

RDF essentially utilizes XML syntax. Therefore, we need to extend the model
driven operators for RDF syntax as well as semantics.

The second direction is to extend the concepts for secure information sharing
in heterogeneous and federated environments. Organizations are forming coali-
tions to share data but at the same time maintain security and privacy. We need
to integrate the heterogeneous data sources and at the same time enforce the
various security policies. The model management approach needs to be examined
for secure heterogeneous and federated data integration.

The third direction is to examine other access control policies and models.
Notable among them are role based access control (RBAC) and Usage control
(UCON) models [21] and [18]. RBAC is about users being allowed aces to object
depending on other roles. Usage control model proposed recently subsumes sev-
eral others models proposed in the literature. UCON consists of six components:
subjects and their attributes, objects and their attributes, rights, authorizations,
obligations and conditions. Subject must possess rights to access objects. In ad-
dition certain obligations have to be met and conditions have to be satisfied.
Applying model management for RBAC and UCON needs to be examined.

6 Related Work

Since its first introduction in a vision paper [2], many implementations model
management have been presented, such as Cupid [14,15] and SFA [16] as match
operator implementations, Merge operator presented by Pottinger et al [19].
While most of the approaches only concentrate on individual operators of the
model management, Rondo [17] is the first prototype of the generic model man-
agement system. None of these proposals addresses security extensions for any
model management operators.

Many proposals on access control mechanisms have been presented in both
database literature [9,11,10,12,22] and XML area [3,5,7]. There are however few
proposals on access controls across heterogeneous data models, and the most
related works are those on secure XML federations [27] and XML security mod-
els using relational databases [13]. Tan also proposed an idea of using RDBMS
to handle access controls for XML documents, in a rather limited setting [25].
Farkas et al. developed algorithms to automate the access control rules transfor-
mation process, while preserving the Access Control requirements of the original
systems [8]. They studied and developed methods for automatically translating
Access Control Lists and Bell-LaPadula models to ASL. They concentrated only
on the access control rules while our system can manipulate the related schemas
at the same time.

In addition, there has been lot of work on access control on temporal models,
multimedia models, geospatial information systems and multimedia systems [1].
While these works concentrate on domain-specific access controls, our approach
provides security extensions to generic systems and can be applied to virtually
any data models.

250 G. Song et al.

7 Conclusion

This paper has discussed uniform access control rules for heterogeneous data
models and a visual representation of the access control model. We presented
approaches for automatic generation of subject matching. We proved that the
security isomorphism algorithm generates safe mappings. The paper also dis-
cussed the security issues involved in the Merge operator and other operators,
and addressed the principles of a secure Merge operator. The security extensions
to our previous work on visual model management operators provides automatic
generation mechanism for managing access control specifications to allow het-
erogeneous Web data models to exchange information over public networks.

Model management is becoming an important technology for Web informa-
tion management. It is critical that security be incorporated into the process at
the beginning and not as an afterthought. The major contribution of this paper
is attempting to incorporate security into the model management process.

References

1. V. Atluri and S. Chun, An Authiruization, Model for Geospatial Data, IEEE Trans-
actions on Depoendable and Secure Computing, Volume 1, #4, 2005.

2. P.A.Bernstein, A. Halevy, and R.A. Pottinger, A Vision for Management of Com-
plex Models, SIGMOD Record, 29(4), 55-63, 2000.

3. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents,
IEEE Trans. Information and System Security (TISSEC), 5(3): 290 – 331, Aug.
2002.

4. Bray, T., Paoli, J., Sperberg-Mcqueen, C., and Maler, E. Extensible Markup
Language (XML) 1.0 (2nd Edition), World Wide Web Consortium (W3C),
http://www.w3.org/TR/REC-xml, 2000.

5. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Securing
XML Documents. Proc. EDBT 2000 Konstanz, Germany, Lecture Notes in Com-
puter Science, Vol. 1777, Springer, New York, March, 2000, 121–135.

6. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, Fine Grained
Access Control for SOAP E-Services, Proc. 10th Int. World Wide Web Conference,
Hong Kong, China, May, 2001.

7. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, P. Samarati, A Fine-
Grained Access Control System for XML Documents, ACM Trans. Information
and System Security (TISSEC), 5(2)169-202, May 2002.

8. C. Farkas, A. Stoica, P. Talekar, APTA: an Automated Policy Translation Archi-
tecture, Int. Conf. Computer, Communication and Control Technologies, 2003.

9. P. P. Griffiths and B. W. Wade, An Authorization Mechanism for a Relational
Database System, ACM Trans. Database System (TODS), 1(3): 242 – 255, Sep.
1976.

10. S. Jajodia and R. Sanhu, “Toward a Multilevel Secure Relational Data Model”,
ACM SIGMOD, May 1990.

11. S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino, A Unified Framework
for Enforcing Multiple Access Control Policies, ACM SIGMOD, 474 – 485, May
1997.

Secure Model Management Operations for the Web 251

12. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, Flexible Support
for Multiple Access Control Policies, ACM Trans. Database Systems (TODS), 26
(2): 214 – 260, June, 2001.

13. B. Luo, D. Lee, W. Lee, P. Liu, A Flexible Framework for Architecting XML
Access Control Enforcement Mechanisms, Proc. VLDB Workshop on Secure Data
Management in a Connected World (SDM), Toronto, Canada, August 2004.

14. J. Madhavan, P. A. Bernstein, and E. Rahm, Generic Schema Matching Using
Cupid, Proc. 27th VLDB Conf., Roma, Italy, Sep, 2001, 49-58.

15. J. Madhavan and A. Y. Halevy, Composing Mappings Among Data Sources, Proc.
29th VLDB Conf., Berlin, German, Sep 2003, 572-583.

16. S. Melnik, H. Garcia-Molina and E. Rahm: Similarity Flooding: A Versatile Graph
Matching Algorithm and its Application to Schema Matching, Proc. 18th ICDE,
San Jose CA, Feb 2002.

17. S. Melnik, E. Rahm, and P. A. Bernstein, Rondo: A Programming Platform for
Generic Model Management, Proc. SIGMOD 2003 Conf., San Dieago, CA, June
2003, 193-204.

18. J. Park and R. Sandhu, The UCONABC Usage Control Model, ACM Transactions
on Information and System Security, Volume 7, Number 1, February 2004.

19. R. A. Pottinger and P. A. Bernstein, Merging Models Based on Given Correspon-
dences, Proc. 29th VLDB Conf., Berlin, Germany, 2003, 826-873.

20. Rahm, Erhard and P. A. Bernstein. A Survey of Approaches to Automatic Schema
Matching, VLDB Journal, 10(4): 334-350, 2001.

21. R. Sandhu, E. Coyne, H. Feinstein and C. Youman, Role-Based Access Control
Models, IEEE Computer, Volume 29, Number 2, February 1996.

22. R. Sandhu, F. Chen, The Multilevel Relational (MLR) Data Model, IEEE Trans.
Information and System Security (TISSEC), 1 (1), 1998.

23. G.L. Song, K. Zhang, and J. Kong, Model Management Through Graph Transfor-
mations, Proc. 2004 IEEE Symp. Visual Languages and Human-Centric Comput-
ing, IEEE CS Press, Rome, Italy, September 2004, 75-82.

24. G.L. Song, K. Zhang, B. Thuraisingham, J. Cao, Towards Access Control of Visual
Web Model Management, Proc. 2005 IEEE International Conf. on e-Technology,
e-Commerce and e-Service (EEE-05), IEEE CS Press, Hong Kong, March 2005.

25. K.-L. Tan, M. L. Lee, and Y. Wang. Access Control of XML Documents in Rela-
tional Database Systems, Proc. Int. Conf. on Internet Computing (IC), Las Vegas,
NV, Jun. 2001.

26. B. Thuraisingham. Security Constraint Processing in Multilevel Secure Distributed
Systems, IEEE Transaction on Knowledge and Data Engineering, Vol. 7, #2, April
1995.

27. L. Wang, D. Wijesekera and S. Jajodia., Towards Secure XML Federations, Proc.
16th IFIP WG11.3 Working Conference on Database and Application Security,
July 28-31, 2002.

A Credential-Based Approach for Facilitating Automatic
Resource Sharing Among Ad-Hoc Dynamic Coalitions�

Janice Warner1, Vijayalakshmi Atluri1, and Ravi Mukkamala2

1 Rutgers University, Newark NJ 07012, USA
{janice, atluri}@cimic.rutgers.edu

2 Old Dominion University, Norfolk, VA 23529, USA
mukka@cs.odu.edu

Abstract. Today, there is an increasing need for dynamic, efficient and secure
sharing of resources among organizations. In a dynamic coalition environment,
participants (including users and systems) of an organization may need to gain
access quickly to resources of other organizations in an unplanned manner to
accomplish the task at hand. Typically, when entities agree to share their infor-
mation resources, the access control policies are agreed upon at the coalition
level. These coalition level agreements are not at the level of fine-grained poli-
cies, in the sense that they do not specify which specific users can access which
data object. In this paper, we propose a dynamic coalition-based access control
(DCBAC) model that allows automatic access to resources of one coalition entity
by users from another coalition entity. To make the model applicable to true ad-
hoc dynamic coalitions, we employ a coalition service registry, where coalition
entities publicize their coalition level access policies. Any coalition entity wish-
ing to access a specific resource of another coalition entity can obtain a ticket by
submitting its entity credentials which are subsequently evaluated by the coalition
service registry. DCBAC employs a policy mapper layer that computes the exact
credentials required by remote users that are comparable to those required by lo-
cal users. We demonstrate how the coalition and resource level access policies
can be specified in XML-based languages and evaluated.

1 Introduction

Today, there is an increasing need for dynamic, efficient and secure sharing of resources
among organizations. This is driven by a number of applications including emergency
and disaster management, peace keeping, humanitarian operations, or simply virtual
enterprises. Typically, resource sharing is done by establishing alliances and collabora-
tions, also known as coalitions. Due to the nature of the applications, the coalitions are
often dynamic where entities may join or leave the coalition in an ad-hoc manner.

In a dynamic coalition environment, participants (e.g. users, systems) of an organi-
zation may need to gain access to resources (both data and services) of other organi-
zations to accomplish the task at hand. As an example, in a natural disaster scenario,
such as the earth quake in Turkey on May 1, 2003 and the Tsunami in Asia on Decem-
ber 26, 2004, government agencies (e.g., FEMA, local police and fire departments),

� The work of Warner and Atluri is supported in part by the NSF under grant IIS-0306838.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 252–266, 2005.
c© IFIP International Federation for Information Processing 2005

A Credential-Based Approach for Facilitating Automatic Resource Sharing 253

non-government organizations (e.g., Red Cross) and private organizations (e.g., Doc-
tors without Borders, suppliers of emergency provisions) needed to share information
about victims, supplies and logistics[10]. Similar examples include homeland security
applications where sharing of information across different organizations is needed for
identifying criminal and terrorist behavior, illegal shipments, and the like. In a com-
mercial setting, organizations may share resources and information in order to provide
comprehensive services drawing from unique skills of diverse participating entities.

Typically, when coalition entities agree to share their information resources, the
access control policies are agreed upon at the coalition level. For example, an agreement
between government entities A and B might be that they will share resources to aid in
a smuggling investigation. These coalition level agreements are not at the level of fine-
grained policies, in the sense that they do not specify which subjects are allowed to
access which specific resources.

The security policy needed for allowing access would be “user Alice of entity A can
access the immigration file of entity B.” Enforcing the coalition-level security policies
requires transforming the high-level policies to implementation level.

Current approaches to facilitate resource sharing resort to one of the following
methods: (i) Users from one coalition entity are explicitly given permission to access
resources from another coalition entity. This approach is administratively time consum-
ing and requires explicit revocation after the coalition is disbanded or when a user is
no longer affiliated with the coalition entity. (ii) A single access id is provided to all
of the users of the coalition entity. While this simplifies administrative effort, it makes
fine-grained access control impossible. (iii) The resources are copied to the coalition
entity that requires access to them. Updates are difficult and may result in uncontrolled
sharing. In addition, all the above approaches are not suitable for dynamic and ad-hoc
coalitions, and are only feasible among entities that have pre-established partnerships.

Access control research in the area of dynamic coalitions is relatively new. Philips et
al. [10] have described the dynamic coalition problem by providing several motivating
scenarios in a defense and disaster recovery settings. They have developed a prototype
that controls access to APIs and software artifacts [9]. Cohen et al. [3] have proposed
a model that captures the entities involved in coalition resource sharing and identifies
the interrelationships among them. In [2,5], the researchers have addressed the issue of
automating the negotiation of policy between coalition members in a dynamic coalition.
Finally, in [13], Yu et.al propose automated mechanisms for trust building between
entities using digital credentials Our research complements these works by addressing
the issue of automatic translation of coalition level policies to the implementation level
policies, and vice versa.

Our approach is a coalition-based access control (CBAC) model that allows au-
tomatic access to resources of one coalition entity by users from another coalition
entity[1] by employing three layers (coalition, role and user-object). A user’s request
for a specific remote object is first translated into a role level request, and then into a
coalition level request before being sent to the remote coalition entity. At the remote
coalition entity, the coalition level request is trickled down through the three layers and
translated into an user-object access request. The information appended at each layer at

254 J. Warner, V. Atluri, and R. Mukkamala

the requesting coalition entity is understood and dealt with by the corresponding layer
at the other coalition entity, much like the TCP/IP network protocol.

In this paper, we propose dynamic coalition-based access control (DCBAC) model
that is specified based on the credentials possessed by coalitions as well as subjects.
DCBAC extends CBAC in several directions in order to eliminate its inherent limi-
tations. First, CBAC assumes that every pair of coalition entities have to agree on the
coalition policies in advance in order to allow access to data from one entity to subjects1

of the other entity. As a result, this model cannot entertain a “truly dynamic coalition”,
where entities of the coalition join or leave in an ad-hoc manner. To cater to true ad-hoc
dynamic coalitions, we employ a coalition service registry (CSR) where coalition enti-
ties publicize their coalition level access policies. Any coalition entity wishing to access
a specific resource of another coalition entity can obtain a ticket by submitting its entity
credentials which are subsequently evaluated by the CSR. Second, CBAC computes the
credentials required by a user wishing to access a remote object as a union of all the
credentials possessed by all users playing a role, which has privileges to access that
object. This is a very conservative approach, and requires a large number of unneeded
credentials from a requesting user. Our DCBAC employs a mapper layer that accurately
computes the credentials required by a user to access a resource. Third, we demonstrate
how the access policies, at the coalition level and resource level, can be specified in
XML and be evaluated.

Our DCBAC system comprises of four layers – (i) coalition level, which interacts
with other coalition entities and is responsible for ensuring the authenticity of the coali-
tion entity requesting access to its resources, (ii) credential filter, which is responsible
for examining incoming credentials and attaching appropriate credentials to outgoing
requests, (iii) credential⇐⇒ local access control mapper, which converts local access
control rules to policies concerning credentials for outgoing requests and vice versa for
incoming requests, and (iv) local access control layer, responsible for uniformly serving
the both local and external access requests.

While facilitating automatic access, we ensure that the following requirements are
met: (i) The existing access control mechanisms within each coalition entity remain
intact. Our approach does not require any changes to the existing local access control
mechanisms. (ii) Access is granted to subjects only if they belong to an organization
recognized by the coalition, adhering to the coalition level access policies. (iii) Subjects
of a coalition entity must have credentials with attribute values comparable to the values
of those of the local subjects.

For example, in an emergency management scenario, the International Red Cross
decides to make available its Emergency Response Information System to other relief
organizations. However, it has three access requirements: (i) individuals who wish to
access these resources must belong to an organization recognized by the International
Red Cross as a reliable relief organization; (ii) they are allowed to only access informa-
tion related to the emergency site in which they are currently operating; and (iii) they
must possess credentials with attribute values comparable to the values of internal users
of the resources. As an example, Dr. Roberts, a member of Doctors Without Borders,
wishes to access data on infectious diseases in the area of an earthquake in Turkey,

1 In this paper, we use subjects and users alternatively.

A Credential-Based Approach for Facilitating Automatic Resource Sharing 255

an emergency scenario that he is currently working on. Clearly, he meets the first two
requirements as long as he can present the appropriate organizational credentials and
proof that he is operating in Turkey. Whether or not he meets the third requirement,
depends upon the credentials determined to be needed and the credentials he presents.

This paper is organized as follows. Section 2 presents required preliminaries to in-
troduce our DCBAC system. Section 3 presents our DCBAC system. Section 4 demon-
strates how the coalition and resource level policies can be specified in XACML speci-
fication language. Section 5 shows how access requests can be specified and evaluated.
Finally, Section 6 summarizes our conclusions and outlines future research in this area.

2 The Preliminaries

We briefly present the necessary formalism required to describe our DCBAC model.
Specifically, we review the formalism for resources and credentials.

Each organizational entity maintains a set of resources, RES, that can be shared with
other organizational entities within a coalition. Resources may include data objects as
well as services offered by the coalition entity. Each resource belongs to a resource-
type, organized as a resource-type hierarchy.

Definition 1. [Resource-type] An resource-type rt is a pair (rt id, RA), where rt id ∈
RT is a unique resource-type identifier; and RA is the set of attributes associated with
rt id. Each rai ∈ RA is denoted by an attribute name.

Definition 2. [Resource] A resource res is a triple (rt id, res id, res attr values),
where rt id ∈ RT , res id ∈ RES, res attr values = (ra : v1, . . . , ra : vn), where
{ra1, . . . , ran} ⊆ RA(rt). RA(rt) denotes the set of attributes associated with rt.

We use res(res id), res(res id) and res(res attr values) to denote the resource
id, the resource-type id, and the set of attribute values of the resource res, respectively.
The set of resource attributes describe the resource such as keywords or concepts.

We assume that each subject is associated with one or more credentials. Credentials
are assigned when a subject is created and are updated according to the profile of the
subject. To make the task of credential specifications easier, credentials with similar
structures are grouped into credential-types. Credential-types are typically organized
as credential-type hierarchy. We denote the set of credential-type identifiers with CT ,
the set of credential identifiers with CI , and the set of subject identifiers with U . A
credential-type can be formally defined as follows.

Definition 3. [Credential-type] A credential-type ct is a pair (ct id, A), where ct id ∈
CT is a unique identifier and A is the set of attributes belonging to ct id. Each ai ∈ A
has an attribute name and A(ct) is the set of attributes belonging to ct.

Definition 4. [Credential] A credential c, an instance of a credential-type ct, is a 4-tuple
(ct id, c id, subject id, subject profile), where ct id ∈ CT, c id ∈ CI, subject id
∈ U and subject profile = (a1 : v1, . . . , an : vn), where {a1, . . . an} ⊆ A(ct).

256 J. Warner, V. Atluri, and R. Mukkamala

Network (e.g., Internet)

Coalition
Service

Registry (CSR)
Coalition level

Credential filter

Credential - LAC
mapper

Local Access
Control (LAC)

Local User
Interface

Local Services
(Shared+Private)

Coalition level

Credential filter

Credential - LAC
mapper

Local Access
Control (LAC)

Local User
Interface

Local Services
(Shared+Private)

Local user Local user Local user Local user

Fig. 1. Proposed Coalition Architecture

The set of credentials associated with subjects in the system is denoted by the cre-
dential base (CB). We use c(c id), c(subject id), c(ct id) and c(subject profile) to
denote the credential id of c, the subject to which c is assigned, the credential type id of c
and the set of attribute values of the subject u (the subject profile) for c, respectively.

Example 1. An example of a credential for credential type “doctor” is as follows:
(doctor,045-999, (affiliation: Doctors-without-Borders, Specialty: immunology)). An
example of a credential for an organizational level credential type “organization”
is as follows: (organization, 943-777, CareNow, (headquarters: New York, NY, tax-
status:non-profit)). It has two attributes - headquarters and tax-status.

3 The DCBAC System

Our DCBAC system is comprised of a four layered architecture as depicted in Figure 1.
In this section, we briefly describe the functionalities of each of the components.

3.1 Coalition Service Registry

In order to facilitate dynamic and ad-hoc collaboration, we employ a registry service
similar to the model adopted for web services through which resources are offered to
potential collaborators. Such a model mitigates the need to negotiate and establish col-
laboration policies among coalition entities. Any entity can set its own sharing policies,

A Credential-Based Approach for Facilitating Automatic Resource Sharing 257

describe the types of resources that it is willing to share, and specify the required or-
ganizational credentials needed to access these resources. Adopting a model similar to
that of Web services is attractive in that it offers a readily available access interface.

We propose the use of a collaborative registry, called the coalition service registry
(CSR), similar to the UDDI Web Service registry[7]. It is used to define the set of re-
sources that coalition entities will make available and to describe the interfaces and
credentials used to access those resources. Our CSR will also verify organization-level
credentials and issue a “ticket” which can be submitted by individuals in the organi-
zation when submitting an access request for the advertised resources. This “ticket” is
nothing but a SAML assertion.

UDDI offers a standard way for potential collaborators to search registries for re-
sources based on a classification scheme or keyword. Queries for these resources can
be modulated with acceptable security and transport protocols. These searches are per-
formed against the information provided by the entity detailing to the desired extent
who the entity is (using the “BusinessEntity” structure), what resources are being pro-
vided (using the “businessService” structure), and the details on how to request access
to the resources (using the “binding template”). The binding template would indicate
the network address of the Coalition Access Point (CAP) for the resource publishing
entity. The CAP is able to interpret the requests and make access decisions. Specifics
about the access requests would be posted in the binding template as well, including
the format of credentials accepted, the format of the request and security requirements
(i.e., digital signatures, encryption).

While publishing resources in a public registry would allow the potential collabo-
rators to learn about offered resources, public announcement of shared resources is not
desirable. The CSR is expected to be hosted at one or more secure sites for a commu-
nity of interest. For our example, the Red Cross may state a coalition level policy by
registering their service at a registry and make their service only accessible to reliable
relief organizations through membership.

To gain access to a desired resource, a user (or an organization on behalf of its user)
submits the requested organizational level credentials to the CSR. The registry validates
the credentials and issues a SAML assertion. This is the “ticket” that a user from the
authenticated coalition entity must present to attempt to access the specific resources
being made available. Note that receipt of the ticket is not sufficient for access to the
resources. Instead, the assertion merely confirms that the user is from an organization
that matches the organizational level policy of the organization offering the resources.

Coalition entities may be permitted to join a coalition for a specific period of time.
Of course, revocation may be desirable at any time. Revocation procedures may be
performed at each individual CAP by implementing a function that follows decision
rules on whether a given assertion is accepted at a given time.

3.2 The DCBAC Layers

Additional specification of the layers are given in the following.
Coalition level. The top layer is the coalition level. It interacts with the coalition level
at other coalition entities. For simplicity, in this paper, we are considering only a single
coalition (in which an entity participates). When a entity participates in multiple coali-
tions, there would be multiple interfaces at this level (similar to a virtual machine model

258 J. Warner, V. Atluri, and R. Mukkamala

that supports multiple virtual machine interfaces to its processes [11]). In that case, we
can perceive this layer as having multiple coalition level software all existing simul-
taneously at an entity’s CAP. This layer receives service requests from other coalition
entity CAPs. The exact components of this request are presented later in Section 3.3.

On receiving an external service request, the top layer authenticates the requesting
coalition entity by validating the “ticket” received with the request. It checks if the
coalition policy has changed since the ticket was issued. If so, the request is rejected by
this level. The authentication is for the coalition entity that is sending the request rather
than for the individual user who may have initiated the request. The ticket is stripped
off and the request is then forwarded to the credential filter.

Credential Filter. The credential filter layer is responsible for filtering incoming and
outgoing requests and their associated user credentials. When this layer receives a ser-
vice request from the coalition level layer, it checks whether or not the service is made
available to the coalition (i.e., registered in CSR). It then checks whether or not the pro-
vided credentials are adequate to execute the request. If they are not adequate, it rejects
the request and sends an exception to its coalition level. In addition, depending on its
own organizational policies, it may downgrade or upgrade the credentials of a specific
entity in the coalition. For example, if a coalition consists of 10 entities, and entity A
has less trust on specific credentials offered by entity B, then it could downgrade them.

If one entity, for example, is suspected of revealing private information, another en-
tity could downgrade the credentials from this entity. After such filtering/transformation
of credentials, it forwards the request with credentials to its lower layer. It should be
noted that the credential layer has access to both the CSR and the local policies (if any)
regarding exception polices with regard to coalition entities. Below this layer, there is
no distinction between local and non-local user requests.

Let us now consider its handling of requests made by a local user to access non-local
services of the coalition. When its lower layer hands it a request and the associated user
credentials, it accesses the CSR to check: (i) If the service is registered at the reg-
istry; (ii) If the provided credentials are adequate to provide the service. If both checks
are positive, it filters out the credentials to be sent so that only the needed credentials
(required subject credentials) are provided to the service provider. For example, if
the requester is a PhD, an MD, and the director of a research institute, and if the service
only requires MD as a credential, the credential filter would filter out the PhD and di-
rector credentials. This is in line with the need-to-know principle adopted in operating
systems to provide resource protection and privacy [11]. It then sends up the request
and filtered credentials to the coalition level.

Credential⇐⇒LAC Mapper. The credential⇐⇒LAC mapper is responsible for
mapping the requestor’s credentials to the local access control terminology and vice
versa. It takes the local access control rules and converts them into a policy based on
credential attributes and resource attributes.

When the mapper receives a request with credentials from the credential layer, it
looks at its map and determines the possible local access controls that may be attributed
to that request. For example, when it receives the credentials of 〈Location: Turkey,
Specialty: infectious disease, Education: MD〉, and if the local access control policy

A Credential-Based Approach for Facilitating Automatic Resource Sharing 259

is RBAC, then the mapper would search its local map to determine possible roles that
may be assigned to the request. The map would specify required credentials derived
from those credentials that internal users in a role have minus the set that are either in-
dividual attributes (e.g., name, e-mail address) or internal organizational attributes (e.g.,
department, project). The local map, for example, may associate the received creden-
tials with the local roles of 〈Doctor〉 and 〈Intern〉. If two roles are in a single hierarchy,
then the map identifies only the highest role among them. Otherwise, it will form a
union of the roles and forwards this to the LAC layer along with the request. In other
words, if the hierarchy consists of doctor and intern, only doctor will be forwarded.

For outgoing requests, the mapper receives determines the role of the requestor
and computes the union of all credentials (subject credentials) associated with the
associated roles. It forwards the request and credentials to its credential filter layer.

Local Access Control (LAC) Layer. The local access control layer enforces control
on local services for both local and non-local requests. As shown in Figure 1, the local
requests are received through the Local-user-Interface (LUI). The non-local requests
are received through its upper layer. To understand its functionality, let us assume a
specific LAC such as RBAC. Since both local and non-local requests are accompanied
by the appropriate set of applicable roles, RBAC checks whether or not the service is
permitted for any of those roles. Of course, problems may arise when the requested
service is permitted for one of the roles and explicitly denied for some other role. Since
this is not specific to coalitions, we do not handle this problem here.

If a service request passes the access control, it is forwarded to the local services
module which executes the request and returns the result to the LAC. If the request
came from the local user, the results are returned through LUI. For non-local requests,
the results are forwarded to its upper layer.

3.3 The Request-Response Protocol

In the following, we present the detailed steps of how an access request is processed and
give an example using an access request by Dr. Roberts of Doctors Without Borders for
an object (RID 730) at the International Red Cross:
1. At the LAC Layer of the Requesting Entity: At the requesting coalition entity, a

user requests an resource by specifying the user request for a specific resource
type, which is as follows: 〈request id, subject id, rt id〉.
For example, 〈 744, roberts, Red Cross RID 730 〉.

2. At the credential⇐⇒LAC Mapper Layer of the Requesting Entity:
〈request id, subject credentials, rt id〉. For example, 〈 744, (degree:MD,
gender:M, location:Turkey, specialty: infectious disease), Red Cross RID 730 〉.

3. At the credential filter layer of the Requesting Entity:
〈request id, required subject credentials, rt id〉. For example, 〈 744,
(location:Turkey, specialty: infectious disease), Red Cross RID 730 〉.

4. At the coalition layer of the requesting entity: 〈request id, (requesting)entity id,
(resourceprovider)entity id, organizational credential assertion, rt id,
required subject credentials〉. For example, 〈 744,Doctors Without Borders,
Red Cross, SAML Assertion, Red Cross RID 730, (location:Turkey, specialty: in-
fectious disease) 〉.

260 J. Warner, V. Atluri, and R. Mukkamala

The message is sent to the service provider coalition entity.
1. At the Coalition Level Layer of the source entity, it validates the

organizational credential assertion and sends the following to the credential
filter layer. 〈request id, required subject credentials, rt id〉. For example,
〈 744, (location:Turkey, specialty: infectious disease), RID 730 〉.

2. At the credential filter layer of the requesting entity, it verifies that the
required subject credentials are included in the request. It then passes
〈request id, required subject credentials, rt id〉 to the mapper layer. For ex-
ample, 〈 744, (location:Turkey, specialty: infectious disease), RID 730 〉.

3. At the credential⇐⇒LAC mapper layer of the source entity, it compares the cre-
dentials of remote subjects to the determined equivalent of the local access control.
If they are acceptable, the mapper layer requests access from the LAC layer 〈rt id〉.
For example, 〈 744, RID 730 〉.

4. At the LAC layer of the source entity: This layer serves the access request. It iden-
tifies the requested resource or set of resources and makes them available to the
requesting coalition entity.

4 Policy Specification

In this section, we present our approach to specifying coalition based access control
policies. These policies are specified at two levels – coalition level and resource level.
The coalition level policies state the high level access control rules of coalition entities
on sharing resources among themselves that are publicized in the CSR.

The resource level policies state the access control rules on accessing a specific
resource by a user belonging to a coalition entity. These policies are stored and main-
tained at the resource owners. We use XACML [6] policy language to specify both the
coalition level and resource level policies. Finally, as noted in Section 3 we use SAML
for specifying organizational tickets.

We have chosen to use XML-based specifications for realizing our model. This
is because, using XML-standards, specifically UDDI, SAML and XACML provides
many benefits. Standards exist through the OASIS organization, the protocols are being
implemented, and parsers exist that can be readily used. The standards are extensible,
allowing the addition of functions and labels as needed. In addition, since collaboration
clearly involves multiple distributed parties, use of namespaces and semantics that have
already been defined for credentials and resources can speed implementation due to
re-use and can facilitate dynamic interoperability though common definitions.

4.1 Coalition Level Policies

The coalition level access policy specification can be compactly represented as follows:
〈entity id, credential set, rt id〉. The e policy states that only organizations that pos-
sess the credentials specified in the credenial set are allowed to access the resources
belonging to the rt id owned by the coalition entity with the specified entity id. These
organizational level policies are specified at the CSR. This coalition level policy repre-
sents only the organizational level credentials that must be provided by an individual
who requires access.

A Credential-Based Approach for Facilitating Automatic Resource Sharing 261

01 XACML HEADER
02 <Policy>
03 <PolicyId=1>
04 <RuleCombiningAlgId= "deny-overrides">
05 <Description>
06 read access to emergency archives with non-profit

relief organizations who are listed as ReliefWeb members
07 </Description>
09 <Subjects>
10 <Subject>
11 <SubjectMatch MatchId="name-match">
12 <Attribute Value DataType=string "www.reliefweb.org/˜orglist">
13 <SubjectAttributeDesignator
14 AttributeId=organization_id
15 DataType=string/>
16 </SubjectMatch>
17 <Subject Match matchId="string-match">
18 <Attribute Value DataType=string "non-profit">
19 <SubjectAttributeDesignator
20 AttributeId=tax-status
21 DataType=string/>
22 </SubjectMatch>
23 </Subject>
24 </Subjects>
25 <Resources>
26 <Resource>
27 <Attribute AttributeId=resource_type>
28 <AttributeValue>
29 emergency-archive
30 </AttributeValue>
31 </Resource>
32 </Resources/>
33 </Policy>

Fig. 2. An Example of the Coalition Level Policy

XACML [6] provides a way to describe the above policy. We have adopted XACML
to specify this policy because of the following capabilities critical to our approach: (i)
It provides a method for basing an authorization decision on attributes of the subject
(e.g., subject credentials) and resource (e.g., resource type).(ii) It provides a method for
combining individual rules and policies into a single policy set. This helps in combining
rules applicable to one coalition into a policy set. (iii) XACML was written explicitly
to provide a common way to express policies and ensure enforcement in a distributed
environment, making it appropriate for a coalition based environment. (iv) Although
not explicitly used in our example, the logical and mathematical operators on attributes
of the subject, resource and environment will aid in flexible policy descriptions.

Example 2. Returning to our example, assume that the Coalition Level Policy for the
Red Cross is as follows: “Allow read access on emergency archives to non-profit re-
lief organizations who are listed as ReliefWeb members”. This policy can be stated as
〈RedCross, {ReliefWeb-member, non-profit}, emergency-archives〉.

The example coalition level policy can be expressed in XACML-like specification,
as shown in Figure 2, in which lines 1-7 introduce the policy and 8-23 indicate the
subject attributes that must be matched. There are two attributes to be matched. The
first, as specified in lines 11 - 16 is a name-match of the organization to names listed

262 J. Warner, V. Atluri, and R. Mukkamala

at “www.reliefweb.org/∼orglist”. The second, as specified in lines 17 - 22, is a string-
match for tax-status which must equal non-profit. Lines 25-32 provide the resource
attributes for the resources that are made available.

4.2 Resource Level Policies

The resource level access policy specification can be specified as: 〈credential set,
rt id〉. This policy states that only the subjects who possess the credentials specified by
the credential set are authorized to access the resources of type specified in the rt id.
These policies are specified within the coalition entity organization, and are maintained
in the local policy base. These are nothing but the local policies translated into this form
by the credential⇐⇒LAC Mapper.

Example 3. Let us consider the following two resource level policies: (1) External in-
dividuals may only access information related to the emergency site in which they are
currently operating. (2) Individuals must have credentials with attribute values compa-
rable to the values of internal users of the resources.

The first policy serves as a filter, specifying that there must be a match between the
subject’s location and the location for which the resource is concerned. Specification
of this policy using XACML requires that a variable be defined based on the creden-
tial attribute “location”. This variable is then used to match resource attribute values.
To specify the second policy in XACML is more straightforward. The required creden-
tials generated by the mapper are specified in XACML as attributes of the subject to
match.

Assume that Dr. Roberts, a member of Doctors Without Borders, wishes to access
data on infectious diseases in the area of an earthquake in Turkey, an emergency on
which he is currently working. The requested resources are distributed in two parts of
our resource hierarchy, RID 517 and 730. To access these resources, the resource policy
specifies that the subject must be a doctor with the specialty of infectious diseases to
access RID 517, but there are no specialty restrictions for RID 730. Internally, the access
control policy is that the subject must also be assigned to at least one of a set of specific
projects. However, since this is an internal attribute, it would not be included in the
attribute requirements for external users. This policy can be specified in XACML as
shown in Figure 3, where it consists of a target (lines 2 - 9) and a rule for each resource
type. The target is used to (1) check that the user has a location credential and (2) to store
the value of the location attribute in a variable “LOC”. The rules for each resource type
match (1) the variable “location” to the resource attribute “theater-of-operation” (lines
21 to 24 for the first policy, and 41 to 44 for the second policy, (2) match the subject
attributes presented by Dr. Roberts to the requirements for the requested resource. In the
first policy, the credentials needed are specified in lines 13 to 15. In the second policy,
there are no subject credentials matches to be found.

Note that there would be policies associated with all other shared resources, which
are not illustrated here. Note also that the policy is specified on the highest resource of
the hierarchy. For example, a policy is specified over resource 510 rather than resource
517 because the same policy applies to all of the children of 510.

A Credential-Based Approach for Facilitating Automatic Resource Sharing 263

01 XACML HEADER
02 <Target>
03 <VariableDefinition VariableId="LOC">
04 <Apply Function-Id="string-equal">
05 <SubjectAttributeDesignator AttributeId="location"
06 DataType=string/>
07 </Apply>
08 </VariableDefinition>
09 </Target>
10 <Rule RuleId=1 Effect=permit>
11 <Description>
12 Read access is provided to users who present credentials showing a

specialty of "infectious disease" and location credentials that
match the "theater-of-operations" attribute of the requested
resource.

13 </Description>
14 <Subjects>
15 <Subject>
16 <SubjectMatch>
17 <AttributeValue ="infectious disease"
18 Datatype = specialty>
19 </Subject>
20 </Subjects>
21 <Resources>
22 <Resource>
23 RID 510
24 <ResourceMatch>
25 <AttributeValue = LOC
26 Datatype = theater-of-operation>
27 </ResourceMatch>
28 </Resource>
29 </Resources/>
30 <Actions>
31 <ActionMatch matchId=string-equal>
32 <AttributeValue DataType=string> read
33 </ActionMatch>
34 </Rule>
35 <Rule RuleId=2 Effect=permit>
36 <Description>
37 Read access is provided to users who present location credentials that

match the "theater-of-operations" attribute of the requested resource.
38 </Description>
39 <Subjects>
40 <Subject>
41 <AnySubject>
42 </Subject>
43 </Subjects>
44 <Resources>
45 <Resource>
46 RID 730
47 <ResourceMatch>
48 <AttributeValue = LOC
49 Datatype = theater-of-operation>
50 </ResourceMatch>
51 </Resource>
52 </Resources/>
53 <Actions>
54 <ActionMatch matchId=string-equal>
55 <AttributeValue DataType=string> read
56 </ActionMatch>
57 </Actions>
58 </Rule>

Fig. 3. An Example of the Resource Level Policy

264 J. Warner, V. Atluri, and R. Mukkamala

<saml:Assertion
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"//

MajorVersion="1" MinorVersion="1"
AssertionID="buGxcG4gILg5NlocyLccDz6iXrUa"
Issuer="Coalition-service-registry095
IssueInstant="2005-02-28T12:24:37">
Recipient="Red Cross"

<saml:Conditions NotBefore="2005-03-01T01:00:00"
NotOnOrAfter="2006-06-15T01:00:00"/>

<saml:AuthenticationStatement
<saml:Subject>

Doctors-without-Borders
</saml:Subject>

</saml:AuthenticationStatement
</saml:Assertion>

Fig. 4. SAML Assertion

5 Access Request Evaluation

In this section, we describe how an access request is evaluated. In order to send an
access request for a resource, the coalition entity of the requesting subject should first
have the required credentials to access the resource. This verification is done at the CSR
and a ticket to access the resource is issued to the requesting entity. In Section 5.1, we
describe how such assertions are generated and their format. A user of a requesting en-
tity then sends an access request to a coalition entity by appending this ticket. In Section
5.2, we discuss how this access request is specified in XML specification language and
how it is evaluated.

5.1 SAML Assertion

In order to gain access to a CAP, a user must submit the SAML assertion generated by
the CSR. The SAML assertion consists of a header, an assertion id, the Issuer element
containing the identifier for the specific CSR, the issue instant element providing the
date and time when issued, the recipient for the assertion, conditions for when the as-
sertion can be applied and the assertion itself which consists of the subject, indicating
the organization identity for which the assertion applies and any optional attributes.

In our example, Dr. Roberts’ organization, Doctors without Borders, would have
obtained a SAML assertion from the CSR, specified as shown in Figure 4.

5.2 Access Request Specification and Evaluation

XACML defines several functional components that work together to perform access
control. We make use of the following components at the CAP. The functionalities
supported by our CAP include: (i) a XACML Policy Enforcement Point (PEP), which
assesses external resource requests and enforces authorization decisions (ii) a Policy
Decision Point (PDP), which evaluates applicable policy and makes authorization de-
cisions, and (iii) a Policy Information Point (PIP), which provides attribute values for
outgoing requests as well as environmental attribute values such as time and date as
necessary. Not included in our CAP is the Policy Administration Point functionality
(PAP) which is the system used to create policies. A common policy system for all

A Credential-Based Approach for Facilitating Automatic Resource Sharing 265

<Request>
<Subject>

<SubjectAttribute>
specialty = cr:doctor.specialty

</SubjectAttribute>
<SubjectAttribute>

location = cr:work.site
</SubjectAttribute>

</Subject>
<Resource>

<ResourceAttribute>
RID = 517 AND RID = 730

</ResourceAttribute>
</Resource>
<Action>

Read
</Action>

</Request>

Fig. 5. Access Request

policies (local and external) is important to ensure that policies are not conflicting and
carefully administered. This is out of scope of this paper.

Looking at our example again from end-to-end, Dr. Roberts would first search the
CSR and find information that could be useful to him relevant to his relief work in
Turkey is available from the Red Cross CAP. Triggered by his request, his organization
submits its organizational level credentials to the registry, which verifies the credentials
and then returns a signed SAML assertion to be used at the Red Cross CAP. The request
can be expressed as: Request = 〈SAML Assertion, Credential-set, Resource, Action〉.
It consists of the SAML Assertion from the CSR, a credential set associated with Dr.
Roberts that meets the requirements of the access control rules for the requested re-
sources, the resources and finally the action requested. The last two items as well as a
reference to the portions of the submitted credentials that are applicable will be referred
to as the “Req”. The “Req” can be expressed in XACML with the 〈SubjectAttribute〉
tags referring to the portions of the submitted credentials that apply.

For example, Dr. Robert’s request would consist of
〈SAML-Assertion-for-Doctors-without-Borders, doctor-credential, work-credential,
Req〉 where Req would be formatted in XACML policy language as shown in Fig-
ure 5. The Red Cross CAP would match the request with the associated policy for the
requested resources and validate the credentials if necessary. If there is a match, access
is allowed. If not, access is denied.

6 Conclusions and Future Work

In this paper, we have presented a coalition-based access control system designed to
automatically translate coalition level policies into subject-resource level policies by
employing an attribute-based approach. It considers the attributes associated with user
credentials and those associated with resources, making the formation of specific groups
of subjects and resources unnecessary. Our system extends the original model proposed
[1] in the following three directions: First, our system is capable of catering to “true”
ad-hoc dynamic coalition by facilitating a coalition service registry where resources to

266 J. Warner, V. Atluri, and R. Mukkamala

be shared among potential coalition entities are advertised. Organizations can obtain
tickets to access the resources if they satisfy the required organizational-level creden-
tials. Second, our system is capable of assessing the exact credentials necessary by a
remote user and be able to map the access request as if it was an access request from a
local user. Finally, we have demonstrated how our CBAC system can be implemented
using OASIS XML-based standards, including XACML, UDDI, and SAML.

Our DCBAC model assumes that the local policies are mapped to credential-based
to facilitate external users to access the local resources. However, we have not addressed
how this mapping can be accomplished. Our future work includes mapping of different
types of local policies, including DAC, MAC, RBAC, etc., into credential based policies.
Moreover, CSR and ticket issuing function could become a performance bottleneck. We
are exploring the issue of distributing/replicating the CSR so that some of the functional-
ities of the CSR can be accomplished by the coalition entities themselves. The challenge
is to accomplish this without having to have a trusted coalition entity. We are also ex-
ploring the case where resources are not owned by only one entity in the coalition, but
instead are shared by several entities. We intend to extend our approach to facilitate such
cooperative environments similar to the work on cooperative role-based administration
in [12]. Finally, we believe that delegation is an important feature, which must be sup-
ported in coalition-based systems [4] and we intend to include this support as well.

References

1. V. Atluri and J. Warner. Automatic enforcement of access control policies among dynamic
coalitions. In International Conference on Distributed Computing and Internet Technology
(ICDCIT) 2004, December 2004.

2. V. Bharadwaj and J. Baras. A framework for automated negotiation of access control policies.
Proceedings of DISCEX III, 2003.

3. E. Cohen, W. Winsborough, R. Thomas, and D. Shands. Models for coalition-based access
control (cbac). SACMAT, 2002.

4. P. Freudenthal, K. Pesin, Keenan Port, and Karamcheti. drbac: Distributed role-based access
control for dynamic coalition environments. ICDCS, July 2002.

5. H. Khurana, S. Gavrila, R. Bobba, R. Koleva, A. Sonalker, E. Dinu, V. Gligor, and J. Baras.
Integrated security services for dynamic coalitions. Proc. of the DISCEX III, 2003.

6. OASIS. extensible access control markup language (XACML), version 2. OASIS Standard,
February 2005.

7. OASIS. Universal description discovery and integration (UDDI), version 3.0.2. OASIS Stan-
dard, February 2005.

8. OASIS. Assertions and protocols for the oasis security assertion markup language (saml),
version 2. OASIS Standard, January 2005.

9. C. Philips, E. Charles, T. Ting, and S. Demurjian. Towards information assurance in dynamic
coalitions. IEEE IAW, USMA, February 2002.

10. C. Philips, T.C. Ting, , and S. Demurjian. Information sharing and security in dynamic
coalitions. SACMAT, 2002.

11. A. Silberschatz, P. Galvin, and G. Gagne. Operating System Concepts with Java. John Wiley
and Sons, 6 edition, 2004.

12. H. F. Wedde and M. Lischka. Cooperative role-based administration. SACMAT, 2003.
13. T. Yu, M. Winslett, and K.E. Seamons. Supporting structured credentials and sensitive poli-

cies through interoperable strategies for automated trust negotiation. ACM Transactions on
Information and System Security, 6(1):1–42, February 2003.

Secure Mediation with Mobile Code�

Joachim Biskup, Barbara Sprick, and Lena Wiese

Universität Dortmund, D-44221 Dortmund, Germany
{biskup, sprick, wiese}@ls6.cs.uni-dortmund.de

http://ls6-www.cs.uni-dortmund.de/issi/

Abstract. A mediator helps a client of a distributed information sys-
tem to acquire data without contacting each datasource. We show how
mobile code can be used to ensure confidentiality of data in a secure
mediation system. We analyze what advantages mobile code has over
mobile data for secure mediation. We present a Java implementation of
a system that mediates SQL queries. Security risks for the client and
the mobile code are delineated; offending the integrity of its own data
is identified as a special type of attack of mobile code in a mediation
system. We name appropriate countermeasures and describe the amount
of trust needed in our system. As an extension, we consider security in
a hierarchy of mediators. Finally, we combine mobile code with mobile
agent technology.

1 Introduction

In a world with a growing amount of digitalized information, finding relevant
data is a tedious task – and it gets even more difficult if the information is dis-
tributed on several different host systems (the “datasources”). Wiederhold and
Genesereth (cf. [13,14]) introduced the concept of mediation to support the client
of a distributed information system: The client directs a query to a so-called me-
diator; the mediator tries to gather the data best fitting the client’s interests by
sending partial queries to datasources; finally, the mediator constructs a global
result out of the partial results and sends it back to the client. See Figure 1 for
a basic mediated system.
This basic system does not consider security aspects. However, participants may
require some security demands to be fulfilled:

1. Anonymity of participants: Clients may wish to stay anonymous to the data-
sources.

2. Confidentiality of data: Datasources may wish to be sure that the requesting
client is eligible to access the requested data; i.e., datasources have to perform
some kind of access control.

� This work was funded by the German Research Council (DFG) under grant number
BI 311/11-1.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 267–280, 2005.

c© IFIP International Federation for Information Processing 2005

268 J. Biskup, B. Sprick, and L. Wiese

Mediator

Source 1

Source n

Client

global
query

global

result

partial query 1

partial result 1

partial query n

partial result n

..

.

Fig. 1. A basic mediated information system

Altenschmidt et al. (cf. [2]) designed a system for secure mediation. Its general
design is shown in Figure 2 and outlined in the following. Given that not re-
vealing a client’s identity is one precondition to ensure anonymity for the client
(Point 1), in the secure mediated system a client attaches a credential to her
global query; the mediator forwards the credential with the partial queries to
the datasources. This credential is issued by a trusted certification authority (see
Section 5 for a description of our trust model); it links properties of the client to
her public encryption key but does not contain details of her identity. The client
keeps another certificate linking her identity to her public key in a safe place.
Instead of specifying just one key, the client can also attach a set of credentials
(containing different properties linked with possibly different public keys of hers)
and therefore combine multiple properties.

Datasources base their access control decisions only on the properties pre-
sented in the credentials. To keep the data confidential each datasource applies
a hybrid encryption scheme to its partial result: A session key used to encrypt
the partial result is itself encrypted with the client’s public keys in the cre-
dentials. Assuming a reliable public key infrastructure and adequate encryption
techniques, only the person who possesses the private decryption keys should be

.

.

.

.

p: properties

id: client’s identity

pub

Authority

id

pub p

pub

p

pub

query
Client

global

global

result

Mediator

p

pub

partial result n

partial query n

partial query 1

partial result 1

p

pub

pub

Source 1

Source n

Certification

k

k

k

k

k

k pub

k
k : client’s public key

Fig. 2. A credential-based secure mediated information system

Secure Mediation with Mobile Code 269

able to decrypt the session key and therefore the partial results and to access
the returned data (i.e., Point 2 is fulfilled).

By encrypting the partial results we face the following problem that will be
treated in this paper:

Given encrypted partial results, the mediator has to supply the client with a
global result to her global query. However, the mediator may not be eligible to
access the datasources’ unencrypted data.

Unfortunately, there does not exist a general “privacy homomorphism” (as intro-
duced in [11]) to solve the problem of “computing with encrypted data” (cf. [12])
where all data are encrypted with the same key. Furthermore, there are no ap-
proaches known to us that cover the problem of computing with data encrypted
with different session keys; this is the case if the datasources apply a hybrid en-
cryption scheme. So, up to now the mediator is not able to compute an encrypted
global result from encrypted partial results. Moreover, the client should better
not give away her private decryption keys as she cannot control what other par-
ties use them for. Thus we have to impose the additional work of computing the
global result on the client.

Section 2 introduces mobile data and mobile code as possible solutions to our
problem and lists advantages of mobile code. Section 3 presents our Java imple-
mentation of the secure mediated system with mobile code. In Section 4 possible
attacks by mobile code are depicted and a number of protection mechanisms
are explained; attacks on the code are considered as well. Section 5 describes
the model of trust we assume in our system. Section 6 covers additional security
aspects in a hierarchy of mediators. We conclude the paper with an outline of
another application area for a secure mediated system with mobile code. More
details on our mediation system can be found in [16]; our Java implementation
can be downloaded from [15].

2 Communication Between Mediator and Client

The basic idea to solve our problem is that the client gets the encrypted partial
results from the mediator and additionally an instruction how to combine the
partial results. We call the set of unencrypted partial results R, the set of en-
crypted partial results Renc, and the combination instruction i. The client first
decrypts the partial results and then computes the global result according to i;
she uses a program for this computation. We distinguish two possible origins of
this program:

1. A general program p was on the client’s computer beforehand. The mediator
specifies a format for i and Renc and sends d = (i,Renc). On client side Renc

is decrypted to R; then, i and R are used as inputs to compute the global
result p(i,R).

2. The mediator constructs a specialized program p(i) based on i containing
libraries that are necessary to compute the global result. The mediator then

270 J. Biskup, B. Sprick, and L. Wiese

sends c = (p(i),Renc). On client side Renc is decrypted; the execution of
p(i)(R) yields the global result.

In general, the first approach corresponds to the concept of “mobile data”, the
second one to the concept of “mobile code”1. Similar to [1] and [10] we use the
following definitions in this paper:

Definition 1. Mobile data, data processor:
A mobile data system comprises a client requesting information and a server
supplying this information. Communication between client and server is merely
an exchange of data without program code. Processing the data on client side is
solely done by a program already residing on the client’s computer; this program
is called a data processor. The server has to transmit the data in a predefined
format.

Definition 2. Mobile code, execution environment:
Mobile code consists of an executable program; there may also be a set of data
included that the program operates on. An installation of the program is not
needed; i.e., it can be executed immediately. A mobile code instance is sent to
one single recipient only. To control mobile code, it should be run in an execution
environment that shields the operating system from the mobile code. There is no
need for a common data format. However, the mobile code has to provide a public
execution interface to the recipient.

A pre-installed data processor on the client’s computer is indispensable in the
concept of mobile data. But also if we want to impose security settings on mobile
code, a pre-installed execution environment is necessary. We opted for the mobile
code approach as it offers some advantages that are described in the following.

In general, Fong [5] and Peine [10] consider mobile code advantageous over
mobile data. Yet, their conclusions do not entirely apply to secure mediation.
We now give just a short overview of our reasoning; see Table 1 for a summary
and [16] for a detailed analysis.

In secure mediation, there is no difference between mobile code and mobile
data considering Distribution of state and Reliability of network: Only one
transmission from mediator to client is necessary, because the mediator collects
all partial results; that is why inconsistencies in the distributed computation
state or communication problems due to an unstable communication link hardly
occur – be it with mobile data or mobile code. As for Network traffic, mobile
code even increases the amount of transmitted data due to its additional libraries.
However, mobile code offers the following advantages for secure mediation:

– Locality: Local interaction with resources (like the decryption keys for par-
tial results) without further installation of libraries can only be guaranteed
with mobile code.

1 We also use the term “mobile code” in contrast to “mobile agents”. The most dis-
tinctive feature of mobile agents is their ability to deliberately change their location
in a network of host computers.

Secure Mediation with Mobile Code 271

Table 1. Mobile code versus mobile data; gen. = general, med. = mediated, + =

mobile code better than mobile data, 0 = equal, – = mobile code worse

Comparison gen. med. Reason

Avoiding distribution of state + 0 No inconsistency: Serial computation
between mediator and client

Decoupling from network + 0 Only one transmission: Mediator collects all
partial results

Reduction of network traffic + – Additional program binaries (e.g. class
files)

Local interaction with
resources

+ + Computation at client without further
installation

Footprint size + + Small execution environment

Extensibility + + Libraries are included in mobile code

– Size: The execution environment of mobile code may be considerably smaller
than a data processor of mobile data as all necessary libraries are sent along
with the code; those libraries occupy space on the client computer only while
being used.

– Extensibility: The mobile code can use its up-to-date libraries without
further need for action of the client.

3 Our Solution: Mobile Java Code

The Java implementation of our secure mediation system processes queries in the
Structured Query Language (SQL). It comprises a client module (the execution
environment for mobile code), a mediator module and a datasource module. The
modules communicate via RMI calls. We describe each module in detail in the
following subsections.

3.1 Datasource Module

The datasource module needs access to an appropriate Java database driver.
When the datasource module receives a partial query, it opens a SQL connec-
tion to a database with the database driver to get the partial results. The data-
source module encrypts a partial result with hybrid encryption. This has two
advantages:

– Each partial result is encrypted with a newly generated symmetrical session
key; this makes cyphertext-attacks aimed at recovering the client’s private
decryption keys more difficult.

– The possibly large set of data in the partial result is encrypted with the faster
symmetrical encryption and only the small-sized session key is encrypted
asymmetrically.

272 J. Biskup, B. Sprick, and L. Wiese

The default Java packages do not support asymmetrical encryption. However, it
is possible to integrate so-called “cryptography providers”. We used the “Bouncy
Castle Provider” (BCP; see [4]). The session key is encrypted with the Bouncy
Castle RSA algorithm (in Electronic Code Book mode and with Optimal Asym-
metric Encryption Padding). Both asymmetrical encryption of the session key
(with possibly a set of different public keys extracted from the client’s creden-
tials) and symmetrical encryption of the partial result are both carried out by
the class javax.crypto.Cipher. The parameters for symmetrical encryption
(algorithm and keylength) can be set in the GUI by a datasource administrator.

On client side, Java class definitions can be integrated at runtime. That is
why datasources are not restricted in what data formats they use to represent
their partial results. Their formats just have to implement the interface Result
that is known to the client module; any format implementing Result can be
processed on client side if the class definitions are sent within the mobile code.

3.2 Mediator Module

The mediator module uses the “SQL2Algebra” library developed at our depart-
ment to process a client’s SQL query. The library takes the query as input and
outputs a so-called algebra tree. The leaves of this algebra tree contain the partial
SQL queries that are forwarded to the datasources. Each inner node represents
one of the algebraic operators selection, projection, union, join and complement ;
only queries representable with these operators can be processed by the library.
This is an examplary SQL2Algebra transformation:

SQL query Algebra tree
Select distinct tv1.A UNION
from TABLE1 tv1 | PROJECT{A}
union (select | | "Select * from TABLE1;"
distinct tv2.A | PROJECT{A}
from TABLE2 tv2); | "Select * from TABLE2;"

Based on the algebra tree, the mediator module constructs the so-called “an-
swer tree” – the executable that is returned to the client. Each inner node of the
answer tree is an operator object; it provides a method that executes the respec-
tive operation on its child nodes. Similar to the data format of the datasources,
the mediator can use operator classes unknown to the client as long as they im-
plement the interface ResultOperator and their class definitions are included
in the mobile code. A leaf of the answer tree is an object of type ResultProxy;
it has a reference to a java.util.Hashtable that stores all encrypted partial
results returned by the datasources. Then the mediator module constructs the
mobile code by joining the answer tree and the necessary class definitions (as
one or more Java Archives (JARs)) in an object of type ResultExtractor.

Secure Mediation with Mobile Code 273

The mediator module encrypts the mobile code hybridly using the public
keys contained in the client’s credentials. Finally the mediator module signs the
mobile code using java.security.Signature. Encrypting and signing is done
to secure the mobile code during transmission between mediator and client.

3.3 Client Module

A client enters a SQL query and the mediator name (or its IP address) in the
client module. She loads her credentials from a Java KeyStore (JKS); at the same
time, the client module verifies whether she knows the password that secures
the corresponding private decryption keys. The client module sends the query
together with the credentials to the indicated mediator module.

After receiving the mediator’s answer, the client module checks the signature
of the mobile code with the verification key of the mediator that the client loaded
from a JKS. If the signature is correct, the client module decrypts the mobile
code with the private keys specified when loading the credentials. Decryption
leaves the answer tree and the JARs. For each mobile code the client module
creates a uniquely named working directory, where it temporarily stores the
JARs. Then the client module accesses the Hashtable of the mobile code that
contains the encrypted partial results, decrypts each partial result and writes
the decrypted partial result back to the Hashtable.

Before execution is started, the JARs have to be made available to the
Java classloading mechanism. We replaced the default system classloader with
a new classloader that allows to add filenames to its search path and remove
them again. As our classloader replaces the system classloader, simply the new-
operator can be used in the mobile code to instantiate an object. So, the client
module adds the JARs to the classloader’s search path and calls the calculation
method of the root operator of the answer tree. Each operator recursively calls
the calculation methods of its children and then processes their return values.
If a child is a leaf (i.e., a ResultProxy-object), the calculation method accesses
the Hashtable containing the decrypted partial results and returns the appro-
priate one. The client module presents the global result to the client. After this,
it resets the classloader’s search path and deletes the working directory.

4 Security Issues

In general, in a dynamic mediated system with constantly changing, unidenti-
fied participants there is no basis for mutual trust between the participants. The
client can protect her computer against outside attacks from other participants
by adequate means (e.g., firewalls or authentication mechanisms). The crucial
point is that the client has to let code enter her computer to benefit from the
code mobility.

In our system, we still rely on certain trust relations (see Section 5); how-
ever, our design goal was to minimize the amount of trust the client has to put in
the mobile code (specifically the program p(i)) she receives. To achieve this, we

274 J. Biskup, B. Sprick, and L. Wiese

use an execution environment that takes care of a secure execution of the code.
This implies that the client has to check the small execution environment for
correctness once before using it (or the client trusts the execution environment
instead).

A feature that distinguishes a mediated system from other mobile code sys-
tems is that a mobile code instance does not have one unique producer. Instead,
the program part of the mobile code is constructed by the mediator while data
parts are supplied by different datasources. That leads to a consideration of the
following principals:

– the mediator (as producer of program p(i) and sender)
– the datasources (as suppliers of data Renc)
– the mobile code c
– the program p(i) inside the mobile code
– the data Renc inside the mobile code (or R after decryption)
– the client (and her computer)

In the following two subsections we explore in what ways mobile code and
the mediator could attack the client and what the execution environment can
do to protect the client. In the third subsection, mobile code is considered as the
victim of attacks of the client.

4.1 Mobile Code Attacks the Client

The client wants security criteria for her computer to be met. The basic require-
ments are confidentiality (of the data and programs on the computer), integrity
(of these data and programs) and availability (of hard- and software on the com-
puter). That means mobile code should not be able to spy out or corrupt data
and programs or monopolize resources on the client computer.

In addition to plain espionage, corruption or monopolization there are three
special types of behaviour of mobile code that could potentially lead to one or
more of these attacks. Mobile code could

– conspire with other mobile codes on the client computer: Single
mobile codes may seem harmless; but if several different codes are allowed
to communicate on the client computer, they could carry out an attack in
combination. As an example, let c1 be a mobile code that is allowed to read
a decryption key (e.g. one to decrypt partial results) but may not use a
network connection, and let c2 be a mobile code that can open a network
connection but cannot read any data. It is a case of espionage if now c1

communicates the decryption key to c2 and c2 sends the key via the network
connection to another computer.
As a second example, consider two mobile codes that monopolize the pro-
cessing unit by permanently alternating calling procedures of one another.
This would be a denial of service attack on the availability of the client
computer.

Secure Mediation with Mobile Code 275

– masquerade as another identity: If a mobile code succeeds in convincing
the client that it represents a trusted identity, it could misuse this trust
for starting attacks. A mobile code could pretend to be sent by a trusted
mediator although its real sender is an attacker unknown to the client. The
client possibly would run such code with less restrictions.
Mobile code could also masquerade as a part of another program. It could
for example simulate belonging to the execution environment by opening a
similar looking input dialog; in this dialog the mobile code could for instance
ask the user to enter the password that secures a decryption key.

– download other programs or program parts: If a mobile code is allowed
to receive data via a network connection, it could download additional pro-
grams or program parts that eventually attack the client. Young and Yung
(cf. [18]) call this a “malware loader”.

Literature on mobile code considers the following techniques to protect a
client from those attacks (see e.g. [5,8]):

1. Dynamic Access Control
2. Signed or Certified Programs in combination with contracts
3. Program Checking; e.g. Proof-Carrying Code (see [9])
4. Sandbox

Which (or which combination) of these techniques is appropriate for a secure
mediated system?

For the client, proof-carrying code would possibly be a good solution: She
would have to check the proof for correctness before starting the code but would
not have any performance loss due to dynamic checks. However, there is the
difficulty that the mediator generates the code (e.g. the SQL algebra tree) at
runtime and therefore also has to generate the proof at runtime. Since proof
generation generally is more complex than proof validation, the client would
have to wait quite a long time for the mediator’s result.
Nevertheless there would be the following remedy if the code is constructed from
modular building blocks – as for example the SQL algebra tree is constructed
from only a small number of basic algebraic operators: The mediator could have
the proofs for the building blocks ready and just prove that they are combined
correctly for the particular query. Unfortunately, automated proof generation is
still a field of intensive research; it is so far impossible to generate a proof for
an arbitrary program. That is why we have chosen another strategy explained
in the following.

As for the mobile Java code, some security-relevant operations have to be
performed on client side:

– the secret decryption keys have to be accessed to decrypt the mobile code
and the partial results

– a working directory for the mobile code has to be created and the JARs have
to be saved there

– the filenames of the JARs have to be added to the system classloader’s search
path and removed again after execution

276 J. Biskup, B. Sprick, and L. Wiese

– the mobile code has to be started (i.e., system resources like the processing
unit or memory have to be assigned to the code)

– the working directory has to be deleted after execution.

If the mobile code carried out all this operations, it probably would need a lot of
changing permissions; i.e., dynamic access control had to be performed on client
side. In our design however, we let the client module do all security-relevant
operations and let the mobile code run in a sandbox. More precisely the mobile
Java code does not need any Java permissions on the client computer; just the
client module (as the execution environment) gets a minimal set of permissions
to access the decryption keys, save the JARs etc.

The sandbox is a sufficient basis for execution of mobile code in our secure
mediated system. However, a more advanced implementation could exploit ad-
vantages of dynamically associating different mobile codes to different Java pro-
tection domains (and by that assigning code different Java permissions). This
would enable the client to give some codes a higher priority or let some codes
communicate while others are not allowed to do this. Possibly execution of mo-
bile code could also be based on time-dependent conditions. If the client performs
some computations regularly, mobile code could be denied execution at that time
to avoid denial of service attacks. Similarly, a context-based condition could take
other running mobile codes into consideration and could prevent a conspiracy.

In the sandbox, code is not executed on contract basis, but rather technical
protection mechanisms are employed. However, signing the mobile code by the
mediator (i.e., the code producer) is additionally used to check integrity of the
code after transmission to the client.

4.2 Mediator Attacks Client

The mediator takes a central position in a mediation system. It has access to the
global query and all credentials in it and constructs the mobile code. It can abuse
this positions to attack the semantic correctness of the result; i.e., it constructs
a program p(i) that computes a wrong global result.

We did not include a countermeasure for this attack in the implementation
but we suggest the following adoption of the proof-carrying code technique to
detect such an attack. While in the original application area (see [9]) the proof
states that the code does not harm the client, now the proof attests that the
mobile code contains a correct result to the client’s query.
Take the SQL algebra tree as an example: The mediator could construct a forged
algebra tree by exchanging algebraic operators (e.g. a join instead of a union).
With code carrying a proof of correctness, the mediator has to prove that the
algebra tree has been correctly derived from the query. This could be done by a
proof that restores the query from the algebra tree.

Apart from that, a more subtle attack is possible: As mentioned before, in a
secure mediation system the program p(i) is produced by the mediator and the
dataRenc are supplied by several datasources. On client side, p(i) operates on the
decrypted data R. The program p(i) could again attack the semantic correctness

Secure Mediation with Mobile Code 277

of the global result and also the integrity of R while being executed on the client
computer. In the Java implementation e.g., the operator classes inside the mobile
code are unknown to the client. They process decrypted partial results r ∈ R.
The mediator could construct operators that compute an incorrect global result
by changing values in every r.

The mediator could use traditional proof-carrying code or a certified program
to assure the client of the correct execution of p(i).

4.3 Client Attacks Mobile Code

The mobile code producer makes program p(i) available to the client so that she
can receive the global result; yet, the code producer may want p(i) to be secured
from infringement of copyright.

Several approaches have been made to address this problem. Software mech-
anisms are obfuscating (treated theoretically in [3]) and computing with
encrypted functions (cf. [12]). Copyright protection in these forms is contra-
dictory to program checking approaches used to protect the client from attacks
of the mobile code (see Section 4.1); even proof-carrying code has to be pro-
cessed by the client in clear to deduce a safety predicate. Especially Java byte
code is difficult to protect due to the existence of decompilers and code purifiers.
To overcome this problem, hardware components could be used in combination
with certified programs (or certified proofs) to build a trusted computing
platform (cf. [17]) but we have not considered this in our implementation.

5 The Trust Model

Our aim was to reduce the necessity for trust to a minimum. Yet, some trust
requirements remain. The certification authority (CA) has to be trusted by all
other participants (clients, mediators, and datasources) because all of them de-
pend on its impeccable behaviour:

– A datasource has to trust that the CA issues correct and valid credentials
such that only eligible clients are able to decrypt its data.

– Similar to the datasources, a mediator has to trust that the CA issues correct
and valid credentials such that its mobile code is protected from access by
clients other than the eligible one (or from access by the CA itself).

– A client has to trust the CA that it keeps her identity a secret.

Additionally, as long as copyright protection (as described in Section 4.3) is not
put into practice, the mediator has to trust the client, that she does not use the
mobile code in other ways than the mediator intended her to do (e.g., that the
client follows a licence that accompanies the mobile code).

Equivalently, a datasource has to trust the client that she does not pass data
on to other, non-eligible participants. However, a datasource does not need to
trust a mediator; a mediator cannot attack the confidentiality of partial results
if an appropriate encryption is used.

278 J. Biskup, B. Sprick, and L. Wiese

The main point is that the client has to trust the datasources (as suppliers
of data) and the mediator (as producer of program code) just as far as semantic
correctness of the global result is concerned because the execution environment
protects her computer from other attacks (see Section 4.1). So, there remain
two possibilities of attacks on the correctness of the global result: The data
inside the mobile code might be semantically wrong (i.e., the client has to trust
that the datasources supplied correct information; however, this is the same
with any traditional database query), or the mediator might construct a mobile
code that computes an incorrect global result (see Section 4.2; however, in basic
(“unsecure”) mediation the mediator could also corrupt the data supplied by
the datasources).

6 Hierarchy of Mediators

As an extension to our system, we considered a hierarchy of mediators. The client
still sends her query to one mediator, but mediators are able to forward partial
queries to other mediators. This technique offers increased flexibility and scal-
ability: Specialization of mediators to certain topics is possible; a mediator can
also decide whether it forwards partial queries to more specialized mediators or
just gathers partial results from its own datasources. In a hierarchy of mediators
the mobile code is built by different code producers: Each mediator constructs
a partial code containing its own program part, encrypted partial results and
possibly other partial codes.

Since the execution environment protects the client from attacks (except the
semantic ones) by mobile code of a single mediator, mobile code of a hierarchy
of mediators does not mean an increased risk to the client. However, signature
checking becomes complex when each partial code has been signed by a different
producer; likewise a safety proof for proof-carrying code has to be combined from
several partial proofs.

With a mobile code composed of different partial codes, not only attacks on
the integrity of the data R are possible (see Section 4.2), similarly the integrity
of execution of a partial code could be endangered by other partial codes. This
problem is e.g. inherent to the Java classloading mechanism: In the JARs brought
along with the mobile code, overwriting of class definitions can occur. A class
is loaded from the JAR that is searched first; if a second JAR contains a class
with the same class name, this second class definition is ignored. In our Java
implementation, JARs are scanned for duplicate class definitions.

7 Conclusion

With the adoption of mobile code for secure mediation we are able to transmit
data from datasources to a client in encrypted form; the mediator does not pro-
cess any clear-text data. That ensures confidentiality of the data and reduces the
necessity for trust in the mediator. Our mobile code system is easily extensible
and its execution environment is small.

Secure Mediation with Mobile Code 279

Optimizing runtime performance was not in the main focus of this work. In
comparison to basic (“unsecure”) mediation, in our secure mediated system per-
formance penalties occur mainly due to encryption on datasource side, mobile
code generation (and again encryption) on mediator side and decryption and
mobile code execution on client side. Due to a lack of time, runtime performance
has not been investigated systematically. Nevertheless, test runs performed in
an acceptable amount of time. One possibility of reducing both encryption time
and execution time would be to improve the SQL2Algebra-library that generates
the algebra trees on mediator side; algorithms that minimize the size of partial
results and the depth of the tree could be included.

Our mediation system with mobile code could be combined with existing
mobile agent systems (see e.g. [10,7]) to profit from both technologies: The client
directs her query to a mediator; the mediator constructs an agent to collect
the partial results from the datasources. This reduces communication overhead
between mediator and datasources. Wrapping functions could be carried out by
such an agent as well to convert partial results into a homogeneous format. The
client, however, is not charged with agent creation, agent management etc., since
the mediator takes care of all agent-related actions. Security considerations for
mobile agent systems have been investigated profoundly (see e.g. [1,6]).

References

1. Joy Algesheimer, Christian Cachin, Jan Camenisch, and Günther Karjoth. Cryp-
tographic security for mobile code. In SP ’01: Proceedings of the IEEE Symposium
on Security and Privacy 2001, pages 2–11. IEEE Computer Society, 2001.

2. Christian Altenschmidt, Joachim Biskup, Ulrich Flegel, and Yücel Karabulut. Se-
cure mediation: Requirements, design and architecture. Journal of Computer Se-
curity, 11(3):365–398, June 2003.

3. Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating Programs, volume
2139 of Lecture Notes in Computer Science, pages 1–19. Springer, Berlin, 2001.

4. The Legion of the Bouncy Castle. http://www.bouncycastle.org/.
5. Philip W.L. Fong. Proof Linking: A Modular Verification Architecture for Mobile

Code Systems. Phd thesis, Simon Fraser University, Burnaby, Canada, January
2004. See http://www.cs.sfu.ca/research/publications/theses/.

6. Günther Karjoth, Nadarajah Asokan, and Ceki Gülcü. Protecting the Computa-
tion Results of Free-Roaming Agents, volume 1477 of Lecture Notes in Computer
Science, pages 195–207. Springer, Berlin, 1998.

7. Günther Karjoth, Danny B. Lange, and Mitsuru Oshima. A Security Model
for Aglets, volume 1419 of Lecture Notes in Computer Science, pages 188–205.
Springer, Berlin, 1998.

8. Sergio Loureiro, Refik Molva, and Yves Roudier. Mobile code security. In Pro-
ceedings of ISYPAR’2000 (4ème Ecole d’Informatique des Systèmes Parallèles et
Répartis), pages 95–103, Toulouse, France, 2000.

9. George C. Necula and Peter Lee. Safe, Untrusted Agents Using Proof-Carrying
Code, volume 1419 of Lecture Notes in Computer Science, pages 61–91. Springer,
Berlin, 1998.

280 J. Biskup, B. Sprick, and L. Wiese

10. Holger Peine. Run-Time Support for Mobile Code. Dissertation, Universität Kaiser-
slautern, Fachbereich Informatik, October 2002.

11. Ron L. Rivest, Leonard Adleman, and Michael L. Dertouzos. On data banks
and privacy homomorphisms. Foundations of Secure Computation, pages 169–179,
1978.

12. Tomas Sander and Christian F. Tschudin. Protecting Mobile Agents Against Ma-
licious Hosts, volume 1419 of Lecture Notes in Computer Science, pages 44–60.
Springer, Berlin, 1998.

13. Gio Wiederhold. Mediators in the architecture of future information systems. IEEE
Computer, 25(3):38–49, 1992.

14. Gio Wiederhold and Michael Genesereth. The conceptual basis for mediation
services. IEEE Expert Intelligent Systems and their Applications, 12(5):38–47,
September/October 1997.

15. Lena Wiese. Mediator with mobile code support. http://ls6-www.cs.uni-

dortmund.de/issi/projects/DFG Kompositionalitaet/mobilecode.html.en.
16. Lena Wiese. Sichere Mediation mit mobilem Code – Implementierung und

Sicherheitsanalyse. Diploma thesis (in German), Universität Dortmund, Dort-
mund, Germany, October 2004. See http://ls6-www.cs.uni-dortmund.de

/issi/archive/literature/2004/Wiese 2004.pdf.
17. Bennet Yee and J. D. Tygar. Secure coprocessors in electronic commerce appli-

cations. In Proceedings of the First USENIX Workshop of Electronic Commerce,
pages 155–170, Berkeley, CA, USA, 1995. USENIX Assoc.

18. Adam Young and Moti Yung. Malicious Cryptography – Exposing Cryptovirology.
Wiley, Indianapolis, Ind., 2004.

Security Vulnerabilities in Software Systems:
A Quantitative Perspective

Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray

Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
{omar, malaiya, indrajit}@cs.colostate.edu

Abstract. Security and reliability are important attributes of complex software
systems. It is now common to use quantitative methods for evaluating and man-
aging reliability. In this work we examine the feasibility of quantitatively charac-
terizing some aspects of security.In particular, we investigate if it is possible to
predict the number of vulnerabilities that can potentially be identified in a future
release of a software system. We use several major operating systems as repre-
sentatives of complex software systems. The data on vulnerabilities discovered in
some of the popular operating systems is analyzed. We examine this data to de-
termine if the density of vulnerabilities in a program is a useful measure. We try
to identify what fraction of software defects are security related, i.e., are vulner-
abilities. We examine the dynamics of vulnerability discovery hypothesizing that
it may lead us to an estimate of the magnitude of the undiscovered vulnerabilities
still present in the system. We consider the vulnerability-discovery rate to see if
models can be developed to project future trends. Finally, we use the data for both
commercial and open-source systems to determine whether the key observations
are generally applicable. Our results indicate that the values of vulnerability den-
sities fall within a range of values, just like the commonly used measure of defect
density for general defects. Our examination also reveals that vulnerability dis-
covery may be influenced by several factors including sharing of codes between
successive versions of a software system.

1 Introduction

Reliance on networked systems has brought the security of software systems under con-
siderable scrutiny. Much of the work on security has been qualitative, focused on de-
tection and prevention of vulnerabilities in these systems. There is a need to develop a
perspective on the problem so that methods can be developed to allow risks to be evalu-
ated quantitatively. Quantitative methods can permit resource allocation for achieving a
desired security level, as it is done for software or system reliability. Thus far, only lim-
ited attention has been paid to the quantitative aspects of security. To develop quantitative
methods for characterizing and managing security, we need to identify metrics that can
be evaluated in practice and have a clearly defined interpretation. In this work we ex-
amine the problem of quantifying vulnerabilities in a complex software system. Security
vulnerabilities are “ defect(s) which enables an attacker to bypass security measures” [1].
Malicious attackers seek to identify and exploit system vulnerabilities to cause security
breaches. Reducing the number of vulnerabilities in a system is thus of utmost impor-
tance.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 281–294, 2005.
c© IFIP International Federation for Information Processing 2005

282 O. Alhazmi, Y. Malaiya, and I. Ray

Quantitative methods for general defects are now widely used to evaluate and man-
age overall software reliability. Since software system vulnerabilities – the faults as-
sociated with maintaining security requirements – can be considered a special case of
software defect, a similar measure for estimating security vulnerabilities appears long
overdue. In this paper, we quantitatively examine the number of vulnerabilities in sev-
eral popular operating systems. Such quantitative characterization of vulnerabilities can
be used to evaluate metrics that can guide the allocation of resources for security test-
ing, development of security patches and scheduling their releases. It can also be used
by end-users to assess risks and estimate the needed redundancy in resources and pro-
cedures for handling potential security breaches.

It is not possible to guarantee absence of defects in non-trivial sized programs like
operating systems. While extensive testing can isolate a large fraction of the defects, it
is impossible to eliminate them. This is because the effort needed to discover residual
defects increases exponentially [2]. Nonetheless, examination of defect densities (that
is the number of defects identified in the unit size of the software code) is still use-
ful. It can lead to the identification of fault-prone modules that need special attention.
Researchers have evaluated the ranges of defect densities typically encountered during
different phases of the software life cycle using data from available sources [3]. This has
led to industry wide standards for software defect densities. The information can be used
for comparison with the defect density measured in a project at a specific phase. The
result can identify if there is a need for further testing or process improvement. Similar
methods for managing the security aspects of systems by considering their vulnerabil-
ities, can potentially reduce the risk of adopting new software systems. Researchers in
software reliability engineering have analyzed software defect finding rates. Software
reliability growth models relate the number of defects found to the testing time [2,3,4].
Methods have been developed to project the mean time to failure (MTTF) or the failure
rate that will occur after a specific period of testing . Software defect density [5,6,7] has
been a widely used metric to measure the quality of a program and is often used as a
release criterion for a software project. Very little quantitative work has been done to
characterize security vulnerabilities along the same lines.

Security can be characterized by several possible metrics. Littlewood et al. [8,9] dis-
cuss some possible metrics to measure security based on dependability and reliability
perspectives. They propose using effort rather than time to characterize the accumula-
tion of vulnerabilities; however, they do not specify how to assess effort. An analysis
of exploits for some specific vulnerabilities has been considered by Arbaugh [10] and
Browne [11]. The security intrusion process has also been examined by Johnson and
Olovsson [12] and Madan et al. [13]. Other researchers have focused on modeling and
designing tools that make some security assessment possible [1]. Only a few studies have
examined the number of vulnerabilities and their discovery rates. Rescorla [14] has ex-
amined vulnerability discovery rates to determine the impact of vulnerability disclosures.
Anderson [15] has proposed a model for a vulnerability-finding rate using a thermody-
namics analogy. Alhazmi and Malaiya [16] have presented two models for the process
of vulnerabilities discovery using data for Windows 98 and NT 4.0. In the current work
we focus on the density of defects in software that constitute vulnerabilities, using data
from five versions of Windows and two versions of Red Hat Linux.

Security Vulnerabilities in Software Systems: A Quantitative Perspective 283

Vulnerability density is analogous to defect density. Vulnerability density may en-
able us to compare the maturity of the software and understand risks associated with its
residual undiscovered vulnerabilities. We can presume that for systems that have been
in deployment for a sufficient time, the vulnerabilities that have been discovered repre-
sent a major fraction of all vulnerabilities initially present. For relatively new systems,
we would like to estimate the number of remaining vulnerabilities. This requires devel-
opment and validation of appropriate vulnerability discovery models. Ounce Labs uses
a metric termed V-density [17] which appears to be somewhat related. However, their
definition and evaluation approach is proprietary and is thus not very useful to the gen-
eral community. Unlike the data for general defects in a commercial operating system,
which are usually hard to obtain, the actual data about known vulnerabilities found in
major operating systems are available for analysis. We analyze this data to address a
major question: Do we observe any similarity in behavior for vulnerability discovery
rates for various systems so that we can develop suitable models?

We examine several software systems, which we group into related families after
determining the cumulative number of their vulnerabilities. One of our objectives is
to identify possible reasons for the changes in the vulnerability detection trends. One
major difference makes interpreting the vulnerability discovery rate more difficult than
the discovery rate of general defects in programs during testing. Throughout its lifetime
after its release, an application program encounters changes in its usage environment.
When a new version of a software is released, its installed base starts to grow. As the
newer version of the software grows, the number of installations of the older version
starts to decline. The extent of vulnerability finding effort by both “white hat” and
“black hat” individuals is influenced by the number of installations; this is because the
larger the installed base the more is the reward for the effort. Thus, the rates at which
the vulnerabilities are discovered are influenced by this variation in usage.

The rest of the paper is organized as follows. In section 2 we introduce the major
terms we use in this work. We analyze, in section 3, the data for some of the Windows
operating systems to evaluate the densities of vulnerabilities that are known. We talk
about the remaining vulnerabilities (yet to be discovered) in section 3.1. In section 3.2
we present a model for the vulnerability discovery process. We then examine in section
4 the applicability of our major observations for two version of Linux, an open-source
operating system. Finally, we conclude the paper in section 5 by identifying future
research that is needed.

2 Measuring Systems’ Vulnerability Density

We begin by introducing a new metric, vulnerability density, that describes one of the
major aspects of security. Vulnerability density is a normalized measure, given by the
number of vulnerabilities per unit of code size. Vulnerability density can be used to
compare software systems within the same category (e.g., operating systems, web-
servers, etc.). To measure the code size we have two options. First, we can use the
size of the installed system in bytes; the advantage of this measure is that information
is readily available. However, this measure will vary from one installation to another.
The second measure is the number of source lines of code. Here, we chose this mea-

284 O. Alhazmi, Y. Malaiya, and I. Ray

sure for its simplicity and its correspondence to defect density metric in the software
engineering domain. Let us now present a definition of vulnerability density (VD):

Definition 1. Vulnerability density is the number of vulnerabilities in the unit size of a
code. It is given by

Vd =
V
S

(1)

where S is the size of the software and V is the number of vulnerabilities in the system.

Following the common practice in software engineering, we consider one thousand
source lines as the unit code size. When two systems, one large and one small, have the
same defect density, they can be regarded as having similar maturity with respect to de-
pendability. In the same manner, vulnerability density allows us to compare the quality
of programming in terms of how secure the code is. If the instruction execution rates
and other system attributes are the same, a system with a higher defect or vulnerabil-
ity density is likely to be compromised more often. Estimating the exact vulnerability
density would require us to know the number of all the vulnerabilities of the system.
Consequently, we define another measure in terms of the known vulnerabilities.

Definition 2. The known vulnerability density is the number of known vulnerabilities
in the unit size of a code. The known vulnerability density is given by

Vkd =
Vk

S
(2)

where is the number of known vulnerabilities in the system.

It is the residual vulnerability density (VRD) given by

Vrd = Vd−Vkd (3)

that (depending on vulnerabilities not yet discovered) contributes to the risk of potential
exploitation. Other aspects of the risk of exploitation include the time gap between the
discovery of a vulnerability and the release and application of a patch. In this study
we focus on vulnerabilities and their discovery. Recently there have been a number of
comparisons between several attributes of open-source and commercial software [7,15].
This is not, however, the focus of this paper. Rather, we want to probe the suitability of
vulnerability density and vulnerability as metrics that can be used to assess and manage
components of the security risk.

3 The Windows Family of Operating Systems

Table 1 presents values of the known defect density DKD and known vulnerability den-
sity VKD based on data from several sources [18,19,20,21] as of January 2005. Windows
95, 98 and XP are three successive versions of the popular Windows client operating
system. We also include Windows NT and Windows 2000, which are successive ver-
sions of the Windows server operating systems. The known defect density values for
Windows 95 and Windows 98 client operating systems are 0.33 and 0.55 per thousand

Security Vulnerabilities in Software Systems: A Quantitative Perspective 285

Table 1. Vulnerability density vs. defect density measured for some software systems

Systems Msloc Known
Defects

Known
Defect
Density
(per
Ksloc)

Known
Vulnera-
bilities

VKD (per
Ksloc)

VKD /
DKD

Ratio
(%)

Release
Date

Windows 95 15 5 0.3333 50 .0033 1.00% Aug 1995
Windows 98 18 10 0.5556 66 .0037 0.66% Jun 1998
Windows XP 40 106.5 2.6625 88 .0022 0.08% Oct 2001
Windows NT 4.0 16 10 0.625 179 .0112 1.79% Jul 1996
Windows 2000 35 63 1.80 170 .0049 0.27% Feb 2000

lines of code, respectively. The higher defect density for Windows XP is due to the fact
the data available is for the beta version. We can expect that the release version had
significantly fewer defects. The defect density values for Windows NT and 2000 are
0.6 and 1.8, respectively. The Known Vulnerabilities column gives a recent count of the
vulnerabilities found since the release date. We note that the vulnerability densities of
Win 95 and 98 are quite close. The known vulnerability density for Win XP is 0.0020,
much lower than the values for the two previous Windows versions. This is due to the
fact that at this time VKD represents only a fraction of the overall VD. We can expect the
number to go up significantly, perhaps to a value more comparable to the two previous
versions. We notice that the vulnerability density for Windows NT 4.0 is about three
times that of Win 95 or Win 98. There are two possible reasons for this. Since NT is
a server, a larger fraction of its code involved external access, resulting in about three
times the number of vulnerabilities. In addition, as a server operating system, it must
have gone through more thorough testing, resulting in the discovery of more vulnerabil-
ities. Windows 2000 also demonstrates nearly as many vulnerabilities as NT, although
due to its larger size, the vulnerability density is lower than that of NT.

One significant ratio to examine is, which gives the fraction of defects that are vul-
nerabilities. McGraw [19] hypothetically assumed that vulnerabilities might represent
5% of the total defects. Anderson assumed a value of 1% in [15]. Our results show that
the values of the ratio are 1.00% and 0.66% for Win95 and Win98. For Windows XP,
the number of known defects is given for the beta version, and is therefore higher than
the actual number at release. In addition, since it was released last, smaller fractions
of XP vulnerabilities have thus far been found. This explains why the ratio of 0.083%
for XP is significantly lower. We believe that this should not be used in a comparison
with other Windows versions. It is interesting to note that the ratio of 1% assumed by
Anderson is within the range of values in Table 1. Windows 2000 was an update of
NT, with a significant amount of code added, much of which did not deal with external
access; thus accounting for its relatively low ratio. In systems that have been in use for
a sufficient time, VKD is probably close to VD. However, for newer systems we can
expect that a significant number of vulnerabilities will be found in the near future. For
a complete picture, we need to understand the process that governs the discovery of the
remaining vulnerabilities, as discussed in the next sub-section.

286 O. Alhazmi, Y. Malaiya, and I. Ray

3.1 An Examination of the Remaining Vulnerabilities

We now examine the rate at which vulnerabilities were reported in the five operating
systems, as shown in Figures 1-3. Some specific vulnerabilities are shared by successive
versions of the system. Such shared vulnerabilities are shown using a separate plot.
The data show that some vulnerabilities were reported even before the general release
date of a particular version. For consistency, we omit vulnerabilities encountered before
the release date of a particular version. Figure 1 gives the cumulative vulnerabilities
for Windows 95 and 98 [18]. At the beginning, the curve for Windows 95 showed
slow growth until about March 1998, after which it showed some saturation for several
months. Windows 98 also showed relatively slow growth until about June 1998. After
that, both Windows 95 and Windows 98 showed a faster rate of growth. The similarity
of the plots in the later phase suggests that Windows 98 and Windows 95 shared a
significant fraction of the code. The installed base of Windows 98 peaked during 1999-
2000 [16]. At some time after this, the discovery rates of vulnerabilities in both versions
slowed down.

The saturation is more apparent in Windows 95. Based on our observation of shared
vulnerabilities, we believe that many of the Windows 95 vulnerabilities discovered later
were actually detected in the Windows 98 release. The cumulative vulnerabilities in
Windows 95 and Windows 98 appear to have reached a plateau. Some vulnerabilities in
Windows 98 were discovered rather late. This is explained by the code shared between
the 98 and XP versions, as discussed next. Figure 2 gives the cumulative vulnerabilities
in Windows 98 and XP [18]. It demonstrates that Windows XP showed swift growth
in vulnerabilities with respect to its release date. There were also many vulnerabilities
shared with Windows 98. However, XP has its own unique vulnerabilities, and they

Fig. 1. Cumulative vulnerabilities in Windows 95 and Windows 98

Security Vulnerabilities in Software Systems: A Quantitative Perspective 287

Fig. 2. Cumulative vulnerabilities in Windows 98 and its successor Windows XP

Fig. 3. Cumulative vulnerabilities of Windows NT and Windows 2000

form the majority. Windows XP shows practically no learning phase; rather, the plot
shows a linear accumulation of vulnerabilities. The slope is significantly sharper than
for Windows 98. The sharpness of the curve for XP is explained by its fast adoption rate
[16], making finding vulnerabilities in XP more rewarding. Windows 98 has showed a
longer learning phase followed by a linear accumulation, later followed by saturation.

288 O. Alhazmi, Y. Malaiya, and I. Ray

The relationship between the vulnerabilities reported in the older Windows 95, Win-
dows 98 and Windows XP is important. As we can observe in Figure 1, Windows 98 in-
herited most of the earlier vulnerabilities found in Windows 95. Vulnerabilities reported
for Windows 98 slowed down at some point, only to pick up again when Windows XP
was released. It appears that Windows XP has contributed to the detection of most of the
later Windows 98 vulnerabilities. The data for the three operating systems demonstrates
that there is significant interdependenceamong vulnerability discovery rates for the three
versions. This interdependence is due to the sharing of codes. The shifting shares of the
installed base need to be taken into account when examining the vulnerability discovery
trends. Windows 98 represents a middle stage between the other two versions from the
perspective of vulnerability detection. Figure 3 shows the vulnerabilities in Windows NT
and 2000; the shared vulnerabilities are also shown. Unlike the two previous figures, we
do not observe a prominent time-lag between the two. The reason is that both of them
gained installed base gradually [16]. The use of NT peaked around end of 2001, but its
share did not drop dramatically as the share for Win2000 grew.

3.2 Modeling the Vulnerability Discovery Process

From the data plotted in the figures above, we can see a common pattern of three phases
in the cumulative vulnerabilities plot of a specific version of an operating system, as
shown in Figure 4.

During these three phases, the usage environment changes, thereby impacting the
vulnerability detection effort. In Phase 1, the operating system starts attracting attention
and users start switching to it. The software testers (including hackers and crackers) be-
gin to understand the target system and gather sufficient knowledge about the system to

Fig. 4. The 3-phases of the vulnerability discovery process

Security Vulnerabilities in Software Systems: A Quantitative Perspective 289

break into it successfully. In Phase 2, the acceptance of the new system starts gathering
momentum. It continues to increase until the operating system reaches the peak of its
popularity. This is the period during which discovering its vulnerabilities will be most
rewarding for both white hat and black hat finders. After a while, in Phase 3, the sys-
tem starts to be replaced by a newer release. The vulnerability detection effort will then
start shifting to the new version. The technical support for that version and hence the
frequency of update patches will then begin to decline. This s-shaped behavior shown
in Figure 4 can be described by a time-based model introduced earlier by Alhazmi and
Malaiya [16]. Let y be the cumulative number of vulnerabilities. We assume that the
vulnerability discovery rate is controlled by two factors. The first of these is due to the
momentum gained by the market acceptance of the product; this is given by a factor
Ay, where A is a constant of proportionality. The second factor is saturation due to a
finite number of vulnerabilities and is proportional to (B - y), where B is the total num-
ber of vulnerabilities. The vulnerability discovery rate is then given by the following
differential equation,

dy
dt

= Ay(B− y) (4)

where t is the calendar time. By solving the differential equation we obtain

y =
B

BCe−ABt + 1
(5)

where C is a constant introduced while solving Equation 4. It is thus a three-parameter
model. In Equation 5, as t approaches infinity, y approaches B, as the model assumes.
The constants A, B and C need to be determined empirically using the
recorded data. An alternative effort-based model [16], which also fits well but requires
extensive usage data collection was recently proposed by the authors. A time-based
model was derived by Anderson [15]; however, its applicability to actual data has not
yet been studied.

Figures 5 and 6 give the data for Windows 95 and NT 4.0 with a fitted plot according
to the model given in Equation 5. The numerically obtained model parameters are given
in Table 2. We have used chi-squared goodness of fit test to evaluate the applicability
of the model. The fit is found be statistically significant, as indicated by a chi-squared
value less than the critical value at the 95% significance level. A similar analysis for
Windows 98, XP and 2000 also demonstrate a good fit of the model to the data.

Table 2. χ2 goodness of fit test results

Systems A B C χ2 χ2
critical

(5%)
P-value

Windows 95 0.001938 49.5 1.170154 40.72 119.87 0.9999998
Windows 98 0.001049031 66 0.140462 64.79 96.2 0.742
Windows XP 0.001391 88 0.190847 25.75 56.94 0.961
Windows NT 4.0 0.000584 153.62 0.47 82.3942 127.69 0.923
Windows 2000 0.000528 163.96 0.073187 60.91 80.23 0.444

290 O. Alhazmi, Y. Malaiya, and I. Ray

Fig. 5. Windows 95 data fitted to the model

Fig. 6. Windows NT 4.0 data fitted to the model

4 Linux Operating System

We examine two versions of Red Hat Linux, versions 6.2 and 7.1, shown in Figure 7.
In both, we observe saturation in the later period. We note that in the later duration, a
majority of the vulnerabilities discovered in version 6.2 are in fact shared.

Security Vulnerabilities in Software Systems: A Quantitative Perspective 291

Fig. 7. Cumulative vulnerabilities of Red Hat Linux version 6.2 and 7.1

Table 3. Vulnerability density vs. defect density measured for Red Hat Linux 6.2 and 7.1

Systems Msloc Known
Defects

Known
Defect
Density
(per
Ksloc)

Known
Vulnera-
bilities

VKD (per
Ksloc)

VKD/
DKD
Ratio
(%)

Release
Date

R H Linux 6.2 17 2096 0.12329 118 .00694 5.63% Mar 2000
R H Linux 7.1 30 3779 0.12597 164 .00547 4.34% Apr 2001

In Table 3 [22,23], we observe that although the code size for Linux 7.1 is twice
as big as Linux 6.2, the defect density and vulnerability density values are remark-
ably similar. We note that the VKD values for the two versions of Red Hat Linux are
significantly higher than for Windows 95 and 98, and are approximately in the same
range as for Windows 2000. However, VKD alone should not be used to compare of
the two competing operating system families. It is not the discovered vulnerabilities but
rather the vulnerabilities remaining undiscovered that form a significant component of
the risk. In addition, the exploitation patterns and the timing of the patch releases also
impact the risk. The VKD value for Red Hat Linux 7.1 can be expected to rise signif-
icantly in near future, just as those of Windows XP. It is interesting to note that ratio
values for Linux are close to the value of 5% postulated by McGraw [19].

Figure 8 presents the raw data for 7.1, together with the fitted model. The model
parameter values and the results of the chi-squared test are given in Table 4. Again, the
application of the chi-squared test shows that the fit is significant.

292 O. Alhazmi, Y. Malaiya, and I. Ray

Fig. 8. Red Hat Linux 7.1 fitted to the model

Table 4. χ2 goodness of fit test results

Systems A B C χ2 χ2
critical

(5%)
P-value

Red Hat Linux 6.2 0.000829 123.9393 0.129678 34.62 76.78 0.999974
Red Hat Linux 7.1 0.001106 163.9996 0.379986 27.62715 61.65623 0.989

While the model of Equation 5 fits the data for all the operating systems examined
here, some aspects of the process need further examination. There is often a significant
overlap between two successive operating systems. The attention received by a version,
n, results in detection of vulnerabilities not only in version n but also in the code shared
between versions n and (n-1). This, in turn, results in a bump-up in the version (n-1)
discovery rate, even though its installed base may be shrinking rapidly. This overlap
causes some deviation for the model. Techniques need to be developed for modeling
this overlap in order to achieve higher accuracy. We would like to be able to project
the expected number of vulnerabilities that will be found during the major part of the
lifetime of a release, using early data and a model like the one given in Equation 5.
This would require an understanding of the three parameters involved and developing
methods for robust estimation.

5 Conclusions

In this paper, we have explored the applicability of quantitative metrics describing vul-
nerabilities and the process that governs their discovery. We have examined the data for
five of the most widely used operating systems, including three successive version of

Security Vulnerabilities in Software Systems: A Quantitative Perspective 293

Windows and two versions of Red Hat Linux. We have evaluated the known vulnerabil-
ity densities in the five operating systems. The lower value for Win XP relative to Win
95 and 98 is attributable to the fact that a significant fraction of Win XP vulnerabilities
have not yet been discovered. As has been observed for software defect densities, the
values of vulnerability densities fall within a range, and for similar products they are
closer together. We note that the ratio of vulnerabilities to the total number of defects is
often in the range of 1% to 5%, as was speculated to be the case by some researchers. As
we would expect, this ratio is often higher for operating systems intended to be servers.
The results indicate that vulnerability density is a significant and useful metric. We can
expect to gain further insight into vulnerability densities when additional data, together
with suitable quantitative models, are available. Such models may allow empirical es-
timation of vulnerability densities along the lines of similar models for software cost
estimation or software defect density estimation.

This paper has presented plots showing the cumulative number of vulnerabilities
for the five operating systems. The vulnerabilities shared by successive versions are
also given. These plots are analogous to reliability growth plots in software reliability.
However, there are some significant differences. The initial growth rate at the release
time is small but subsequently accelerates. Generally the plots show a linear trend for a
significant period. These plots tend to show some saturation, often followed by abrupt
increases later. This behavior is explained by the variability of the effort that goes into
discovering the vulnerabilities. The model given by Equation 5 is fitted to vulnerability
data for the seven operating systems and the fit is found to be statistically significant.
We also observe that the code shared by a new and hence a competing version of the
operating system can impact the vulnerability discovery rate in a previous version. Fur-
ther research is needed to model the impact of the shared code. We expect that with
further research and significant data collection and analysis, it will be possible to de-
velop reliable quantitative methods for security akin to those used in the software and
hardware reliability fields.

References

1. E. E. Schultz Jr., D. S. Brown and T. A. Longstaff, “Responding to Computer Se-
curity Incidents,” Lawrence Livermore National Laboratory, ftp://ftp.cert.dfn.de/
pub/docs/csir/ihg.ps.gz, July 23, 1990.

2. M. R. Lyu, editor., Handbook of Software Reliability Engineering, McGraw-Hill, 1995.
3. J. D. Musa, A. Ianino, K. Okumuto, Software Reliability Measurement Prediction Applica-

tion, McGraw-Hill, 1987.
4. Y. K. Malaiya and J. Denton, “What Do the Software Reliability Growth Model Parameters

Represent?” Proceedings IEEE International Symposium on Software Reliability Engineer-
ing, 1997, pp. 124-135.

5. Y. K. Malaiya and J. Denton, “Module Size Distribution and Defect Density,” Proceedings
IEEE International Symposium on Software Reliability Engineering, Oct. 2000, pp. 62-71.

6. P. Mohagheghi, R. Conradi, O.M. Killi and H. Schwarz, “An Empirical Study of Software
Reuse vs. Defect-Density,” Proceedings 26th International Conference on Software Engi-
neering, 2004, May 2004, pp. 282-291.

294 O. Alhazmi, Y. Malaiya, and I. Ray

7. A. Mockus, R.T. Fielding, and J. Herbsleb, “Two Case Studies of Open Source Software
Development: Apache and Mozilla,” ACM Transactions Software Engineering and Method-
ology, 11(3), 2002, pp. 309-346.

8. B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, “Towards Opera-
tional Measures of Computer Security,” Journal of Computer Security, V. 2 (2/3), 1993, pp.
211-230.

9. S. Brocklehurst, B. Littlewood, T. Olovsson and E. Jonsson, “On Measurement of Oper-
ational Security,” Proceedings of 9th Annual IEEE Conference on Computer Assurance,
Gaithersburg, IEEE Computer Society, 1994, pp. 257-66.

10. W. A. Arbaugh, W. L. Fithen, J. McHugh, “Windows of Vulnerability: A Case Study Analy-
sis,” IEEE Computer, Vol. 33, No. 12, December 2000, pp. 52-59.

11. H. K. Browne, W. A. Arbaugh, J. McHugh, W.L. Fithen, “A Trend Analysis of Exploitation,”
Proceedings of IEEE Symposium on Security and Privacy, 2001, May 2001, pp. 214-229.

12. E. Jonsson, T. Olovsson, “A Quantitative Model of the Security Intrusion Process Based on
Attacker Behavior,” IEEE Transactions on Software Engineering, April 1997, pp. 235-245.

13. B.B.Madan, K.Goseva-Popstojanova, K.Vaidyanathan, K.S.Trivedi, “Modeling and Quan-
tification of Security Attributes of Software Systems,” Proceedings of IEEE International
Performance and Dependability Symposium (IPDS 2002), June 2002.

14. Eric Rescorla, “Is Finding Security Holes a Good Idea?”, Proceedings Third Annual
Workshop on Economics and Information Security (WEIS04), May 2004, pp. 1-18,
http://www.dtc.umn.edu/weis2004/rescorla.pdf

15. Ross Anderson, “Security in Open versus Closed Systems – The Dance of Boltzmann,
Coase and Moore,” Conf. on Open Source Software: Economics, Law and Policy, Toulouse,
France, June 2002, pp. 1-15, http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/
toulouse.pdf

16. O. H. Alhazmi, Y. K. Malaiya, “Quantitative Vulnerability Assessment of Systems Software,”
Proceedings of International Symposium on Product Quality and Integrity (RAMS 2005),
January 2005, pp. 14D3.1-6.

17. Ounce Labs, “Security by the Numbers: The Need for Metrics in Application Security,”
http://www.ouncelabs.com/library.asp, 2004.

18. ICAT Metabase, http://icat.nist.gov/icat.cfm, February 2004.
19. G. McGraw, “From the Ground Up: The DIMACS Software Security Workshop,” IEEE Se-

curity and Privacy, March/April 2003. Volume 1, Number 2, pp. 59-66.
20. P. Rodrigues, “Windows XP Beta 02. Only 106,500 Bugs,” http://www.lowendmac.

com/tf/010401pf.html, Aug 2001.
21. O.S. Data, Windows 98, http://www.osdata.com/oses/win98.htm, March 2004.
22. The MITRE Corporation, http://www.mitre.org, February 2005.
23. Red Hat Bugzilla, https://bugzilla.redhat.com/bugzilla, January 2005.

Trading Off Security in a Service Oriented

Architecture

G. Swart�, Benjamin Aziz†, Simon N. Foley‡, and John Herbert‡

� IBM Almaden Research Center, 650 Harry Road, San Jose, CA, USA
gswart@us.ibm.com

† Department of Computing, Imperial College, London SW7 2AZ, UK
baziz@doc.ic.ac.uk

‡ Department of Computer Science, University College Cork, Cork, Ireland
{sfoley, herbert}@cs.ucc.ie

Abstract. Service oriented architectures provide a simple yet flexible
model of a computing system as a graph of services making requests
and providing results to each other. In this paper we define a formal
model of a service oriented architecture and using it, we define metrics for
performance, for availability, and for various security properties. These
metrics serve as the basis for expressing the business requirements. To
make trade-offs possible we also define a set of cost metrics, denominated
in a uniform currency, to measure the cost of not meeting a requirement.
The model, the property metrics, and the cost metrics are then used to
generate a Constraint Satisfaction Problem where the objective function
is set to minimize the aggregate system cost. We have written these
constraints and defined realistic requirements in OPL and we have used
them to generate system configurations that minimize the overall cost
by optimally trading off the business requirements.

Computing systems are designed to meet the security, performance availability,
and economic requirements of the procurer. Sometimes not all of these require-
ments are simultaneously attainable to the maximum degree. In order to get
as close as possible to meeting the requirements, trade-offs must sometimes be
made between the individual requirements. In order to make these trade-offs in
a sensible way and to find a system configuration that best meets our overall
goals, we need a model of a system which can be evaluated quickly to determine
how well the system is meeting its requirements and a uniform cost model that
we can use to manage the trade-offs on the different requirements.

In this paper we use formal techniques to define a precise model of a service
oriented architecture, a flexible yet simple computing model that underlies the
Web Service standards so popular in data processing and integration applica-
tions. We argue that this model is close enough to the reality of such systems
to be interesting. We then formally define various properties of the model that
correspond to important properties in real systems. The properties that we de-
fine and optimize for are different aspects of data security, server throughput,
service availability and network bandwidth. We do not claim that these are the

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 295–309, 2005.

c© IFIP International Federation for Information Processing 2005

296 G. Swart et al.

only formal definitions of these properties that are sensible but that the ones we
present are interesting and they capture important aspects of the system.

We then encode this model and properties into an Optimization Program-
ming Language (OPL) application so that a combination of mathematical and
constraint programming techniques that are part of the OPL implementation
can be brought to bear on this problem to produce a set of optimal assignments
of logical components to physical resources. Using the facilities of OPL, we write
a system model that defines the data to be presented and its constraints. This
model can be instantiated to represent any computing system that falls within
the model. Once instantiated, the model can be solved by OPL to find the op-
timal configuration of resources that meets the requirements. This separation
of the model, its instantiation and solution technique allow such systems to be
used by systems administrators without a degree in operations research. Finally
we show the results of this model when applied to a realistic system.

Novel aspects of this work include:

- The simultaneous modelling of important system metrics and the definition
of a cost model that allows multiple business goals, defined in terms of these
metrics, to be played off against each other.

- The careful definition of quantifiable security properties that correspond to
properties that security experts attempt to optimize for. Security is often
thought of as a binary property but the use of security metrics allows greater
flexibility to the configuration process.

1 Modelling a Service-Oriented Architecture

In this section we define the components of our model and the information a
user of the system has to provide about each component and the information
that the optimizer needs to produce to specify a configuration of the system. In
the next section we describe how we use this information to define properties of
the system that meet the planning needs of system administrators. A UML class
diagram showing the relationship between the components is shown in Figure 1.

Service. The fundamental system component in a service-oriented architecture
is, of course, the service. We define a service to be an entity that can perform
a set of operations on behalf of callers on a defined set of data. For example,
Hertz may offer a car rental booking service that allows clients to book its cars.
Avis may offer a distinct service that provides access to its cars. Travelocity and
LastMinute may each run a travel agency that offers services that allow clients
to book cars on either Hertz or Avis. These form four distinct services.

We denote the set of all services being modelled as a set named Service.
To specify the load generated by an invocation of a service on the server

running the service we define a function loadU that defines the expected load
units caused by a single invocation of the service.

loadU : Service → R
+

Trading Off Security in a Service Oriented Architecture 297

Service
Interface

Service
Service

Dependency

Deployable
Unit

Server

Routing
Rule

1

*

1 *

1

1..*

* 1..*

1

1

1

1

*

*

*

*
Subnet

Fig. 1. A UML diagram of the service oriented model

Service Interface. Each service implements a certain protocol or language to fa-
cilitate communication with it and its invokers. We call this protocol the interface
to the service. To facilitate interoperability, many services may implement the
same interfaces. In a Web Services infrastructure an interface may be specified as
a WSDL object and identified by a URL. In a Corba infrastructure, an interface
may be specified by an IDL file and identified by a UUID.

Formally we can represent this as a set ServiceInterface and an implements
function that represents the relationship between the service interface and the
services that implement it.

implements : Service → ServiceInterface

Service dependencies. Services may be composed from other services. For each
service we assume we have a set of services that are used in this service’s imple-
mentation and that we have determined the expected number of invocations of
those subsidiary services for each invocation of the entry service. This can some-
times be determined by code inspection and sometimes by measurement. Even
if service binding is done dynamically, data can be collected on the long-term
behaviour of a particular installation.

Each subsidiary service may be used by any number of layered service im-
plementations. For simplicity, we assume that there are no cycles in the service
implementation dependency directed graph. Since this information refers only
to direct dependency we call the function representing this information depen-
dency1.

dependency1 : Service × Service → R
+

298 G. Swart et al.

We use this information to estimate the complete dependency matrix, the num-
ber of calls generated, directly or indirectly, by a single call to a service on every
other service. We estimate the complete dependency matrix by computing the
transitive closure of the dependency1 matrix. However if the complete graph has
been measured, it should be used in preference to the estimate. This is the same
approach used in gprof in estimating call graph values [1].

dependency : Service × Service → R
+

Client Service. We define a distinguished client service whose function is to
invoke the externally accessible services. The client service makes the correct
mix of requests that match the expected calls from all the system’s clients. The
client service is special in that we do not attempt to model its internal behaviour
or allocate resources to it. The distinguished client service gives us a single row of
the dependency matrix to concentrate on that defines the expected call load that
we are expecting for each service. Since there are no calls to the client service,
one should think of the counts in the client row of the dependency matrix as
representing the number of calls on the indicated services by external clients per
unit time.

Formally, client is simply a distinguished element in Service.

client ∈ Service

In addition each service may have an availability requirement that defines the
minimum probability that this service must be up and providing the needed
service to the distinguished client service. We can define this requirement as a
function that specifies the minimum probability that this service is allocated
enough resources to perform its function. If there is no availability requirement
on a particular service, the function may have value 0.

AvailableToClient : Service → [0, 1]

Note that this function is used along with the dependency information to gen-
erate the complete service availability function in the next section.

Deployable unit. Each separate service is not typically deployable on a server
independently. A developer or administrator will typically build or configure a set
of services into a deployable unit that can be installed on one or more machines.
The developer may decide services need to be collocated in the same process or
on the same machine to maintain efficiency or to reduce development time. When
services are combined into a deployable unit, we do not model the dependencies
between these services; instead the load and dependencies are rolled up into the
services that are invoked externally. The form a deployable unit takes depends
on the system being used. In J2EE a deployable unit might be represented as
a preconfigured WAR, or web application archive, on Linux a deployable unit
might take the form of a preconfigured RPM [2] file. Unlike an unconfigured
WAR or RPM file, which might contain a generic service implementation, a

Trading Off Security in a Service Oriented Architecture 299

deployable unit contains all information to configure the implementation to take
the role as a particular service, e.g., the data it will be accessing and the other
services that it may need to contact.

Formally, the deployable units are just a set Deployable with a function de-
ploys to represent the composition of a deployable unit out of its constituent
services.

deploys : Service → Deployable

Server. A server is an entity on which services can be executed. Servers are not
referred to directly by applications; instead applications reference services that
are automatically mapped to the servers on which they are deployed. Servers
are typically hardware components, though servers can be constructed logically
using virtual machine technology.

For each server we have a specified failure probability. This specifies the
minimum long-term probability that the server is available and providing its full
execution service. This is used in the next section to compute the probability
that a service is available and providing service. We specify the server availability
with a function:

ServerAvailability : Server → [0, 1]

Associated with each server is a rate at which it can perform load units, expressed
in the same time units that were used for the client counts in dependency1 and
the same load unit that was used for loadU. We specify the execution rate of a
server with the function powerU :

powerU : Server → R
+

Resources on servers are assigned by the configuration system to deployable
units. A deployable unit may not consume more resources on a server than it
is assigned. A single deployable unit may be deployed on many different servers
simultaneously, in which case the load on the component services is divided
among the servers, according to the ratio of resources assigned by the server to
the deployable unit. We define the number of load units per unit time allocated
to a deployable unit on a server as:

allocU : Deployable × Server → R
+

Unlike the functions defined so far, this function is not defined by the admin-
istrator, but is instead an output of the optimization process. It specifies what
services a server should run and the amount of server resources that should be
assigned to each deployable unit. In the next section we develop constraints that
will ensure that the allocation of resources to deployable units satisfies the sys-
tem requirements. The resulting allocation must not overload the server, that is
the following constraint must hold:

∀serv ∈ Server ,
∑

∀d∈Deployable

allocU (d, serv) ≤ powerU (serv)

300 G. Swart et al.

Subnet. A subnet represents a portion of the network containing a set of servers.
Servers on the same subnet can communicate more cheaply, but servers on dif-
ferent subnets can be protected from each other by router based filtering and
firewalls. Formally, a subnet is just a set, Subnet, and a function subnet that
assigns servers to subnets.

subnet : Server → Subnet
clientSubnet ∈ Subnet

Routing rule. The filtering that can take place between subnets is represented
as a set of allowable service interfaces whose messages may pass between the
subnets. Typically a routing rule will be assigned to a router or firewall to ensure
that only the required communication can be passed and that this required
communication is safe. Like the allocation of deployable units to servers, the
configuration optimization process produces the set of subnet rules.

Formally the set of filter rules is a function, rules, from pairs of subnets to
a subset of allowable service interfaces whose messages are allowed to pass from
one subnet to the other.

rules : Subnet × Subnet → ℘(ServiceInterface)

2 Properties of a Service-Oriented System

One measure of the usefulness of a model of a system is whether properties of
the model can be defined that correspond to properties of the original system.
In this section we present some interesting system properties that can be defined
using our model and argue for their relevance.

Service Availability Requirement. A service’s availability requirement is the prob-
ability that a service responds to a given request by one of its clients. A service’s
clients may include the distinguished client service as well as arbitrary other ser-
vices that use this service. For a service to be available, in addition to the service
itself being available all the service’s dependencies must be available. Assuming
that the availability of each request on each service is independent, we use the
following constraint to define a serviceAvailability function that depends on the
administrator-provided availableToClient as well as the dependency1 function.

availableToClient (s1) ≤
serviceAvailability(s1) ≤

∏
∀s2∈Service:

dependency1(s1,s2)>0

serviceAvailability (s2)

Informally this says that the service can be no more available than its con-
stituents, but that it must be at least as available as any clients need it to be.

These constraints can be solved by starting with the services called only
by the distinguished client service. Such a service is likely to have a nonzero

Trading Off Security in a Service Oriented Architecture 301

value for the availableToClient function. This value can be factored to determine
availability requirements for each of the services it calls. This process can be
repeated until service availability requirements are derived for all of the services.
As might be expected this process causes lower level services to have higher
availability requirements.

Availability with Throughput. We define execution throughput and availability
constraints simultaneously, as for a service to be properly configured the prob-
ability that the service is meeting its throughput requirements must be as large
as its availability requirement. An acceptable configuration must assign enough
resources to each deployable unit so that with large enough probability all the
services that are part of the deployable unit are getting enough execution re-
sources to perform their function. We must also assign the resources in such a
way that we never exceed the capacity of any server.

We can express the fact that a server may not be over allocated with the
predicate:

∀serv ∈ Server :
∑

∀d∈Deployable

allocU (d, serv) ≤ powerU (serv)

This specifies that for all servers, that the sum of the load units allocated to
each deployable is less than total load units provided by the server.

To form a predicate that insists that the needed throughput be provided with
the required probability, consider a subset S of the Server set that represents
the set of servers that are available at a moment in time. For each such subset
S ∈ Server there is a well defined probability that exactly those servers are
available. Assuming that the availability of each server is independent, that
probability is given by:

setProbability(S) =
∏

∀serv∈S

serverAvailability(serv)×
∏

∀serv∈Server−S

(1 − serverAvailability(serv))

That is, the probability that exactly the set of servers S is available is the
probability that each server in S is available times the probability that each
server not in S is not available. For each subset S, there is also an expression that
represents the number of load units among the servers in S that are assigned to
a given deployable unit, d ∈ Deployable . We compute this as a function allocSU :

allocSU (d, S) =
∑

∀serv∈S

allocU (d, serv)

For the set S to have adequate capacity to be classed as being available for d,
the number of load units allocated to the unit d must be sufficient for performing
the required load per unit time on the services making up d. We can compute
this for a unit d by:

reqLoadU (d) =
∑

∀s∈Service:d=deploy(s)

dependency(client,s)× loadU (s)

302 G. Swart et al.

that is, the sum, over all services that are part of the deployable unit, of the
number of invocations on that service per unit time multiplied by the number
of load units consumed by each invocation. This gives us the load units required
per unit time, the same units as the allocation units for server resources assigned
to a deployable in allocSU.

The availability of a deployable unit d in a given configuration is the sum
over all subsets S of Server where the load units allocated to the deployable unit
is sufficient to meet the execution requirements of the services that are part of
the deployable unit, of the probability that the server configuration S exists. We
define the following.

deployAvailable(d) =
∑

∀S⊆Server:
allocSU(d,S)≥reqLoadU(d)

setProbability(S)

If for each deployable unit this probability is larger than the maximum service
availability requirement of all the services in the deployable unit, that is, when

∀d ∈ Deployable : deployAvailable (d) ≥ max
∀s:d=deploy(s)

serviceAvailability (s)

then the allocation of resources meets the availability and throughput require-
ments.

Security Distance. One of the important security considerations that must be
taken into account when building a service infrastructure is router and firewall
configuration. There are some services in which considerable skill and attention
have been lavished in making sure that the service is ready to withstand the
slings and arrows of outrageous hackers and other services which, while nominally
secure, had best not be accessible to outside users. There are also services that
store such sensitive data that best practices dictate that they should be locked
away behind many levels of firewall.

One simple way of rating network service security is by the minimum num-
ber of subnet hops needed to get from the attacker to the target service. Each
step along such a shortest path represents a subnet that has to be traversed
and presumably hacked, in order to reach the target service. For example, in
many web application infrastructures the service network is divided into 5 suc-
cessively deeper subnets as illustrated in Figure 2: a content subnet, a UI subnet,
a business logic subnet, a database subnet and a SAN subnet. Each deeper level
provides a lower level abstraction with less fine grain access checking and often
less secure authentication. Accessing each successive subnet also requires hacking
a different set of systems, typically using a different set of techniques.

When configuring routing rules it is important to allow communication be-
tween subnets where it is needed, e.g. services running on those subnets need
direct communication, but at the same time we want to insist that certain ser-
vices be run on servers that are deeply hidden from clients, that is there is a
large security distance between the service and the attacker. Network subnet

Trading Off Security in a Service Oriented Architecture 303

Network Operations Center Subnet

C
ontent/Proxy Subnet

U
ser Interface Subnet

B
usiness L

ogic Subnet

D
atabase Subnet

SA
N

 Subnet

Internet

HTTP HTTP
IIOP/
SOAP

Oracle
Net8

iSCSI

SNMP/SSH/
FTP

Fig. 2. A Typical Subnet Structure

distance is a simplification of the security restrictions one might contemplate,
but it is a reasonable start and it mirrors current best practices [3].

The constraint on the existence of rules allowing all needed communication
can be stated as:

∀s1, s2 ∈ Service : dependency1(s1, s2) > 0 ⇒
∀serv1,serv2 ∈ Server :

(allocU (deploys(s1), serv1) > 0 ∧
allocU (deploys(s2), serv2) > 0)
⇒ interface(s2) ∈ rules(subnet(serv1), subnet(serv2))

which states that for all pairs of services that communicate, and all servers
that are assigned to run those services, then the interface those services use to
communicate must be present in the rules set of the router that connects the
two subnets.

Given the rule above, the security distance between two services, which we will
denote as securityDistance(s1, s2), can be defined by the following recurrence.

First we define a predicate connected that determines whether there is a
direct communications link between the two services, that is, whether any of the
servers assigned to the services are on the same subnet.

connected(s1, s2) = ∃serv1, serv2 ∈ Server :
allocU (deploys(s1), serv1) > 0 ∧
allocU (deploys(s2), serv2) > 0 ∧
subnet(serv1) = subnet(serv2)

304 G. Swart et al.

Then we define the security distance with the following recurrence.

securityDistance(s1, s2) =⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if connected(s1, s2)
1, if dependency(s1, s2) > 0

∧¬connected(s1, s2)

min
∀s3∈Service

{
securityDistance(s1, s3)+
securityDistance(s3, s2)}

}
otherwise

The security distance computed in this way can be used in constraints to insist
that a sensitive service be a large distance from the client subnet. This can be
used to restrict the optimizer from doing something silly like running a database
service on the network DMZ in order to take advantage of its lightly loaded
servers.

Data Risk. In another paper [4], a security metric based on the aggregate risk
of having data from different customers make use of the same device is defined.
For example, a storage service provider may decide to store data from a single
commercial bank on a storage unit and to accept a level of risk r in making that
assignment while adding an airline’s data to that storage unit may increase the
risk of the assignment by a small amount but adding a competitive bank to the
same unit may raise the risk considerably.

In the service-oriented context, a similar measure of data risk can be defined
that quantifies the risk of placing deployable units on the same server or on the
same subnet. The risk depends on the assurance level or trust we have in the
server or the subnet’s ability to keep the data separate and the risk associated
with the information being accessed from the dependent services.

This metric is not used in the OPL implementation described in this paper,
but was used in a separate OPL model described in [4].

Network Bandwidth. The network bandwidth used in a system can sometimes
be an important consideration in system design. The internal switching inside a
subnet is generally implemented by high performance switching equipment that
has been optimized for network performance. Communication between subnets is
performed by routers that have been optimized for security and for implementing
many hundreds of complex filtering rules. Limiting the load on these expensive
routers can sometimes be an important consideration.

To help express constraints or optimizer objective functions dealing with
bandwidth, we define a new traffic function. The value traffic(sn1, sn2, interface)
reports the number of invocations per unit time of the given interface that may
travel between the given subnets. If the subnets are equal, the function gives
the amount of intra-subnet traffic using the given interface. This function can
be used to define constraints or minimize the usage of network traffic.

First we define the function runsIn that computes the set of subnets used
for executing a given service:

runsIn(s) =
⋃

∀serv∈Service:
allocU(deploys(s),serv)>0

subnet(serv)

Trading Off Security in a Service Oriented Architecture 305

Given this function we can define the traffic function as:

traffic(sn1, sn2, i) =
∑

∀s1,s2∈Service:
i=implements(s2)

∧sn1∈runsIn(s1)
∧sn2∈runsIn(s2)

dependency(client , s1)×dependency1(s1, s2)

As can be seen this sums over all pairs of services where the second service
implements the given interface and the services run on the given subnets. For
each pair we look at the expected number of service invocations of the given
type that will be requested per unit time. This is given by the expected number
of invocations from the client to service s1 times the number of invocations that
s1 makes directly to s2.

3 Optimizing a Service-Oriented System

In the previous sections we have seen how to describe a service-oriented system
and how to define properties and constraints on a service-oriented system; we can
now look at optimizing a service-oriented system. In mathematical programming,
optimization is driven by an objective function.

The difference between an objective function and a constraint is that a con-
straint must hold in order to have a solution, while the objective function is
merely optimized from among the solutions meeting all the constraints. While
there can be many constraints in a constraint satisfaction problem, there can
only be one objective function.

Some useful objective functions include those for:

- Minimizing the cost of the system. In this case the objective function may be
the number of servers that have not been allocated to any deployable unit.
That is to maximize:

| {serv ∈ Server | ∀d ∈ Deployable : allocU (serv , d) = 0} |

- Maximizing the security of a service. In addition to setting minimum se-
curity distance constraints, the administrator may be looking to maximize
the minimum security distance from an attacker subnet to a given set of
services. That is, given a priority set of services, Protected, we might want
to maximize

min
s∈Protected

securityDistance(clientSubnet , s)

- Maximizing the capacity of a system. If the load on the services may grow
unexpectedly, the administrator may wish to build a system out of an exist-
ing hardware base that can respond quickly to unexpected spikes in demand
by spreading any extra capacity evenly throughout the service deployments.
We can compute the percentage of over capacity allocated to a service and

306 G. Swart et al.

attempt to maximize the minimum level of over capacity over all the deploy-
able units by maximizing:

min
d∈Deployable

(
allocSU (d,Server)

reqLoadU (d)

)

- Minimizing the number of routing rules. Routing rules consume resources
on a router and having too many rules can cause the router to become
overloaded, usually causing operators to ill advisedly remove rules. If an
organization’s routers are on the edge, minimizing this objective function
could be important:

max
sn1,sn2∈Subnet

∣∣∣∣∣∣
⋃

i∈Interface

rules(sn1, sn2, i)

∣∣∣∣∣∣
There are many other objective functions that can be defined. This list is just
meant to be illustrative.

4 Implementation Experience

To test the usefulness of this approach we wanted to apply the model to a
realistic test case. In this test case we defined a configuration consisting of 26
services in 17 deployable units, with 8 different service interfaces, deployed on 160
servers in 8 different server classes running on 5 subnets. The availability of the
servers varied from 3 nines of availability (i.e. 99.9%) to four nines. The service
availability requirements of the top-level services varied from three to four nines.
The derived service availabilities for the deeper services went up to five nines
and these deeper services were constrained as needing a security distance from
the client of at least 3. We set the objective function to maximize the minimum
level of over capacity from among the 17 deployable units.

The services were designed to model a modern multi-tier web based sys-
tem consisting of client accessible static content and reverse web proxy services
fronting for an inner tier of application services providing the application UI
control and page generation. The UI services were then built on a tier of busi-
ness logic services. Unlike the other service layers, the business logic services are
available both from the proxy layer, the UI layer and itself. The business logic
services in turn build on a set of file and database services, which are in turn
built on a set of virtual disk services implemented by a storage area network.

Considerable tuning in the search procedure was needed to order the configu-
rations tested so that the progress towards a solution progressed at a reasonable
rate. At this point, OPL is able to find acceptable solutions after running for
several minutes on a single 1.5 GHz processor. Finding optimal solutions for non-
trivial objective functions is more elusive as the entire solution space often has
to be searched, taking over 10 hours for the sample problem. For many uses this
performance is adequate, for example, in configuring an enterprise data center

Trading Off Security in a Service Oriented Architecture 307

for a new application or an application service provider for a new customer. For
other uses, such as online reconfiguration after a device failure or configuring a
dynamic grid computer, this performance is not adequate.

Note that a numerical instability in the availability computations currently
limits the number of servers per server class to 21. This result indicates that this
approach to solving configuration problems is promising; though much more
work remains to be done to show that it is practical and efficacious.

5 Related Work

A modelling based approach to quality of service prediction is standard fare in
queuing theory, but the focus is generally on the much more difficult measure of
response time, a measure we leave out of our analysis because of its complexity.
However the typical server graph used in queuing theory carries over to the
dependency graph used here.

Other attempts have been made to model quality of service properties of
distributed systems, most recently in the context of a service grid [5], but many
fewer properties are being optimized for. Other current work on service grids is
focused on mechanism of configuration rather than the optimization of configu-
rations [6].

The most closely related work to this has been done in the area of provisioning
of storage in a storage network. Data storage and services are closely related,
and in fact one can think of data access as a special case of service provisioning,
where it happens that the services allow for data access. Work done in this area
includes innovative work done at HP [6,7,8,9] in configuring storage systems.
The authors have made their own forays into storage management in [4,10].

Other related work lies in network provisioning, where resources needed to
provide the required quality of service are reserved in advance. In this work the
model is more based on dynamic load rather than the static load model used in
this work. Examples include [11,12].

A subset of the service provisioning problem being considered here was ad-
dressed using constraint satisfaction in [13], but the problem was simple enough
that the big guns of constraint satisfaction was not necessary for the solution.

The SmartFrog [8] system from HP provides tools for describing and deploy-
ing configurations.

6 Conclusion and Future Plans

The approach of producing an abstract model of a complex system and reasoning
about that abstract model is an oldie but a goodie. In this paper we have applied
this technique to the problem of configuring a service oriented architecture. We
have shown how to compute properties of the resulting network and to use those
properties to drive the automatic optimization of that network to meet a set of
requirements defined over those properties.

308 G. Swart et al.

A necessary future step for this research is to experiment with configuring
real systems to verify that the promised gains are actually achievable. This can
also be used to determine if there are constraints missing in our model that allow
the production of flawed configurations.

Another area for extension is the development of new types of security mea-
sures. Our security distance metric can be refined by allowing each routing rule
to have a separate breakage cost, instead of the unit cost used here. The attacker
would search for the lowest cost path to the inner systems. In addition the rules
can be arranged in a partial order to represent which rules are implicitly bro-
ken when another rule is hacked. This can be used to model the fact that once
a successful attack on a system is found, the same attack can be used against
similar systems with no additional cost.

In this paper we define availability as a service having enough available re-
sources to perform its function. This definition does not mean that the service
has those resources for a long enough contiguous interval of time to actually
perform its function. For example, a diabolical highly available server with a
very short MTBF but an incredibly small MTTR, may provide high availability
using our definition, but unacceptable performance in real situations. We would
like to define service availability as the probability that a given request is suc-
cessfully processed however, this doesn’t easily match up with the definition of
availability for a server, which is necessarily time based.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful com-
ments on this paper. This work was supported by the Boole Centre for Research
in Informatics, University College Cork under the HEA-PRTLI scheme and by
the Enterprise Ireland Basic Research Grant Scheme (SC/2003/007).

References

1. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: A call graph execution pro-
filer. In Thomas, W., ed.: Proceedings of the SIGPLAN ’82 Symposium on Com-
piler Construction. Volume 17(6) of SIGPLAN Notices., Boston, MA, USA, ACM
Press (1982) 120–126

2. Herrold, R.: Rpm package manager (2002) http://www.rpm.org.

3. Elizabeth D. Zwicky, Simon Cooper, D.B.C.: A Handbook of Process Algebra. 2
edn. O’Reilly (2000)

4. Aziz, B., Foley, S.N., Herbert, J., Swart, G.: Configuring storage area networks for
mandatory security. In Farkas, C., Samarati, P., eds.: Proceedings of the 18th IFIP
Annual Conference on Data and Applications Security, Sitges, Catalonia, Spain,
Kluwer (2004) 357–370

5. Al-Ali, R., Hafid, A., Rana, O., Walker, D.: An approach for qos adaptation in
service-oriented grids. Concurrency Computation: Practice and Experience 16
(2004)

Trading Off Security in a Service Oriented Architecture 309

6. Alvarez, G.A., Borowsky, E., Go, S., Romer, T.H., Becker-Szendy, R., Golding,
R.A., Merchant, A., Spasojevic, M., Veitch, A.C., Wilkes, J.: Minerva: an auto-
mated resource provisioning tool for large-scale storage systems. ACM Transactions
on Computer-Systems 19 (2001)

7. Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., Veitch, A.C.: Hip-
podrome: Running circles around storage administration. In Long, D.D.E., ed.:
Proceedings of the FAST’02 Conference on File and Storage Technologies, Mon-
terey, California, USA, USENIX (2002) 175–188

8. Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.:
Smartfrog: Configuration and automatic ignition of distributed applications.
In: Proceedings of the HP OpenView University Association 10th Work-
shop, University of Geneva, Switzerland (2003) http://www.smartfrog.org/

papers/SmartFrog Overview HPOVA03.May.pdf.
9. Ward, J., O’Sullivan, M., Shahoumian, T., Wilkes, J.: Appia: automatic storage

area network design. In Long, D.D.E., ed.: Proceedings of the FAST’02 Conference
on File and Storage Technologies, Monterey, California, USA, USENIX (2002) 203–
217

10. Swart, G.: Storage management by constraint satisfaction. In: Proceedings of the
Workshop on Immediate Applications of Constraint Programming, Kinsale, Cork,
Ireland (2003)

11. Balter, R., Bellissard, L., Boyer, F., Rivelli, M., Vion-Dury, J.: Architecting and
configuring distributed applications with olan. In: Proceedings of the 1998 IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing. Volume 1518 of Lecture Notes in Computer Science., The Lake district,
UK, Springer Verlag (1998) 241–256

12. Chen, S., Nahrstedt, K.: An overview of quality-of-service routing for the next
generation high-speed networks: Problems and solutions. IEEE Network Magazine
12 (1998) 64–79

13. Mart́ın-Dı́az, O., Cortés, A.R., Durán, A., Benavides, D., Toro, M.: Automating
the procurement of web services. In Orlowska, M.E., Weerawarana, S., Papazoglou,
M.P., Yang, J., eds.: Proceedings of the 1st International Conference on Service-
Oriented Computing. Volume 2910 of Lecture Notes in Computer Science., Trento,
Italy, Springer Verlag (2003) 91–103

Trusted Identity and Session Management

Using Secure Cookies

Joon S. Park and Harish S. Krishnan

Laboratory for Applied Information Security Technology (LAIST),
Syracuse University, Syracuse, NY 13244-4100

{jspark, hskrishn}@syr.edu

Abstract. The concept of federated identity management is increas-
ingly coming to use in order to bring Service Providers closer to cus-
tomers. Users are being provided an enriched experience while carrying
out business on the Web at reduced overhead and improved customer
service. The idea of maintaining a single profile and gaining access to
multiple services has been accepted well by the customers. However, the
benefits of breaking through just one set of credentials to gain access
to multiple services has made the concept of Federated Identity Man-
agement of high interest to malicious users. In this paper, we analyze
the structure of a generic Federated Identity Management System and
explore the .NET Passport framework in depth. We explore the cur-
rent security mechanisms adopted by the .NET Passport and identify
potential security weaknesses. We then propose our new approaches to
enhance the security services in .NET Passport by using Secure Cook-
ies. Our approaches are transparent to and compatible with the current
.NET Passport server. Finally, we prove the feasibility by implementing
our ideas in a real system.

Keywords: Cookies, Identity Management, .NET Passport.

1 Introduction

In the world of ever growing businesses it has become important to provide re-
sources and services ubiquitously. This has lead to making businesses available
through the Web. No doubt that the enabling of services or resources on the
Web has opened up a gallery of opportunities, it has also brought along a wide
range of security concerns. Providing services through the Web has enriched
the experience of conducting business for the customers. However, this enriched
experience is packaged with fears of compromising sensitive information to ma-
licious subjects who intend to break through week security perimeters and gain
access to unauthorized resources. One of the main security concerns while making
businesses Web-enabled is Identity Management (IM [GC02, NRC02]). By Iden-
tity Management we mean capturing and storing of User identities, managing
the identities of Users, and authenticating Users based on their identities. Once
authenticated, the User has gained access into the system, but access control
policies determine what parts of the system the User has access to. A strong and

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 310–324, 2005.

c© IFIP International Federation for Information Processing 2005

Trusted Identity and Session Management Using Secure Cookies 311

effective access control mechanism should provide fine grained and scalable ser-
vices [KPF01, PCZG04, PKF01]. Such mechanism can protect sensitive identity
information from reaching malicious hands but still continue to provide Users
with an enjoyable experience of conducting business on the Web [AAM, Cla94].
In this paper, we are first going to explore the ongoing efforts in Federated Iden-
tity Management. We examine the security strengths and potential weaknesses
in one of the most popular IM models, namely .NET Passport [MNP04, Pass05].
We then go on to propose a possible solution to strengthen the current mech-
anism by extending our previous work, Secure Cookies [PSG99, PS00], within
the .NET Passport framework. Our work is both transparent to and compatible
with the current .NET Passport framework.

2 Related Work

In this section we discuss a generic identity management framework and explore
the .NET Passport framework [MNP04, Pass05] and Liberty Alliance Project
[ILAIA03, ISLSI03] in detail. In a later section we are going investigate the .NET
Passport Service and explore the current security features of the framework. We
go on to suggest mechanisms to improve on the exiting security features of .NET
Passport. Although we have been working with the .NET Passport frame in this
paper, we believe that our work can be applied to other Identity-Management
systems including Liberty Alliance.

2.1 .NET Passport

Passport is a Web-based authentication service that helps Users and service pro-
vides use the Internet faster and easier. One of the largest online authentication
systems in the world,.NET Passport provides Users with Single-Sign-in (SSI)
services, reducing the amount of information the User needs to remember or
resubmit to various sites. For businesses, Passport helps make their websites
easier for visitors and customers to use and also helps reduce the costs asso-
ciated with resetting forgotten User passwords. By helping Users to connect
easily to websites, Passport also makes it easy for businesses to recognize their
customers and deliver consistent, valuable services no matter how or where cus-
tomers are connecting. Passport can help companies allow customers to easily
identify themselves across all applications offered by a website, so that Users can
go to the company website, interact with all of their account information, pay
bills, and get the kind of experience they want. In this paper we first investigate
the identity management capabilities of Passport and discuss the authentication
mechanism used by it. We then investigate the impending threats in such form
of authentication and propose feasible solutions.

2.2 Liberty Alliance

The Liberty Alliance Project aims at reducing the differences between various
businesses of the networked world and providing a framework for different Web-

312 J.S. Park and H.S. Krishnan

enabled services and resources to interact across boundaries in way that respects
privacy of the participating entities and enables security of shared identity in-
formation. The Liberty Alliance divides any Web-enabled business that requires
authentication into 3 basic entities, namely - Identity Provider, Service Provider,
and Principal. The Identity Provider is a Liberty-enabled entity that creates,
maintains, and manages identity information or Users and provides Principal
(User) Authentication to other Service Providers within a circle of trust. A Ser-
vice Provider is an entity that provides different services to the Users. Finally,
the Principal is an entity that can acquire a federated identity that is capable of
making decisions and to which authenticated actions are done on its behalf. The
Liberty-Alliance proposes the construction of a Circle-of-Trust between Service
Providers (SP) and Identity Providers (IP), such that all authentications carried
by the IP for a Principal is readily accepted by the SPs that require carrying
out business with the Principal.

As it can be seen there are a number of similarities between the .NET Pass-
port framework and the Liberty Alliance Project. Both of them have a single
authority that provides authentication information based on which the other
participating sites authenticate the User. Both IM systems provide capability
for the User to login just once and access services across multiple providers who
are all united in a circle of trust. Similarly, a single log-off request would invali-
date the Users’ identity across all partner Service Providers. The .NET Passport
and the Liberty Alliance differ in the way they share the User authentication
information within the circle of trust. The .NET Passport uses Cookie based au-
thentication mechanisms that we explore in detail in later sections. The Passport
Sign-in Server does not directly communicate with any of the other Passport-
enabled sites to convey User authentication information. On the other hand,
in the Liberty Alliance project, when a User authenticates with the Identity
Provider, the Identity Provider federates the User Sign-in credentials with the
Service Providers within the Circle of Trust. Here the User (actually the Web-
Client) does not act as a medium to convey the authentication information.

3 Federated Identity Management (FIM)

A single customer may have transactions with many businesses that are Web-
enabled and hence each business maintains the identity information of the User
required to authenticate the User. The User has to also remember his/her au-
thentication credentials (such as User-ID and Password) for each of the ser-
vices/resources that are to be accessed through the Web. It is quite often the
case that Users tend to forget their credentials and request for resetting this
information. It lies in the interest of the service/resource providers to find a way
to avoid the overhead and extra costs associated with resetting the authentica-
tion credentials frequently. In an attempt to address this issue, we look at the
concept of Federated Identity Management. We investigate its use in the .NET
Passport framework and in the Liberty Alliance Project.

Trusted Identity and Session Management Using Secure Cookies 313

By federation we mean the setting up of a trust relationship between two or
more entities for a more tightly integrated approach to business. The members
of one of the participating entities can freely access the resources or services pro-
vided by the other entities of the federation [PCND04]. Managing federations
in essentially about a) Managing trust relationships between the participating
entities and b) Managing identities of Users across the partners of the federa-
tion. Trust relationships between the participating entities of a federation can
be achieved by pre-established legal agreements and implemented by the means
by cryptographic techniques such as encryption/decryption and signatures. We
discuss federated identity management in detail as below.

Federated Identity Management provides a mechanism for identity manage-
ment across boundaries of the participating entities in the federation. One of the
federation partners acts as an Identity Provider for all Users in the federation and
other partners accept the authentication decisions made by the Identity Provider
and allow authenticated Users to access the resources or services offered. The
Identity Provider and other partners exchange User handles by means of a chan-
nel that is independent of the services offered by the partners, typically this is
achieved through XML [XML] based SOAP [SOAP] messages. Once a circle of
trust is established between a set of partners that includes at least one Identity
Provider, the access of services or resources by a User can be carried out in two
distinct ways. Firstly, the User creates an account with the Identity Provider
and then goes on to access the services or resources offered by other partners
of the federation. Alternatively, the User directly access any of the services or
resources hosted on one of the Service Providers of the federation which directs
the User to set up an account with the Identity Provider and then re-direct back
the User to the Service Provider. Both of these scenarios are depicted in Figure 1
and Figure 2. The architecture for the Liberty Alliance is very similar to the
described scenarios of Figure 1 and Figure 2. The User is termed as Principal
and the federation of identities is achieved through the exchange of SOAP mes-
sages. The architecture of .NET Passport also resembles Figure 1 and Figure 2.
However, the names by which Microsoft calls these entities of a circle of trust
are Passport Sign-in Server (Identity Provider) and Service Providers config-
ured with Passport Manager Objects (Service Providers). The .NET Passport
has marked difference in the way it achieves federation of identities. Passport
transfers it’s identity management information via cookies [ES96, KM00]. The
User sets up what is known as the Passport Profile with the Passport Sign-in
Server. At this time the Sign-in Server creates a set of cookies. Using these
cookies the User is authenticated at various Passport enabled Service Providers.
By Passport-enabled we mean those Service Providers that have the Passport
Manager installed on their systems that are responsible for authenticating Users
based on Passport User-ID (PUID). In the Passport framework, the Passport
Sign-in Server is essentially the Identity Provider and other Passport enabled
sites are Service Providers and communication between the Identity Provider
and Service Providers is achieved through exchange of cookies. Later on in this
paper we discuss in detail the authentication mechanism adopted by Passport.

314 J.S. Park and H.S. Krishnan

Identity with Service Providers

1. User creates an account

2. Identity Provider federates

resources offered by Partner−Entities
3. User can access the services or

with Identity Provider

User

Service Provider 2Service Provide 1

Identity Provider

Federation (Circle of Trust)

Fig. 1. User establishes Identity with Identity Provider before accessing ser-

vices/resources of the federation

Federation (Circle of Trust)

Identity Provider

Service Provide 1 Service Provider 2

User

Identity Provider to create an account

resources offered by Service Provider 1
1. User tries to access services or 5. User can access resources or

services of other Partner Entities

2. Service Provider 1 redirects User to the

4. Identity Provider establishes Identity
and redirects User to Service Provider 1

3. Identity Provider federates
Identity with Service Providers

Fig. 2. User attempts to access services/resources of the federation and is directed to

the Identity Provider to set up an account and then is allowed access

In the next section we look at the authentication activities involved when an
existing User tries access a resource or service in the federation and how a single
time signing-in provides access across the federation

Trusted Identity and Session Management Using Secure Cookies 315

4 Analyses of Authentication Mechanisms in .NET
Passport

As we discussed briefly in the previous sections, the Passport framework uses
“cookie-based authentication” mechanisms to convey identity related informa-
tion to other Passport enabled sites and acquire service access for Users. This
form of authentication is useful because, cookies are lightweight and convenient
to store and forward. They involve very less processing overhead. In order to
understand how .NET Passport uses cookies to authenticate Users with partner
sites we analyze the mechanism in this section.

Figure 3 provides an overview of the authentication process. Before we dive
into the details of the User authentication and service access mechanism, we
briefly discuss the components of the Passport architecture. The Passport Sign-
in Server provides authentication mechanism by which a User can be established
as a trusted User among the Passport enabled sites. It takes the help of a User
Authentication Database to authenticate any given User. On the other end, a
Web-server serves the specific service that the User wants to access. The Service
Provider is configured with a Passport Manager that is responsible for verifying
the authenticity of the User.

The User starts by accessing the website that provides the desired service. It
is assumed that the website is Passport enabled; by this we mean that the site
has agreed to be a member of the federation of all Service Providers accepting the
.NET Passport as a central identity manager and authenticator. The Web-server
of the Service Provider, checks for available cookies issued by the Passport server,
and if it cannot find any, it redirects the User to the Passport Sign-in server.
(If Cookies are available on the Users system, probably saved from the previous
access made to the Service Provider, then the process from step 7 of Figure 3
will be executed.) The User forwards his/her Sign-in credentials such as the
email-address and password to the server. The server verifies these credentials of
the User against the database and notifies the User of successful authentication.
At this time the Passport login server places its cookies into the User’s browser.
Using these cookies the User is authenticated at various Passport enabled Service
Providers. Having embedded the cookies in the browser the User is redirected to
the Passport-enabled site where the Web-server extracts the cookies and forwards
it to the Passport manager component. The Passport manager then verifies the
User as already authenticated and signed-in and notifies the Web-server of the
authenticity of the User. The Web-server then grants the User the permission to
access the services provided. The site also records its URL in one of the cookies
to reflect the visit of the User to that site. If the User goes on to access other
Passport enabled sites, since he/she already has the required cookies embedded
in the browser, the User can do so without any extra interaction either with the
Passport Sign-in Server or the Service Provider.

It is however important to note here that, the Passport Manager on each
Passport-enabled Service Provider only checks that the browser of the User ac-
cessing the website is embedded with the Passport Cookies. It does not in any
way try to establish a link between the Cookies in the browser and the User

316 J.S. Park and H.S. Krishnan

MANAGER

1. User visits a Site

5. Notification against

Sign−In 6. Places Passport Cookies

enabled site

by Passport Server
8. Forwards Passport Cookies

for Authentication

9. Notification of
Authentication

to access services offered by web−ste
10. Grants user the permission

2. Site redirects User to

Passport Sign−in Server

7. Extracts Cookies issued
into the User’s’ browser and

redirects User to Passport

3. User provides Email

−address and Password

User Authentication Database
4. User is authenticated against

AUTHENTICATION

DATABASE

PASSPORTUSER PASSPORT

SIGN−IN

SERVER

BROWSER

AT

CLIENT

WEB

SERVER

Fig. 3. Cookie-based authentication mechanism used by .NET Passport

whose browser is presenting the cookies to the Web-server. This is one of the
main vulnerabilities in the current .NET Passport system that we discuss in the
next sections.

5 Security Concerns in Conventional Cookies

Having stated that .NET Passport uses cookies for authentication, we briefly
look at what cookies really are and discuss the security concerns associated with
them.

Cookies are basically text files that were used to enhance stateless-HTTP by
introducing what is known as a Session in HTTP. By this we mean that cookies
are text files containing information that can be used to achieve continuity while
surfing the internet. Cookies often contain information that was previously en-
tered by a surfer, but they can also contain information added by Web-servers.
A site stores cookies on the User’s machine that it retrieves on subsequent visit
to the site. The information contained in the cookies is what the User or the
Web-server entered during the Users’s previous visit to the site and the site
extracts the corresponding cookies to obtain information.

There are no direct threats posed by cookies if they are used to store non-
confidential User information. However, there are situations when a site might
need to store some sensitive information such identity, passwords, etc. It is then
that cookies become point of interest to malicious users. We now look at the pos-
sible security threats to cookies [PS00]. These threats can be classified into the
following groups: Network Threats, End-System Threats, and Cookie-Harvesting
Threats. As cookies are transmitted in clear text, Network Threats are imple-
mented by snooping and replay with or without modification. One easy solution
to thwarting Network-Threats on cookies is to use the “secure” flag field in the
cookie. Setting the flag ensures that those cookies are transmitted only on SSL
[WS96] so that the cookies are protected on the network. However, this does not
mean that the cookies are protected in the end-systems, since SSL does not work
in end-systems. The second type of threat is the End-System Threats. Cookies

Trusted Identity and Session Management Using Secure Cookies 317

reside in the Users systems as plain text files. These cookies are open to be
modified or copied to other systems with or without User consent. This gives
rise to impersonation by identity forging. Actually, this is a serious drawback
in the current .NET Passport authentication. One good example of the End-
System Threat is the Cookie-Poisoning Attack [Kle]. In this form of attack, a
malicious user modifies the contents of a Cookie to gain the identity of a genuine
User and gain unauthorized access. The Cookie-Poisoning Attack is a Parame-
ter Tampering Attack that involves the tampering of cookie parameters. Lastly,
we have the Cookie-Harvesting Threat, where a malicious user collects User’s
cookies by claiming to be a site that accepts User cookies. The attacker then
goes on to use these harvested cookies to gain access to the sites that actually
accept these cookies. A good example of the Cookie-Harvesting threat is the
Cross-Site Scripting attack. In this form of attack a malicious user can exploit
the vulnerabilities of a Website that displays data, provided by a User, which has
underlying malicious intent. For example, a malicious user could embed a script
in a URL and place it in a Discussion Forum, Website, Web message board, or
email. The underlying script could be activated when the User comes across the
hyperlink and decides to follow it. The script would then copy all the cookies
in the User’s machine and relay they back to the malicious user for use with or
without modification.

In all of the above cases it is seen that there is no means by which a site can
establish a strong link between the cookies and the User providing the cookies.
Furthermore, cookies do not provide confidentiality or integrity of their contents.
All these attacks use the weak assumption made by a cookie-accepting site that
the User providing the cookies is the actual owner of those cookies.

6 Security Vulnerabilities in .NET Passport Cookies

The .NET Passport uses a number of cookies that each carries state information
for various tasks to be carried out by the Passport Sign-in Server and the partici-
pating Passport-enables sites. These cookies are divided into two groups, namely
the “Domain Authority Cookies” and “Participating Site Cookies”. Cookies that
are written to the .Passport.com domain cannot be directly accessed by a par-
ticipating site. On the other hand the Participating Site Cookies are written
to the participating domain site and in path to which the participating site’s
Passport Manager Object is configured and enable the User to sign in at any
Passport participating sites during a browser session. The cookies written in the
passport.com domain are encrypted with the Passport key. The cookies writ-
ten to the participating sites domain are encrypted with the participating sites’
Passport key. Most of the Passport Cookies are temporary cookies and are not
stored in the User’s browser after each session. When a User signs out of ei-
ther the Passport site or one of the participating sites, all Passport Cookies are
deleted. By deleting the cookies at the end of each session, the possibility of end-
system threats is thwarted. However, every session requires a new set of cookies
from the User’s browser, which is inconvenient to the User. It would make it

318 J.S. Park and H.S. Krishnan

much easier if the Users could preserve their cookies that provide automatic au-
thentication each time the User uses the Passport site or any Passport-enabled
site in the future. Technically, it should be possible to configure the Passport
server to store its cookies in the User’s browser after each session. However,
this is not recommended because of the security vulnerabilities in the current
Passport Cookies, although it could provide more transparent services to Users.
We will discuss in the following sections how to solve this problem by using our
Secure Cookies.

The Passport Cookies currently have two security features: namely the en-
cryption using Passport Key and transmitting the cookies using SSL. The en-
cryption provides protection against unauthorized disclosure. Setting the Secure
flag in the cookie makes sure that it is transmitted over SSL thus giving away
possibility of network-threats by malicious user. However, these features are not
sufficient to protect the cookies in the User’s machines(discussed in Section 5).

Furthermore, the current cookies don’t have a mechanism to associate them
with their actual owners. The cookies don’t have a mechanism by which it can be
established that the person forwarding the cookies is necessarily the owner of the
cookies. This weakness can be exploited by steeling the cookies and reusing the
cookies without modification before the cookies expire. In this way a malicious
user pretends to be the cookie-owner and gains unauthorized access. Once any
User signs in at the Passport Sign-in Server, that server places required cookies in
the User’s system to be used for authentication with Passport enabled sites. Any
malicious user can carry out an end-system attack in order to obtain the cookies
and use them as its owner. Therefore, we believe the current .NET Passport
IM system shouldn’t not store it’s cookies in Users machines, even though it is
technically possible and would be more convenient to Users.

7 Secure Cookies for .NET Passport Framework

We now look into the aspect of enhancing the security services in the Passport
framework. We propose the use of Secure Cookies to improve the security of the
cookies used in the current .NET Passport framework.

7.1 Cooking Secure Cookies

Secure Cookies provide three types of security services: authentication, integrity,
and confidentiality. Authentication verifies the cookie’s owner. Integrity protects
cookies against unauthorized modification. Finally, confidentiality protects cook-
ies against being revealed to an unauthorized entity. Detailed descriptions about
Secure Cookies are available in [PS00].

Since typical cookies do not support authentication, a malicious user can
simply snatch cookies from other Users and impersonate the real owner to the
server that accepts those cookies. To solve this problem, we introduce three possi-
ble authentication methods for cookies. Authentication cookies can be address-
based (IP Cookie), password-based (Pswd Cookie), or digital-signature-based

Trusted Identity and Session Management Using Secure Cookies 319

(Sign Cookie). To prohibit individuals, perhaps even the cookie owner, from
reading sensitive information in cookies, the Web-server can encrypt the con-
tents of the cookies such as, names, roles [PSA01], credit card numbers, and so
on. We use the Key Cookie, to store an encrypted session key, which is used to
encrypt sensitive information in other cookies. The session key can be encrypted
either by the proper public or secret key. Finally, the Seal Cookie determines
if cookies have been altered. The Seal Cookie’s contents depend on the cryp-
tographic technologies used - essentially, either a public- or secret-key-based
solutions (e.g. digital signatures, message authentication codes).

As a result, Secure Cookies can be stored in the User’s computer, even when
it is off, after each session. This is possible because the Secure Cookies can be
provided integrity and authentication services as well as encryption. Therefore,
once the User obtains Secure Cookies, the information in the cookies can be used
until the cookies expire. This approach completely solves the stateless problem
of HTTP and security problems in typical cookies used in .NET Passport.

7.2 Enhanced Passport Architecture with Secure Cookies

Before we talk about the effect of using Secure Cookies, we describe the archi-
tecture that supports the use of Secure Cookies. In order to support the use of
Secure Cookies we propose Proxy-Authentication architecture that is both trans-
parent to and compatible with the current .NET Passport framework. Figure 4
is a schematic representation of the same. Figure 4 depicts the use of a Proxy-
Authenticator to generate Secure Cookies from Passport Cookies. We have not
shown the User Authentication Database and Passport Manager entities in Fig-
ure 4 as they do not form the core of the Proxy-Authentication architecture that
we propose. However, these entities are required in the overall system. If this ar-
chitecture is compared to the existing Passport architecture, we can clearly see
that the User is no more talking directly to the Passport Sign-in Server. Instead
the User provides the credentials to the Proxy and Proxy signs into Passport

1. User attempts to accessfor email−ID and password
3. Proxy Authenticator requests

4. User provides Passport
email−ID and password

5. Proxy−Authenticator forwards

credentials to Passport Sign−In Server

Passport Cookies to the

Proxy−Authenticator

7. Sign−In Server forwards the

Passport Cookies to the

Service provider

10. User forwards Secure

11. Service provider provides

access to the authenticated

User

2. Service Provider redirects User
to Proxy−Authenticator

6. Sign−In Server authenticates the user
 and generates cookies and encrypts them

8. Proxy−Authenticator uses Passport
Cookies and generates Secure Cookies

9. Passport forwards Secure
Cookies to the User

Service Provider

PASSPORT

SIGN−IN

SERVER AUTHENTICATOR

PROXY

BROWSER

AT

CLIENT

SERVICE

PROVIDER

(WEB−

SERVER)

Fig. 4. Proxy Authenticator used to provide security to Passport Cookies by generating

Secure Cookies

320 J.S. Park and H.S. Krishnan

on the behalf of the User. The key role of the Proxy is to receive the post au-
thentication Passport Cookies from Passport Sign-in Server, and to generate
the Secure Cookies using them and forward them to the User. The Proxy thus
wraps the less secure Passport Cookies in a secure envelop that is difficult to
break. The User can then use these cookies for gaining access at each Passport
partner site. The architecture also requires that the partner Service Providers
possess the capability to unwrap the Passport Cookies from the Secure Cookie
envelop. Hence each Service Provider needs to be configured not only with the
Passport Manager Module but also a Secure Cookie Unwrapping module that
extracts Passport Cookies and forwards them to the Passport Manager Module
for verification. (This module is not shown in the architecture diagram pre-
sented in Figure 4). Furthermore, by using the proposed Proxy-Authenticator,
our approach is still transparent to, and compatible with existing .NET Pass-
port servers. Our approach does not require any change in the .NET servers.
Instead, in our experimentation, we successfully changed the original content
of the cookies issued by the Passport Server for our purposes. Actually, .NET
Passport does not have any idea about the content change. Although changing
the original cookie contents is not for a malicious purpose in this case, it clearly
indicates that we can break the integrity of the original .NET Passport Cookies
because they are insecure.

7.3 Operational Scenario

Having described the role of Proxy, we now present the detailed discussion on
the sequence of the steps that take place for a User trying to gain access into a
partner Service Provider that is Passport enabled. The User starts by trying to
access the Service Provider and requests for the desired resource. The Service
Provider does not find the required cookie in the User’s Web-client and hence
redirects the User to the Proxy to Sign-in to the Passport. At this time the User
is interacting with the Proxy-Authenticator and not the Passport Sign-in server.
However, this difference is transparent to the User. The User provides the Sign-in
credentials just as he/she would interact with the Passport Sign-in server. The
Proxy collects these credentials and forwards it to the Sign-in Server and signs
in on behalf of the User. At this point a successful Sign-in would result in the
User’s Passport Cookies being written to the Proxy. The Proxy then generates
a set of Secure Cookies for the User by wrapping all the Passport Cookies.
These Secure Cookies are transferred to the User’s Web-Client. The User is now
redirected to the Service Provider that he/she initially tried to access. Now the
Service Provider finds the valid cookies that it can use to verify the User and
grant access. It is important to point out here that when the Secure Cookies are
read by the service the User will be prompted for a password that is stored in
the Hashed Format in the Authentication Cookie of the Secure Cookies (if the
authentication mechanism in the Secure Cookie is implemented using Digital
Signature or IP, then the verification mechanism is oblivious to the User). If
the User provides the correct password then the Service Provider successfully
verifies the User and strips the Passport Cookies from the Secure Cookies set

Trusted Identity and Session Management Using Secure Cookies 321

and presents it to the Passport Manager Module. Based on the credentials in
the Passport Cookies the Service Provider offers a range of services to the User.

7.4 Advantages

Having discussed the sequence of interactions in the new architecture we now
shift our discussion towards the strengths of the proposed architecture. In spite of
introducing a new component between the User and the Passport Sign-in Server,
the amount of overhead is very little. In fact the overhead incurred is all on the
Proxy and nothing on the User. The User still signs in at only one place. However
there is one more level of communication behind the Proxy (between Proxy and
Passport Sign-in Server) but this is transparent to the User. Again when the
User’s Web-client presents the Service Provider with the Secure Cookies (instead
of the Passport Cookies as per the existing system) it is the Service Provider
that first strips the outer Secure Cookie set and then the Passport Manager
consumes the Passport Cookies. The Proxy based architecture is also robust as
it does away with the Single-Point failure. The current Passport framework has
a single Sign-in Server and can fall victim to single point failure. There could be
multiple proxies thus eliminating single point failure for the signing-in part. The
use of a Proxy is also secure in the sense that, the Proxy does not see the contents
of the Passport Cookies as the cookies are already encrypted with the Passport
Key when they arrive at the Proxy. It just adds another layer of security on the
cookies making them more secure. Also the cookies are not stored at the Proxy,
after creating them, the Proxy forwards them to the User. This eliminates any
possibility of an end-system attack on the Proxy.

The use of Secure Cookies itself adds a number of advantages to the .NET
Passport framework. Primarily the authentication cookie of the Secure Cookie
set helps establishing a link between the Cookies and the Owner. If the au-
thentication mechanism chosen is a Pswd Cookie then the User incurs a minor
overhead of having to remember a password to be provided at each Service
Provider. Using Digital-Signature will also incur some amount of overhead as
there needs to be a secure channel set up to exchange Security Keys and also
each time the User needs to intervene in the process. However, if IP-based based
authentication is used then there is no overhead for the User and the authen-
tication mechanism is transparent to the User. Also we can incorporate access
control mechanism by using the Secure Cookies. Secure Cookies can be stored on
the User’s system without concern of being tampered upon. Any unauthorized
change to the contents of Secure Cookies would result in invalid cookies and
denial of access. Also, if Secure Cookies comprising of Passport Cookies is stolen
by a malicious user and used, the cookie will not be successfully validated as
the malicious user has to know the password of the actual owner of the cookie.
We can optionally add another cookie (e.g. Role Cookie) to the Secure Cookie
envelop that has defines access rights of the User. This concept can be further
extended by using Role-Based Access Control (RBAC [PSA01, SCFY96]). We
can include a Role Cookie into the Secure Cookie envelop that caries the User’s
Role in it. This role information can be used by each of the Service Provider to

322 J.S. Park and H.S. Krishnan

make access decisions regarding User’s request for services/resources. In such a
scenario the Service Provider maintains a mapping between the defined Roles
and corresponding access permissions. Thus Secure Cookies not only strengthen
the existing Passport Cookies but also can provide a great deal of extended
capability to them such as scalable access control.

7.5 Implementation

We carried out our implementation on Windows systems. We used the .NET plat-
form for our development. We developed an initial version of Proxy Authentica-
tor using ASPX and hosted it on IIS. We used the System.Security.Cryptography
library to perform the necessary encryption, decryption and Digital Signing of
the cookie contents. We use C# to implement the logic required by Proxy as well
as the module on the Service Provider that performs the unwrapping of Secure
Cookies to get the Passport Cookies.

In order to test the strength of the Passport Cookies we signed into Passport
with the “sign me in automatically” option selected. This gave us access to the
Passport Cookies that were written to the User’s Web-client. We then accessed
msn.com and selected the Passport “Sign-in” option and we were silently signed
into the site. We then opened up the Passport Cookies stored on the system and
modified a numerical value field in the MSPAuth cookie. We saved the changes
and once again accessed the msn.com site. On clicking the Sign-in options for
Users with Passport identities, we were silently authenticated and granted access
to the site instead of being directed to the Passport Sign-in server for re-signing
in. Keeping these changes intact we further modified the cookies by changing
a similar numerical value field in the MSPProf cookie. We then accessed expe-
dia.com (another Passport enabled site) and we were silently signed-in. Similar
behaviors was seen when modifications were made to the MSPPre and MSPSec
cookies. Hence this led us to conclude that there are points of vulnerabilities in
the current Passport Cookies that can be exploited. It is this kind of attacks
that the Secure Cookies look to thwart.

8 Conclusions and Future Work

In this paper, we analyze the structure of a generic Federated Identity Manage-
ment System and explore .NET Passport framework in depth. We explore the
current security mechanisms adopted by .NET Passport and identify potential
security weaknesses. We then propose our new approaches to enhance the se-
curity services in .NET Passport by using Secure Cookies. Our approaches are
transparent to and compatible with the current .NET Passport server. Finally,
we prove the feasibility by implementing our ideas in a real system.

In our future work we intend to add a Role Cookie in the set of cookies that
forms a set of Secure Cookies to enable Role-Based Access Control that provides
strong and scalable access control mechanisms. We intend to equip Proxy with
capability to determine a role for the User who wants to Sign-in to Passport and

Trusted Identity and Session Management Using Secure Cookies 323

add a Role Cookie to reflect this information. We will be enabling the Service
Providers with ability to map Roles to Permissions, so that on receiving the
Secure Cookies from the User the Service Provider can not only get the Passport
Cookies but also have access to a role cookie. This Role Cookie can be used to
determine the set of permissions that the User has while touring the Service
Provider’s website. The set of roles can be fixed but the access permissions
associated to each role are flexible and the Service Providers can autonomously
determine the set of permissions for each role. In this way we are able to embed
RBAC mechanism into .NET Passport framework.

References

[AAM] American Association of Motor Vehicle Administrators (AAMVA). Identifica-
tion Security. http://www.aamva.org/IDSecurity/

[Cla94] R. Clarke. Human Identification in Information Systems: Management Chal-
lenges and Public Policy Issues. Information Technology and People 7(4): 6-37,
1994.

[ES96] Easonn Sullivan. Are Web-based cookies a treat or a recipe for trouble? PC
Week, June 26, 1996.

[GC02] Greenwood, D., D. Combs, et al. Identity Management: A White Paper. Lex-
ington, KY, National Electronic Commerce Coordinating Council: 68, 2002.

[ILAIA03] Liberty Alliance Project. Introduction to the Liberty Alliance
Identity Architecture. Identity Architecture Whitepaper. March, 2003.
http://www.projectliberty.org/resources/whitepapers/LAP

[ISLSI03] Liberty Alliance Project. Identity Systems and Liberty
Specification Version 1.1 Interoperability. February 14, 2003.
https://www.projectliberty.org/resources/whitepapers/Liberty and 3rd Party
Identity Systems White Paper.pdf

[Kle] A. Klein. Hacking Web Applications Using Cookie Poisoning Sanctum Inc.
http://www.cgisecurity.com/lib/CookiePoisoningByline.pdf

[KM00] D. Kristol and L. Montulli. RFC 2965, HTTP State Management Mechanism.
Network Working Group, October 2000.

[KPF01] Myong H. Kang, Joon S. Park, and Judith N. Froscher. Access Control Mech-
anisms for Inter-Organization Workflow. Proceedings of the 6th ACM Symposium
on Access Control Model and Technologies (SACMAT), Chantilly, Virginia, May
3-4, 2001.

[MNP04] Microsoft .NET Passport. Review Guide. January 2004.
http://www.microsoft.com/net/services/passport/review guide.asp

[NRC02] Computer Science and Telecommunications Board, N. R. C. IDs - Not That
Easy: Questions about Nationwide Identity Systems. Washington, DC, National
Academy of Sciences, 2002.

[PCND04] Joon S. Park, Keith P. Costello, Teresa M. Neven, and Josh A. Diosomito. A
Composite RBAC Approach for Large, Complex Organizations. Proceedings of the
9th ACM Symposium on Access Control Models and Technologies (SACMAT),
Yorktown Heights, New York, June 2-4, 2004.

[PCZG04] Joon S. Park, Pratheep Chandramohan, Artur Zak, and Joseph Giordano.
Fine-Grained, Scalable, and Secure Key Management Scheme for Trusted Mili-
tary Message Systems. Proceedings of The Military Communications Conference
(MILCOM), Monterey, CA, October 31-November 3, 2004.

324 J.S. Park and H.S. Krishnan

[PKF01] Joon S. Park, Myong H. Kang, and Judith N. Froscher. A Secure Workflow
System for Dynamic Cooperation. Proceedings of the 16th International Confer-
ence on Information Security (IFIP/SEC 2001), Paris, France, June 11-13, 2001.

[Pass05] .NET Passport. http://www.passport.NET
[PS00] Joon S. Park and Ravi Sandhu. Secure Cookies on the Web. IEEE Internet

Computing, Volume 4, Number 4, July-August 2000.
[PSA01] Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. Role-Based Access Control

on the Web. ACM Transactions on Information and System Security (TISSEC),
Volume 4, Number 1, February 2001.

[PSG99] Joon S. Park, Ravi Sandhu, and SreeLatha Ghanta. RBAC on the Web by
Secure Cookies. Proceedings of the 13th IFIP WG 11.3 Working Conference on
Database Security, Seattle, Washington, July 26-28, 1999.

[SCFY96] R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role Based Access
Control Models. IEEE Computer 29 (2), February 1996.

[SOAP] Simple Object Access protocol. Version 1.2 Specification. June 24, 2003
http://www.w3.org/TR/soap/

[WS96] D. Wagner and B. Schneier. Analysis of the SSL 3.0 Protocol. Proc. Second
Usenix Workshop on Electronic Commerce, Usenix Press, Berkeley, Calif., Nov.
1996, pp. 29-40.

[XML] Extensible Markup Language. www.w3.org/XML/

Security Issues in Querying Encrypted Data�

Murat Kantarcıoǧlu1 and Chris Clifton2

1 Department of Computer Science, The University of Texas at Dallas,
Richardson, TX 75083

http://www.murat.kantarcioglu.net
2 Department of Computer Science, Purdue University, West Lafayette, IN 47907

{kanmurat, clifton}@cs.purdue.edu,
http://www.cs.purdue.edu/people/clifton

Abstract. There has been considerable interest in querying encrypted
data, allowing a “secure database server” model where the server does
not know data values. This paper shows how results from cryptography
prove the impossibility of developing a server that meets cryptographic-
style definitions of security and is still efficient enough to be practical.
The weaker definitions of security supported by previous secure database
server proposals have the potential to reveal significant information. We
propose a definition of a secure database server that provides probabilis-
tic security guarantees, and sketch how a practical system meeting the
definition could be built and proven secure. The primary goal of this
paper is to provide a vision of how research in this area should proceed:
efficient encrypted database and query processing with provable security
properties.

1 Introduction

There is considerable interest in the notion of a “secure database service”: A
Database Management System that could manage a database without knowing
the contents[1]. While the business model is compelling, such a system must be
provably secure. Existing proposals have problems in this respect; the security
provided leaves room for information leaks.

Any method for database encryption that does not meet rigorous cryp-
tography-based security standards must be used carefully. For example, meth-
ods that quantize or “bin” values [1,2] reveal data distributions. Methods that
hide distribution, but preserve relationships such as order [3,4], can also disclose
information if used näıvely. While they may hide values in isolation, using such
techniques on multiple attributes in a tuple can pose dangers.

Suppose a bank is trying to find who is responsible for missing money (e.g.,
fraud or embezzlement). They have gathered information on suspect employees
and customers. Even though much of the information is publicly known (name,
size of mortgage, age, postal code, ...), revealing who is being investigated is

� This material is based upon work supported by the National Science Foundation
under Grant No. 0312357.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 325–337, 2005.

c© IFIP International Federation for Information Processing 2005

326 M. Kantarcıoǧlu and C. Clifton

sensitive: The appearance that they are accusing a customer of fraud could lead
to a libel suit. Therefore they have encrypted each of the values using an order-
preserving encryption scheme. Are they protected?

The answer is probably not. Assume a newspaper wants to know if an indi-
vidual “Chris” is being investigated. They obtain the encrypted database. They
know that the name “Chris” would rank at about 15% of all names – so if it
appears in the encrypted database, it will be roughly in that position (the range
for a given sample size and probability can be calculated using order statis-
tics). The newspaper can do the same with size of mortgage, age, and other
known data about Chris – and with the other employees/customers of the bank.
If there is a tuple in the database whose rank on all attributes is close to the
corresponding rank of Chris (in the overall dataset), and there is no other cus-
tomer/employee tuple whose ranks are similar, then the newspaper knows that
with high probability, Chris is being investigated.

The key problem is that while encrypting a single value using order pre-
serving encryption or a binning scheme may reveal no information, supporting
multiple search keys for each tuple reveals a surprising amount. While methods
meeting cryptographic security standards have emerged for some types of queries
(e.g., keyword equality [5,6], additive update [7]) they do not meet the need for
general database queries. To protect against näıve misuse of order-preserving,
homomorphic, or other such encryption techniques, we propose definitions for
what it means for an encrypted database to be secure.

This paper presents a vision for how research enabling a secure database ser-
vice should proceed: Establish solid definitions of “secure”, develop encryption
and query processing techniques that meet those definitions, demonstrate that
such techniques have practical promise. Section 2 gives security definitions for
database and query indistinguishability based on the cryptographic concept of
message indistinguishability. This leads to a troubling result: prior work in cryp-
tography shows that a secure DBMS server meeting these definitions requires
that the cost of every query be linear in the size of the database, making a secure
DBMS impractical for real-world use.

Section 3 begins the real contribution of this paper: a slightly relaxed defini-
tion that gives probabilistic guarantees of security. For the data itself, security
is equivalent to strong cryptographic definitions. An adversary tracing query ex-
ecution could conceivably infer information over many queries, but the quality
of the information decays exponentially – before enough queries have been seen
to infer anything, the relationship between early and late queries will have been
broken, preventing the adversary from inferring sensitive data.

In Section 3.2 we show that for this definition, a secure DBMS server with
reasonable performance could be constructed. The one caveat is that it requires
the existence of a secure execution module: a way of running programs on the
server that are hidden from the server. We show how basic query processing
operations (select, join, indexed search) can be implemented with a simple secure
execution module supporting encryption, decryption, pseudo-random number
generation, and comparison. Fortunately, there is an efficient and practical way

Security Issues in Querying Encrypted Data 327

to achieve such a module: tamper-proof hardware [8]. We give sketches of how
the operations could be proven to meet our definition of security. This paper
addresses read-only queries (select-project-join); extension to insert/update is
reasonable, but beyond the scope of the current work.

2 Implausibility of a Fully Secure Database Server

The cryptography community has developed solid and well-regarded definitions
for securely encrypting a message. Encryption schemes are defined to be se-
mantically secure if and only if the ciphertext reveals no information about the
plaintext. We now use security definitions from cryptography to define what it
means to “securely” encrypt and query a database.

2.1 Security Definitions for Encrypted Database Tables

Semantic security implies that, given any two pairs of ciphertexts and plaintexts
of the same length, it must be infeasible to figure out which ciphertext goes
with which plaintext. This means that any two database tables with the same
schema and the same number of tuples must have indistinguishable encryptions.
To be more precise, we now give a database-specific adaptation of the definitions
stated in [9].

Definition 1. An encryption scheme (G, E, D) for database tables; consisting
of key generation scheme G, encryption function E, and decryption function
D; has indistinguishable encryptions if for every polynomial-size circuit family
{Cn}, every polynomial p, and all sufficiently large n, every database R1 and
R2 ∈ {0, 1}poly(n) with the same schema and the same number of tuples (i.e.,
|R1| = |R2|): |Pr{Cn(EG(1n)(R1)) = 1} − Pr{Cn(EG(1n)(R2)) = 1}| < 1

p(n) .
The probability in the above terms is over the internal coin tosses of G and E.

This definition says that if we try to construct a polynomial circuit for dis-
tinguishing any given encrypted database table R1 (i.e., the circuit will output
one if the encrypted form belongs to R1, else it will output zero), the circuit will
have a success probability that is at most slightly better than a random guess.

2.2 A Secure Method for Encryption of Database Tables

While one solution to the securely encrypting a database is to simply encrypt
the entire database as a single message this would prevent any meaningful query
processing (the entire encrypted database would have to be returned to the
querier to enable decryption). Fortunately, we can use Counter (CTR) mode
with a secure block cipher algorithm such as AES ([10], note that AES operates
on 16 bytes blocks) to meet Definition 1 while still encrypting the individual
fields in a tuple independently.

The idea in CTR mode is to choose a unique number (counter) for each
block (a field of a tuple can be composed of multiple blocks but for simplicity

328 M. Kantarcıoǧlu and C. Clifton

and without loss of generality, we assume that each field corresponds to a block)
and encrypt that unique number. The resulting encryption of the counter is then
xor-ed with the actual message block. The counter is stored in plaintext with
the encrypted message. For example, let Ti be the ith field of a tuple and Ci be
the ith encrypted field. We can encrypt the ith field based on a counter value
(ctr) that is incremented by n after encrypting a tuple with n fields. Encryption
and decryption in CTR mode can be summarized as follows:

CTR Encryption: Ci = Ti ⊕ EK(ctr + i), i = 1..n

CTR Decryption: Ti = Ci ⊕ EK(ctr + i), i = 1..n

Since identical field values will now be xor-ed with different values, the fact that
they are identical (or any other relationship between them) will be hidden.

2.3 Database Indistinguishability in the Presence of Queries

Database research has concentrated on efficient processing of queries. We would
like to maintain this efficiency even if the data is encrypted. As examples in the
introduction show, many prior proposals for querying encrypted data do not meet
Definition 1 if an adversary is allowed to viewdata access patterns. This is not just a
problem of poor use of encryption. What we really need to ensure is that not only is
the encrypted database itself secure, but that the act of processing queries against
the database does not reveal information. Unfortunately, achieving such security is
at odds with efficient query processing. We now give a definition of secure database
querying based on a model from the cryptography community, and show that the
only way to meet this strict definitions is to access the entire database for each
query. In Section 3.1 we will build on these definitions to give a slightly weaker (but
still semantically meaningful) definition supporting more efficient queries. In our
current discussion, we assume that data resides on single server and do not consider
potential gains due to the replicated data.

Database Queries as a Special Case of Private Information Retrieval
We still require that tuples be indistinguishable (Definition 1), and also require
that two queries be indistinguishable (e.g., the queries are encrypted). The idea
is that if we can’t tell tuples or queries apart, we don’t really gain information
from processing the queries. Unfortunately, this leads us to a result where full
database scan is required.

The definition comes from Private Information Retrieval (PIR) [11], which
protects the query from disclosure. The server knows the data, but should learn
nothing about the query. A PIR server must protect query privacy, and ensure
the correctness of the query result.

Why do we want the privacy of the user query be protected? The problem
is that if the server knows the query, knowing just the size of the result reveals
information about the database. For example, if server knows that σR.a1=300(R)
returns three tuples, then the server will have the knowledge of those tuples’ a1
fields. Note that we only require query indistinguishability for queries that have

Security Issues in Querying Encrypted Data 329

the same result size. Otherwise we would need to set an upper bound on query
result size (the entire database if we want to support full SQL), and transmit
that much data for every query – the actual result size would distinguish queries.
We now formally define the correctness and privacy requirements.

Definition 2. (Correctness)
Assume database D is stored securely on a server w.r.t Definition 1. Let E(D)
be the securely encrypted database and let Q be a query issued on the database. A
query execution is said to be correct if given (Q, E(D)), an honest server provides
a result enabling the query issuer to learn Q(D).

The correctness definition implies that if the server follows the protocol, the
query issuer will get the correct result. Also privacy must hold even for a dis-
honest server:

Definition 3. (Privacy)
For every query pair Qi, Qj that run on the same set of tables over D and
have the same size results, the messages mQi , mQj sent for executing the queries
are computationally indistinguishable if for every polynomial-size circuit family
{Cn}, every polynomial p, all sufficiently large n, mQi and mQj ∈ {0, 1}poly(n),
|Pr{Cn(mQi) = 1}−Pr{Cn(mQj) = 1}| < 1

p(n) . The probability in the previous
terms is taken over the internal coin tosses of the query issuer and the server.

This privacy definition implies that whatever the server tries to do, it will not be
able to distinguish between two different queries run on the same set of tables
and returning the same size results. For example, if Q1 = σa1=300(R) returns 100
tuples and Q2 = σa1=100(R) returns 100 tuples, there is no way for the server
to predict which of the two is executed more effectively than a random guess.
This could hold for even distinctly different queries (queries can inexpensively
be padded to hide the differences), provided the same tables are access and
the results are the same size. (The requirement that results be the same size
is because padding results to the “maximum possible” result size would impose
unacceptable inefficiences.)

We can define a secure query execution as one that runs on securely encrypted
data and satisfies Definitions 3 and 2. We can show that even for queries that
are running on a single table, above definitions imply that we need to scan the
entire table.

We first prove that given a set of queries on a particular table with t, if there
exists a query that must access at least v tuples, then we can distinguish it from
a query that occasionally accesses fewer than v tuples. Second, we show that for
any admissible query result size t, there exists a query which requires the scan
of the entire database.

Lemma 1. Let St be queries that run on table R with result size t, and let
us assume that there exists a query Qt

1 that needs to access at least v tuples
for correct evaluation. Let Qt

2 be an element of St that needs to access at most
v−1 tuples with probability greater than 1

p(n) . Then there exists a polynomial-size
circuit family Cn that can distinguish them with non-negligible probability.

330 M. Kantarcıoǧlu and C. Clifton

Proof. We define Cn as follows. Given the messages exchanged during the exe-
cution of the query, the circuit will count the number of the tuples accessed. If
it is ≥ v, Cn will output 1; otherwise it will output zero. Note that Cn only does
a simple counting, therefore is polynomial in terms of the input size. Now let us
calculate the probability P =| Pr{Cn(mQt

1
) = 1} − Pr{Cn(mQt

2
) = 1} |.

P = | Pr{Cn(mQt
1
) = 1} − Pr{Cn(mQt

2
) = 1} |

= | 1− Pr{Cn(mQt
2
) = 1} |

= | 1− Pr{more than v − 1 tuples accessed} |
> | 1− (1 − 1

p(n)
) |

>
1

p(n)

Again, note that the probability is taken over the internal coin tosses of the
query issuer and the server; it does not depend on the database values.

Since P is bigger then 1
p(n) we can conclude than Cn distinguishes the above

queries with non-negligible probability. ��
We now show that the queries needed by the above definition exist.

Lemma 2. For any given result size t, there exists a query that needs to access
the entire table.

Proof. Since the result must be encrypted to preserve security (otherwise all
queries would have to return the same result to avoid being distinguished), the
resulting set size must be a multiple of the cipher block size k of size, up to the
size of the table. Let R have n tuples with a attributes blocked into u blocks of
size k. Here without loss of generality, we assume that each attribute is k bits
long, therefore u is equal to a.

Let assume that id field added to the database is also k bit long. So for each
admissible size t where t is the multiple of k and less than k ∗n∗a, we can define
a query that needs to access the entire database as follows.

Qt
1 =

� t
kn �⋃

i=1

πai(R)

∪πa1 (σid<(t mod kn−1)∗a(R)
∪avg(πa1 (R))

The above query simply gets the average of a single attribute to make sure
that query needs to access the entire table, and pads the result set to make sure
that result size is t. (Since we have not specified a value for k, this generalizes
to any block size, including 1.) ��

Security Issues in Querying Encrypted Data 331

Using the above lemmas, we can now prove the following:

Theorem 1. A query execution that is secure in the sense of Definitions 3 and
2, even for queries known to access a particular database table, must scan the
entire database table non-negligibly often.

Proof. For the set of queries returning a result of size t, at least one must require
full table access (Lemma 2), if not then not all queries would satisfy the correct-
ness Definition 2. We can now build a distinguisher for any query that requires
less than full table access (Lemma 1). Since at least one query in t requires full
table access, if any requires less than full access a non-negligible portion of the
time, the distinguisher will be able to tell the two apart. Such a distinguisher
contradicts Definition 3. ��

Database Queries as a Special Case of Software Protection. More
generally, the cryptography community has produced the concept of oblivious
RAM [12]: a method to obscure the program even to someone watching the
memory access patterns during execution. They provide a solution such that
the distribution of memory accesses does not depend on input. This implies
that execution of queries can be made indistinguishable if they access the same
number of tuples and have the same result size.

In their main result, they show that if a program and its input with total
size y uses memory size m and has a running time t, then it can be simulated
by using m · (log2 m)2 memory in running time O(t(log2 t)3) without revealing
the memory access patterns of the original program (assuming t > y). Unfor-
tunately, even under this relaxation, we will not achieve much improvement in
terms of efficiency. They show that the lower bound on the oblivious simulation
cost is max{y, Ω(t log t)}. In their model, the input y includes everything to be
protected, including the program and data. The database would be modeled as
part of the program, so the size of the database and the program will be a lower
bound for number of memory access. This still implies a full database scan. At
this point, we would like to stress that we are considering running a query in iso-
lation – batching queries could improve throughput (a full scan for each batch),
but would prevent effective ad-hoc or interactive querying.

3 Plausible Definition for a Secure Database Server

We have shown that any strict security and privacy requirement force us to scan
entire databases. The previous definitions’ main problems are that they try to
preserve indistinguishability even if a server can look at tuple access patterns.
What we need is a definition that allows revealing the access patterns for a tuple,
enabling more efficient query processing.

3.1 Definition

If the data and queries are encrypted, and the encryption satisfies multiple-
message indistinguishability (e.g., Definition 1), then the ability to distinguish

332 M. Kantarcıoǧlu and C. Clifton

between queries or tuples carries little information, especially if the ability to
trace tuple access between queries is limited. Using this observation, we give
a new definition that guarantees some level of privacy while allowing a higher
degree of efficiency than the previous examples.

First, we define a minimum set of support tuples for each query: the tuples
that must be accessed to compute the query results. We then only apply query
indistinguishability to queries that have the same support tuple set.

Definition 4. (Min support set)
Let query Q be defined on tables R1, R2, . . . , Rn. Let S be the set of elements in
R1 ×R2 × . . .×Rn. A set S ⊂ (R1 ×R2 × . . .×Rn) is a min support set for Q
if Q(S) = Q(R1 ×R2 × . . .× Rn), and S is the smallest such set for which this
is true.

We can now give a definition that ensures nothing is disclosed by watching
query processing except the size of the result and what tuples were processed in
arriving at the result.

Definition 5. (Query Indistinguishability)
For every query pair Qi, Qj on the same set of tables, with the same result
size and min support set, the messages mQi , mQj sent for executing the queries
are computationally indistinguishable if for every polynomial-size circuit fam-
ily {Cn}, every polynomial p, all sufficiently large n, and mQi and mQj ∈
{0, 1}poly(n),

| Pr{Cn(mQi) = 1} − Pr{Cn(mQj) = 1} |< 1
p(n)

This, combined with Definition 1, guarantees that all an adversary can do is
to trace the tuples accessed during query execution, and possibly relate that to
result size. As this could disclose information over the course of many queries, we
also give the following definition, requiring that the confidence in tracing tuples
drops over time:

Definition 6. (Three Card Monte Secure)
A database is c-secure if given a query Q with min support set T , the probability
that a server trying to track t ∈ T can do so correctly is < 1

c(k+1) + |T |
|DB| , where

k is the number of times the server has accessed t since completion of Q.

The key to this definition is that an adversary’s confidence that they know which
tuples Q accessed will decrease over time. (Formal proof of the efficacy of this
definition of security is beyond the scope of this paper.) With high probability
any useful information inferred from tracking tuple access will be incorrect.

Definition 7. We consider a database to support secure query processing if it
meets Definitions 1, 2, 5, and 6.

We now describe how to construct a database server meeting these definitions.

Security Issues in Querying Encrypted Data 333

3.2 Requirements for a Database Server

Methods that allow equality test of encrypted tuples, or field values in the tuples,
violate Definition 7 because tuples can be distinguished. The problem is that if
the tuples are truly indistinguishable, the server will be unable to do any query
processing beyond “send the entire table to the client” – any meaningful query
processing requires distinguishing between tuples. If the tuples can be distin-
guished, then they can be tracked over multiple queries, disclosing information
in violation of Definition 6.

However, if we support a few simple operations that are “hidden” from the
server, we can meet Definition 7. The key idea is that operations that must
distinguish between tuples (e.g., comparing a tuple with a selection criteria)
occur by decrypting and evaluating a tuple in a manner invisible to the server.
The tuples accessed are then re-encrypted and written back to the database, but
not necessarily in the same order. This prevents the server from reliably tracking
the tuples accessed across multiple queries. To do this without sending tuples
back to the querier we assume the existence of a module capable of the following:

1. decrypt tuples,
2. perform functions on two tuples,
3. maintain simple (constant-size) history for performing aggregate functions,
4. generate a new tuple as a function of the inputs, and
5. maintain a constant-size store of tuples, and
6. perform a counter-based CTR mode encryption of the new tuple.

The module may return an (encrypted) tuple to write back into the location
most recently read from – but this is not necessarily the most recently read
tuple (making tracking difficult). (Such swapping was proposed for PIR in [13],
here we amortize the cost as opposed to periodically shuffling off-line.) It also
optionally returns a tuple that becomes part of the result. The module also
returns the address of the next tuple to be retrieved. Assuming such a module
can perform these operations while obscuring its actions and intermediate results
from the server, we can construct a machine meeting Definition 7.

The idea is that the database is encrypted as in Section 2.2. An encrypted
catalog (in a known location) contains pointers to the first tuple in each table
or index. The secure module decrypts the query, reads the catalog to get the
location of the first tuple of the relevant tables/indexes, then begins processing.
We first show how individual relational operations can be securely performed
using the above module. We give a sketch of the proof of security of each using
a simulation argument (as used in Secure Multiparty Computation[14]) – the
idea is that given the results (min support set and result size), the server is
able to simulate the actions of the secure module. If it is able to do so, then all
queries on that set and result size must be indistinguishable from the simulator,
and thus indistinguishable from each other. (These are sketches; full details re-
quire probabilistic simulation proofs to meet Definition 6.) We will then discuss
composing operations to perform complex queries.

334 M. Kantarcıoǧlu and C. Clifton

Selection makes use of the fact that we have some memory hidden from the
server (adversary). The secure module keeps the results until the local memory
is partially filled. At this point, after each new tuple is read, one of the cached
result tuples may be output to the server. This decision is a random choice,
with the probability based on the estimated size of the results relative to the
estimated number of tuples read.

Formally, assume that the estimated number of tuples needed to execute the
query is t, the estimated result size is r, and the local memory size is m. The
secure module reads the first (t/r) · (m/2) tuples, caching the results in local
memory. At this point, for every tuple read, with probability r/t one of the
cached result tuples is given to the server. Finally, the remaining cached tuples
are given to the server for delivery to the client.

Theorem 2. Provided that tuples contributing to the result are (approximately)
uniformly distributed across tuples read, this process meets Definition 7 for full
table scan selections.

Proof sketch. Using a simulation argument, we assume the simulator for the
server is given t and r (since these will be known at the end of the query.) m
is public knowledge. The simulator can thus compute (t/r) · (m/2). After this
many tuples have been read, the simulator begins creating result tuples. Since the
tuples are encrypted using pseudo-random encryption, the simulator just uses
a counter and an appropriate length random string of bits to simulate a tuple.
By arguments on the strength of encryption the simulated output tuples and re-
encrypted tuples are computationally indistinguishable from the real execution.
After each tuple is read, a simulated result tuple is created with probability t/r.
When all tuples have been read, the simulator creates the remaining result tuples
(so the total is r.)

Since the result tuples can be simulated using this approach, and the simu-
lator decides when to create the result tuple in exactly the same fashion as the
real algorithm decides when to output a result tuple, the simulator is (compu-
tationally) indistinguishable from the actual selection. This shows that it meets
Definition 5.

Definition 6 is more difficult. This relies on the assumption of approximately
uniform distribution. Because of this, the a-priori probability that a given tuple
is in the first t/r tuples is high, so little information is revealed by disclosing
that the first result occurs in the first (t/r) · (m/2) tuples. ��

This approach does fail when the distribution of which tuples contribute
to the result to all query tuples is skewed. For example, if none of the first
(t/r) · (m/2) tuples cause a result tuple to be generated, the algorithm will be
unable to begin outputting result tuples “on schedule”. Thus the server can
make an improved estimate of the probability that a tuple contributes to the
result. In the worst case (e.g., only the last r tuples contribute to the result),
this probability approaches 1.

Queries that generate most results based only on the first tuples read are
unlikely. Queries that generate results only after reading most or all of the

Security Issues in Querying Encrypted Data 335

tuples are more common: aggregation, indexed search. However, these queries
will generally return a small number of results. If r ≤ m/2, the secure coproces-
sor will not be expected to produce results until all tuples are read, so Theorem
2 holds. Queries where the results are highly skewed should be processed using
an indexed selection anyway (to efficiently access only the desired tuples.)

Indexed Selection can be done using a method developed for oblivious
access to XML trees[15]. Nodes are swapped, re-encrypted, and written back to
the tree. The key idea is that each time a node is read, c − 1 additional nodes
are read – one of which is known to be empty. All the nodes are re-encrypted
and written, with the target written into the empty node. When the nodes are
written, the original is written into the empty. This proceeds in levels: The first
two levels are read, the location of the second level empty node is determined,
and the parent is updated to point to the previous empty node, and the first
level written. The third level is read, second level parent updated, etc.

Theorem 3. The algorithm of [15] satisfies Definition 7.

Proof sketch. Definition 5 is satisfied because queries with the same min support
set will follow the same path to the same leaf. The random choice of c− 1 addi-
tional nodes comes from the same distribution, and are thus indistinguishable.
Likewise, encryption and rewriting is indistinguishable by arguments based on
strength of encryption.

Definition 6 is satisfied because of the swapping. Each time a node is accessed,
it is placed in a new location. However, since c locations have been read and
written, and are indistinguishable to the server, the probability that the server
can pick which of the c locations the node is in is 1/c.

The next time the node is read, it is again placed in one of c locations, with
which one unknown to the server. The best the server can now do is guess that
it is in one of the 2c locations. (Access to other of the original 2c locations
may confuse the server, causing it to guess more than 2c locations, but we are
guaranteed at least 2c.) This continues, with each access to the tuple causing an
additional c decrease in the server’s best guess, giving our 1/c(k + 1) target.

The only problem is that the randomly chosen set of “masking” locations
may include locations previously used. This is inherent in a finite database - the
best we can do is 1/|DB|. This is the reasoning behind the |T |/|DB| “floor”
factor in Definition 6. ��
This analysis is based on a single tuple result. Extension to range queries is
straightforward.

Projection is straightforward. The comparison function simply returns
E(Π tuple) rather than E(tuple). Knowing the length of a projection from
the encrypted result, the simulator can randomly generate an equivalent-length
string that is computationally indistinguishable from the real encrypted result.

Join can be either repeated full-table scan selection (nested loop join) or
indexed selection (index join). To perform a join, the module first requests a
tuple from one table, then from the second table. Both are decrypted, the join
criteria is checked, and if met the joined tuple is stored for output. Assuming

336 M. Kantarcıoǧlu and C. Clifton

a reasonably uniform distribution of tuples meeting the join criteria, or a small
number of tuples meeting the join criteria, the proof follows that of Theorem 2.
A similar argument holds for an index join. Again, we need a reasonably uniform
distribution of tuples meeting the join criteria. The swapping in the index search
prevents too much tracking between tuples, and caching the results allows the
resulting tuples to be output at a constant rate.

Set operations are straightforward, except for duplicate elimination. Union
is simply two selections. Intersection is a join. Set difference is again similar to
a join, but output only occurs if after completion of a loop (or index search), a
joining tuple is not found.

Duplicate elimination could reveal equality of two tuples. This is more than
simply “does it contribute to the result”, and thus violates Definition 7. One
solution is to replace duplicates with an encrypted dummy tuple. The client
thus gets a correct result by ignoring the dummy tuples, at the cost of increased
size of the result.

4 Conclusions

The idea of a database server operating on encrypted data is a nice one: It opens
up new business models, protects against unauthorized access, allows remote
database services, etc. Achieving this vision requires compromises between secu-
rity and efficiency. We have shown that a server that would be considered secure
by the cryptography community would be hopelessly inefficient by standards of
the database community. Efficient methods (e.g., operations on encrypted data)
can not meet cryptographic standards of security.

We have given a definition of security that is the best that can be achieved
while maintaining reasonable levels of performance. We have shown that this
definition can be realized using commercially available special-purpose hardware.

References

1. Hacigumus, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted
data in the database-service-provider model. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison, Wisconsin
(2002) 216–227

2. Damiani, E., Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati, P.: Balancing
confidentiality and efficiency in untrusted relational dbmss. In: Proceedings of
the 10th ACM conference on Computer and communications security, Washington
D.C., USA, ACM Press (2003) 93–102

3. Ozsoyoglu, G., Singer, D.A., Chung, S.S.: Anti-tamper databases: Querying en-
crypted databases. In: Proceedings of the 17th Annual IFIP WG 11.3 Working
Conference on Database and Applications Security, Estes Park, Colorado (2003)

4. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for
numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, Paris, France (2004)

Security Issues in Querying Encrypted Data 337

5. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: EUROCRYPT. (2004) 223–238

6. Song, D., Wagner, D., Perrig, A.: Search on encrypted data. In: Procedings of
IEEE SRSP, IEEE (2000)

7. Ahituv, N., Lapid, Y., Neumann, S.: Processing encrypted data. Communications
of the ACM 20 (1987) 777–780

8. IBM: IBM PCI cryptographic coprocessor (2004) http://www.ibm.com/security/
cryptocards/html/pcicc.shtml.

9. Goldreich, O.: Encryption Schemes. In: The Foundations of Cryptography. Vol-
ume 2. Cambridge University Press (2004)

10. NIST: Advanced encryption standard (aes). Technical Report NIST Special
Publication FIPS-197, National Institute of Standards and Technology (2001)
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

11. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
Journal of the ACM 45 (1998) 965–981

12. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Journal of the ACM 43 (1996) 431–473

13. Asonov, D., Freytag, J.C.: Almost optimal private information retrieval. In: Sec-
ond International Workshop on Privacy Enhancing Technologies PET 2002, San
Francisco, CA, USA, Springer-Verlag (2002) 209–223

14. Goldreich, O.: General Cryptographic Protocols. In: The Foundations of Cryptog-
raphy. Volume 2. Cambridge University Press (2004)

15. Lin, P., Candan, K.S.: Hiding traversal of tree structured data from untrusted data
stores. In: Proceedings of Intelligence and Security Informatics: First NSF/NIJ
Symposium ISI 2003, Tucson, AZ, USA (2003) 385

Blind Custodians: A Database Service

Architecture That Supports Privacy
Without Encryption

Amihai Motro and Francesco Parisi-Presicce

Department of Information and Software Engineering,
George Mason University, Fairfax, VA, USA

{ami, fparisip}@gmu.edu

Abstract. We describe an architecture for a database service that does
not assume that the service provider can be trusted. Unlike other ar-
chitectures that address this problem, this architecture, which we call
blind custodians, does not rely on encryption. Instead, it offers confi-
dentiality by means of information dissociation: The server only stores
“fragments” of information that are considered safe (i.e., each fragment
does not violate privacy), while the client stores the associations be-
tween the fragments that are necessary to reconstruct the information.
We argue that this architecture allows satisfactory confidentiality, while
offering two important advantages: (1) It does not restrict the types of
queries that can be submitted by clients (as encryption-based methods
invariably do), and (2) it requires only light processing at the client,
assigning the bulk of the processing to the server (as befits a true ser-
vice). Moreover, the architecture permits flexible control over the level
of confidentiality that should be maintained (at the cost of additional
overhead).

1 Introduction

With the improvement of network availability, reliability, and speed, more and
more information management tasks that traditionally have been performed on
the computer of the data owner, are now being offered as services: the infor-
mation is stored in the computer of the service provider, and can be managed
remotely over the network. Primary examples include web hosting, the man-
agement of electronic mail, appointment calendars, address books, investment
portfolios, and, more recently, general database management services. Such in-
formation management services provide clients with performance and features
at a level often not available at their own enterprises. These include continu-
ous availability, accessibility from virtually anywhere in the world, reliable data
backup and prompt recovery, and protection from unauthorized or malicious ac-
cess. In many cases, a remote information management service can prove to be
more cost-effective than traditional, local processing.

The downside of such information management services is that privacy may
have to be sacrificed. The operators of the service, the custodians of the infor-
mation, may promise complete confidentiality, but they themselves may not be

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 338–352, 2005.

c© IFIP International Federation for Information Processing 2005

Blind Custodians 339

entirely trustworthy. From the client’s point of view, custodians should be blind;
that is, they should perform the functionalities promised, but without being able
to observe the data themselves. We shall refer to such information services as
blind custodians. In a way, a bank that offers safe deposit boxes to its clients
is serving as a blind custodian: It safekeeps the contents without knowing what
they are. The complication in being the blind custodian of information is that
you are also required to manipulate the information without knowing what it is.

There have been several recent works that address this or similar is-
sues [9,8,5,6]. Invariably, these works describe architectures that protect the
information by means of encryption. By encrypting the information, the client
is guaranteed that it alone can observe the data. The problem, of course, is how
to perform functions such as selective retrieval on encrypted information. Sim-
ply put, if the records of an employee file are stored encrypted, how does the
client request to retrieve only the records of the engineers? This issue has led to
solutions that are only partially successful. In a typical solution [8], the file is
partitioned into “buckets”, and each retrieval request is mapped (at the client’s
end) to a specification of buckets. Such an architecture has several weaknesses. It
requires the predetermination of all columns for which selection is to be enabled
(each column requires its own partitioning), it normally retrieves more records
than requested, and it limits severely the selection comparisons that are feasible
(for example, processing range queries is problematic).

In this paper we take the more general approach that regards information
as an association among values. For instance, the information comprising the
employee record (Andrei, Engineer, $75,000) is the three constituent values, as
well as their mutual association. Consequently, hiding information is done both
by hiding the values (e.g., by means of encryption) and by concealing the as-
sociation. In our approach, the custodian might be able to observe data values
(unless they are hidden by encryption), but would be denied knowledge of their
association. In duality with encryption keys, the cipher for associating the dis-
parate fragments would be available only to the client. Hence the objective of
blind custodians is achieved by information dissociation.

The proposed architecture is described in Section 4 and preliminary dis-
cussion and assessment of this architecture are offered in Section 5. Section 6
concludes the paper with a brief summary and discussion of the considerable
work that still remains to be done. We begin with a formal definition of the
problem (Section 2), followed by a brief survey of related work (Section 3).

2 Formal Definition of the Problem

The general problem of a database service with privacy is formalized here ab-
stractly. This abstraction allows us to position the works discussed in Section 3
in a unified framework.

Assume a database D and a query Q, and let A = Q(D) denote the answer
to the query Q in the database D. In a database service architecture, D is stored
on the server, the client sends Q to the server, the server evaluates A = Q(D)
and returns A to the client.

340 A. Motro and F. Parisi-Presicce

Assume now that certain information in D must be kept confidential (it could
be all or just part of D). A transformation T is then required, as follows:

1. T transforms the database into D∗ = T (D), and the query into Q∗ = T (Q).
2. Let A∗ = Q∗(D∗) denote the answer to Q∗ in the transformed database D∗.
3. When the inverse transformation T−1 is applied to A∗ it yields T−1(A∗) = A.

In the database service architecture, the transformed database D∗ is stored on
the server. When the client needs to evaluate a query Q, it sends to the server
its transformed version Q∗. The server evaluates Q∗ on D∗ and sends back the
answer A∗. The client then transforms A∗ into A. The transformation T should
hide the confidential information in D, and should be such that knowledge of A∗

would not be sufficient to determine the answer A. This discussion is illustrated
in the following diagram:

�

��

�

D D∗

A A∗

Q Q∗

T

T−1

This simple formulation may be overly “tidy” to be sufficiently general, and
we consider here several more elaborate variations.

First, we may allow a transformation T that does not satisfy T−1(A∗) = A, as
long as there exists another query that can extract the answer A from T−1(A∗).
That is, there exists a query Q′ such that Q′(T−1(A∗)) = A. Second, we may
divide the transformed database D∗ into two parts, one to be stored at the
server, the other at the client. The query Q∗ is performed on the server’s part
only, yielding A∗. The client receives A∗ and applies T−1 and Q′ to both A∗

and its part of the transformed database. Third, the computations done at the
server and at the client may be interleaved, thus producing the final answer after
a process of data exchange.

There are two trivial and impractical “solutions” to this problem:

– Confidentiality without service. In this solution, the transformation T
is an encryption of the entire database, and the inverse transformation T−1

is simply decryption. Every query is translated to the trivial query Q∗ that,
when submitted to D∗, returns the entire database (i.e., A∗ = D∗). The
transformation T−1 converts A∗ back to D and the additional query Q′ is
nothing more than the original query Q. In summary, the entire database
is encrypted, and this encrypted database is retrieved in response to every

Blind Custodians 341

query. Following decryption at the client, the query is processed locally.
This “solution” obviously preserves the confidentiality of the information in
the database, but is otherwise impractical, because no query processing is
done on the server, and the client must have complete database management
facilities. Indeed, the “server” does not deliver most of the functionalities or
benefits of a Web service. Moreover, this solution requires the transmission
of the entire database, an expensive, time-consuming operation.

– Service without confidentiality. At the opposite end of the spectrum, T
is the identity transformation. Thus, D∗ = D, Q∗ = Q, A∗ = A (and Q′ is
unnecessary). In this case, all computations are performed at the server and
only the exact answer A is transmitted back to the client. Obviously, this
approach provides no confidentiality whatsoever.

These two extreme approaches demonstrate the tradeoffs involved: complete con-
fidentiality, but no service (all work is done at the client), vs. complete service
(all work is done at the server) but no confidentiality. The works discussed in
the following section are positioned in-between these two extremes because they
choose smaller granularities for their encrypted transformation T . This allows
some queries to be performed on the encrypted version D∗ which is on the server.

3 Related Work

Work on information management services is quite extensive, with focus on issues
such as availability, anywhere accessibility and reliability. More recently, efforts
have concentrated on the need for a particular form of confidentiality [9,8,5,6,1],
intended to protect clients’ information from the service provider itself. These
works discuss just two basic approaches to achieving confidentiality, both relying
exclusively on encryption (either at the tuple level or at the field level).

The overall goal in [8] is to develop techniques for querying an encrypted
database. The approach is restricted to integer-valued attributes and encryption
is at the field level. If the encryption function is monotonic with respect to a
predefined partial order on the plaintext database D, then queries Q involving
ranges, comparisons, maximal value, minimal value, and so on, can be translated
to queries Q∗ on D∗, for which the answer A∗ contains all (and sometimes, as in
the case of maximal value, only) the tuples sought. More generally, encryption
can be tailored to be a homomorphism with respect to a restricted set S of allow-
able queries, so that the result of a query Q in the allowable set S on the plaintext
database D is obtained by decrypting the result of the encrypted query Q∗ on
the encrypted database D∗. An advantage of this approach is that for any query
Q in S, only a single encrypted query needs to be evaluated on the encrypted
database and its output needs no additional processing except for decryption.
The problem, however, is to maintain the requirement that the encryption func-
tion be a homomorphism, while still allowing a reasonably broad set of queries.
For an encryption to be a homomorphism, restrictions are placed on the pos-
sible closed-form (i.e., definable by an expression) or open-form (i.e., definable
via an algorithm) encryption functions. Among them are order-preservation and

342 A. Motro and F. Parisi-Presicce

distance-preservation. Although effective and efficient in its restricted domain,
the approach is limited by the requested properties on the encryption functions.

A different approach is offered in [9], where encryption is at the tuple level,
and an indexing scheme is used. If A is an attribute of R on which the client may
need to issue selection queries, then the values of this attribute are partitioned,
and every tuple of R is assigned to a single partition based on its A value.
This scheme amounts to an index on attribute A. The mapping φA from the
values of A to the partition identifiers is available only to the client, whereas the
association between the partition identifiers and the encrypted tuples is known
to the server. The latter association can be implemented as an extra attribute in
the encrypted relation R, in which the values of φA will be stored. Each query Q
on attribute A is converted to a query Q∗ on the new attribute φA, and evaluated
on D∗. The result A∗ is returned to the client and decrypted. The initial query
Q is then evaluated on the decrypted version of A∗. If Q selects the tuples of
R for which the attribute A has value a, then Q∗ returns all the encrypted
tuples with the index value φA(a). By the very nature of indexing, a statistical
query that is derived from the entire set of A values (e.g., the average value or
the most frequent value) requires that all the tuples of R be retrieved from the
server. Another drawback of this approach is that it requires a separate indexing
scheme for each attribute on which selection queries are to be enabled; moreover,
the selection attributes must be anticipated ahead of querying: A query on any
attribute not indexed cannot be properly evaluated and the client would need
to retrieve the entire relation. As each index requires an additional attribute on
the server, indexing every attribute would double the size of the relation.

This approach is adopted and extended in [5], where different possibilities
for representing indexing (partitioning) information are discussed. The authors
propose to compute the indexing information so that it relates to the data well
enough to provide an effective query execution mechanism, without releasing
information about the relationship between indexes and data. Their solution is
to base the indexing on direct encryption and hashing. They provide a detailed
analysis on the inference exposure of the encrypted/indexed data. The paper
also describes an enhancement of the indexing information that supports range
queries.

The authors of [6] too investigate the approach of [9], which they term
aggregate-then-encrypt. They propose a formalization to assess the security of
privacy-preserving database outsourcing schemes, and apply it to analyze the
scheme in [9]. They identify weaknesses and suggest a number of improvements
to strengthen the approach. In addition, their paper contains an interesting result
on the impossibility of achieving complete security by means of privacy homo-
morphisms (encryption functions that allow limited processing of the encrypted
data), which is essentially the technique used in [8]. A review of several solutions
to the problem of using the services of a provider without giving unnecessary
access to sensitive data is included in [3].

The work in [2] concerns outsourcing scientific computations, where the ex-
ternal agent should not learn the actual data or the result of the computation.

Blind Custodians 343

The client disguises the problem and data with local preprocessing before send-
ing it to the agent, and obtains the true answer after further local post-processing
of the result it receives. The major difference between that problem and the one
addressed in this paper is that in [2] the client does not keep data permanently
at the external agent. As in our approach, and unlike [10], the client’s processing
power is not limited to encryption and decryption.

The approach in [1] is to enforce privacy by replacing identifying informa-
tion with values obtained through an anonymization process. It allows a choice
of three basic properties of the anonymizing function: reversibility (by using
encryption to allow the recovery of the original data if the appropriate key is
known), irreversibility (by using one-way hash functions to prevent the recovery
of the original information), and inversibility (pseudoanonymization, in Com-
mon Criteria terms, allowing the recovery by means of exceptional procedures
to be applied by trusted parties only). The results of this anonymizing process
are then used in different databases in place of the private information. Regard-
less of the anonymization objectives listed above, the “link” between random
(anonymous) identities and actual identities is protected by encryption.

Two research areas that are somewhat related are privacy-preserving data
mining [12] and secure multi-party computation [7, Chapter 7]. The blind custo-
dian approach differs from these two areas in two important aspects: The secret
data is not distributed among several parties (it could be physically distributed,
but it is still controlled by a single client) and the client is expected to perform
only minimal database work.

4 The Architecture

4.1 Information Dissociation

We have already observed that information is an association among values, and
hence confidentiality may be achieved by hiding the association. The technique
for hiding the association, which we term information dissociation, is discussed
next.

Consider a database relation R = (A1, . . . , Am). Assume that it has been
determined that while the tuples in this relation are confidential and should not
be disclosed, subtuples with attributes A1, . . . , Ai and subtuples with attributes
Ai+1, . . . , Am may be disclosed. For example, consider a table of employees with
fields that concern employment (e.g., employee id, name, position and depart-
ment), and fields that contain a home address (e.g., street, number, city, state
and zip code; but not employee id). It may be considered acceptable to dis-
close each of these groups of fields separately, but not complete records (as they
associate employees with their addresses).

Two views of R are defined (e.g., by appropriate SQL queries), and each of
the resulting relations is augmented by an identifying field (an index) I1 or I2,
thus obtaining new relations F1 and F2. The blind custodian is then entrusted
with F1 and F2, while the client maintains the correspondence between I1 and

344 A. Motro and F. Parisi-Presicce

I2 which is necessary to recover the complete tuples of the original relation R.
The latter information is referred to as the cipher of the dissociation. In general,
the number of fragment views may be arbitrary (i.e., not limited to two).

The database transformation D∗ = T (D) described in Section 2 is the de-
composition of each of the database relations into a set of fragment relations and
a cipher. This decomposition is somewhat reminiscent of other decompositions
known from database theory, such as lossless-join decompositions or dependency-
preserving decompositions in normalization theory [11, pages 392–412], or file
fragmentation and replication in distributed database design [4, pages 67–92].
To satisfy the requirement that T hide confidential information, this decom-
position must be done judiciously. Presently, we observe two broad approaches
towards this problem, one qualitative and one quantitative.

The qualitative approach uses external (subjective) judgment to determine
that information, say, on an individual’s employment, should not be associated
with this individual’s address. A simple way to annotate these constraints is
to identify maximal sets of attributes that may be kept together (in the same
fragment). Typically, several such safe fragments would be identified. ¿From
these, a set of fragments should be chosen that is both consistent and complete.
Consistency guarantees that the set would not include two fragments that overlap
on an attribute that is a key for at least one of the fragments, as this would allow
the construction of a larger (unsafe) fragment. Completeness guarantees that the
fragments in the set are sufficient to reconstruct the original relation (using the
cipher).

A second possible way to dissociate a relation is to use objective (quantita-
tive) criteria. The intuition here is that decomposing a relation into F1 and F2 is
not very useful if R contains most of the tuples of the Cartesian product of the
two fragments. If the original relation R has n tuples and is split into fragments
F1 and F2 with n1 and n2 tuples, respectively, with no attributes in common,
then the probability that a random tuple from F1 and a random tuple from F2

are related (form a tuple in the original relation R) is p = n/(n1 ∗n2). When p is
small (its lower bound is 0), then it is difficult to guess the associations among
the subtuples of F1 and F2 that are valid. When p is high (its upper bound is 1),
then a random tuple of F1 is more likely to be associated with a random tuple
of F2. In the latter case, the value of decomposing R into F1 and F2 is rather
low. Hence, decompositions with low p values should be preferred.

A combination of the two approaches would call for an initial dissociation
based on subjective criteria, followed by a quantitative approach to choose among
the resulting alternatives.

4.2 Query Evaluation

We now turn to the issue of evaluating client queries in this architecture. For
simplicity, we assume that the database D consists of a single relation R, and that
queries are selection-projection expressions; the generalization to multi-relation
databases and other types of queries will be discussed later.

Assume that R has been decomposed to the fragments F1, . . . , Fk. Let Ii

denote the index field that was added to the fragment Fi (i = 1, . . . , k), and

Blind Custodians 345

let C = (I1, . . . , Ik) denote the new cipher relation. F1, . . . , Fk are stored at the
server, and C is stored at the client. In terms of the formal problem defined
in Section 2, this decomposition is the transformation T , and F1, . . . , Fk and C
make up the new database D∗ = T (D).

Consider a query Q on R submitted at a client. First, Q is transformed into
a query Q∗ on the server’s database F1, . . . , Fk. The evaluation of this query on
the server’s database is returned to the client (this result is denoted A∗). The
client then transforms this result into a new relation using its cipher C (this
result is denoted T−1(A∗)). To this, the client applies final processing (Q′) to
obtain the answer A. We observe at least two possible implementations of this
process, each based on a well-known query optimization technique.

To illustrate the two techniques, we describe a simple example, in which
information on employees is dissociated, so as to separate employment-related
information from personal information:

F1 = (I1,Eid ,Ename,Salary ,YearHired)
F2 = (I2,Gender ,Nationality ,YearBorn)

Assume that the cardinality of R is 1,000, the cardinality of F1 is also 1,000, but
the cardinality of F2 is only 750. Since the number of possible matchings among
tuples of F1 and F2 is 1, 000 · 750 = 75, 000, and since only 1,000 of these are
valid tuples of R, it follows that the probability that a random tuple from F1 and
a random of F2 form a tuple of R is 1/750 = 0.00133. We may assume that this
probability is low enough to provide confidentiality (i.e., to thwart guessing).

Frugal Join. The relation R is substituted in Q by an expression that joins
the cipher and the relevant fragments, and the query’s selection and projection
operations are “pushed” to the individual fragments, as practicable. The eval-
uation of the transformed query proceeds as follows. First, the server performs
selections and projections on its fragments and sends the results to the client.
The client then joins the results using its cipher and applies the final selection
and projection (which could not be pushed to the fragments).

Consider now a query about the id’s of female employees who earn over
$80,000 and have been in employment for more than half their lives:

Q :
select Eid
from Employee
where Salary > 80, 000 and Gender = ′female′

and (2005− Y earHired) > 0.5 ∗ (2005− Y earBorn)

The server performs this two-part query Q∗:

Q∗
1 : Q∗

2 :
select I1,Eid ,YearHired select I2,YearBorn
from F1 from F2

where Salary > 80, 000 where Gender = ′female′

346 A. Motro and F. Parisi-Presicce

It sends the results, denoted A∗
1 and A∗

2 respectively, to the client, who then
concludes the processing with a query that joins the answers through its cipher
and then extracts the final tuples that constitute the answer A:

Q′ :
select Eid
from A∗

1, A
∗
2, C

where A∗
1.I1 = C.I1 and A∗

2.I2 = C.I2

and (2005−YearHired) > 0.5 ∗ (2005−YearBorn)

With respect to confidentiality, this process does not disclose to the server
anything than it does not already know. From the request to deliver the two sets
A∗

1 and A∗
2, the server may be able to guess the client’s query Q, but forming the

two sets (something it could do all along, anyhow) does not increase its ability
to match F1 tuples with F2 tuples. In other words, the probability of generating
random R tuples through random guessing remains unchanged at 0.00133.

With respect to transmission costs, assume further that of the 1,000 employ-
ees 500 are females, 400 earn over $80,000, and of the latter only 100 are females.
The server sends to the client 400 tuples of three fields each and 500 tuples of
two fields each, for a total of 2,200 fields.

Semi-join. Here, the joins among the fragments and the cipher are done in
stages. Assume that m fragments are involved in the query, and let αi denote
the selection-projection query on the i’th fragment. The server begins by sending
the client the result of performing α1 on the first fragment. The client matches
the id’s of the tuples it received through its cipher, and sends to the server the
corresponding tuple id’s for the second fragment. The server then performs α2

on the second fragment after it has been pruned with the id’s it received, and
sends the result to the client. The client matches the id’s of the tuples it received
through its cipher, and sends to the server the corresponding tuple id’s for the
third fragment. The process continues until the results from m’th fragment are
sent to the client. The client then constructs the required answer from the data
it has received. This version is often superior to the previous one because it
reduces data transmission substantially (transmission can be further optimized
by scheduling the order of fragments effectively).

In our two-fragment example, consider the same query. The server begins
with a query on the first fragment

Q∗
1 :

select I1,Eid ,YearHired
from F1

where Salary > 80, 000

and sends the result, denoted A∗
1, to the client. The client matches this informa-

tion through its cipher
Q′

1 :
select I2

from A∗
1, C

where A∗
1.I1 = C.I1

Blind Custodians 347

and sends the resulting tuple id’s, denoted A′
1, back to the server. The server

then performs
Q∗

2 :
select I2,YearBorn
from F2, A

′
1

where F2.I2 = A′
1.I2

and Gender = ′female′

and sends the result, denoted A∗
2, to the client. The client concludes the process-

ing with the query

Q′
2 :

select Eid
from A∗

1, A
∗
2, C

where A∗
1.I1 = C.I1 and A∗

2.I2 = C.I2

and (2005−YearHired) > 0.5 ∗ (2005−YearBorn)

Assuming the cardinalities given above, transmission costs are reduced. The
server sends to the client 400 tuples of 3 fields each, the client then sends to the
server about 300 tuples of one field each,1 and the server sends to the client only
100 tuples of two fields each, for a total of only 1,700 fields.

However, with respect to confidentiality, this strategy discloses information
to the server. The server delivered a set of I1 values and received in return a
matching set of I2 values. In our example, the cardinality of these sets are 400
and 300, respectively. Hence, the probability of reconstructing an employee tuple
in this subset of high-salaried employees is 400/(400 · 300) = 0.00333. Confiden-
tiality has thus been reduced by a factor of 2.5. This reduction in confidentiality
can be seen as a result of providing the server with information that was cycled
through the cipher. Care must be taken when using the semi-join strategy, to
assure that a desirable level of confidentiality is maintained.

5 Discussion

5.1 Measuring and Maintaining Protection Levels

How much protection does the blind custodian architecture provide? Essentially,
the challenge for the server is to recover protected information by finding as-
sociations among the fragments. Assume a relation R is dissociated into two
fragments F1 and F2. Let n, n1 and n2 denote the cardinalities of R, F1 and
F2, respectively. As already suggested in the previous section, confidentiality is
provided by having large enough cardinalities n1 and n2 and a relatively smaller
cardinality n. Specifically, the number of possible associations between tuples of
F1 and tuples of F2 is n1 ·n2, of which only n are valid. Consequently, the prob-
ability that a random matching of a tuple of F1 with a tuple of F2 will coincide
1 Since 1,000 employees share 750 personal records, we may assume that 400 employees

share 300 personal records.

348 A. Motro and F. Parisi-Presicce

with an actual tuple of R is n/(n1 · n2). We adopt this probability of disclosure
as a measure of the protection afforded to the fragments F1 and F2 (or to R
itself). It quantifies the ability to associate information from the two fragments,
and thus gain knowledge of protected information. Note that lower probabilities
indicate better protection. So that higher values indicate better protection, we
define the protection level of F1 and F2 as 1− n/(n1 · n2).

Each pair of fragments has its own level of protection. Protection levels can
also be defined for sets of fragments larger than two. Assume R is dissociated into
fragments F1, . . . , Fk. The protection level of F1, . . . , Fk is 1−n/(n1 · · ·nk). This
number reflects the ability to create complete tuples of R.2 Protection levels can
also be defined for fragment subsets that do not “cover” all of R. In such cases
the numerator cardinality is the number of tuples in the projection of R that
corresponds to the attributes in the fragment subset. A definition of protection
level in the general case follows.

Assume a relation R is dissociated into fragments F1, . . . , Fk. Let Fi1 , . . . , Fip

be a subset of the fragments, and let nij be the cardinality of Fij (j = 1, . . . , p).
The protection level of Fi1 , . . . , Fip is defined to be 1− n′/(ni1 · · ·nip), where n′

is the cardinality of the projection of R onto the attributes of Fi1 , . . . , Fip .

The protection level required for each subset of fragments may be defined by
setting threshold values during the dissociation process sketched in Section 4.1.
Or one may simply adopt a single threshold for all the possible combinations of
fragments.

These thresholds must be upheld during both the initial design and in sub-
sequent query processing. During the initial design, it must be ensured that
for every subset of fragments the protection level exceeds the threshold. Dur-
ing query processing, when the semi-join strategy is used, care must be taken
not to exchange subsets with small cardinalities, as this may result in decreased
protection levels (as was illustrated in the example).3

In both the initial design and subsequent query processing, whenever pro-
tection levels fall below the threshold, cardinalities may be artificially increased
by adding spurious tuples, thus improving protection levels. (1) In the initial de-
sign, spurious tuples may be added to fragments as necessary. The id’s of these
“bogus” tuples must be kept on the client, to ensure that this information is
not included in the final answers. (2) During query processing, when the client
receives a set of tuple id’s from one fragment and responds with a corresponding
set of tuple id’s of another fragment, the outgoing set may be enlarged with
additional tuple id’s from the second fragment. These may be either “real” or
“bogus” tuples; however, the client must log these additions, to ensure that they
do not taint the final answers. Clearly, the use of spurious tuples increases the
cost of query processing.

2 Note that it may be misleadingly high, as just associating a few of the fragments
may be worrisome.

3 The frugal join strategy has no effect on the protection level.

Blind Custodians 349

5.2 Multi-relation Databases and Join Queries

The architecture we described assumed that the database has only one relation.
However, the extension to several relations is relatively simple, and we sketch
it here briefly. Each of the database relations is dissociated into a set a frag-
ments and a cipher, and the client stores all the ciphers. However, extra care
must be taken to protect key or foreign key relationships among the different
relations, as necessary. For example, assume two database relations Employee =
(Eid, Ename, Salary) and Assignment = (Eid, Project, Performance) with the
requirement that performance information be kept separate from salary. If the
two relations are considered individually, then it may appear that no dissoci-
ation is necessary; i.e., each relation will require a single fragment containing
all its attributes. Yet, when considered together, the common attribute Eid al-
lows performance and salary to be associated. A simple solution is to remove
Eid from the relation in which it is a foreign key. Thus, the fragments would
be F1 = (I1,Eid ,Ename,Salary), and F2 = (I2,Project ,Performance). This
solution depends on the fact that all employee id’s in Assignment appear in
Employee.

Consider now database queries that involve joins among relations. The tech-
niques described in Section 4.2 are applicable without significant changes. A
query that requires a join R1
� R2 will be decomposed into a query that joins
fragments of R1, fragments of R2, and a fragment of R1 with a fragment of R2.
The joins may be based on either the frugal or the semi-join approaches.

5.3 Comparison

How does the blind custodians architecture compare with other methods? In
Section 3 we discussed the two main alternatives: field-level encryption that uses
encryption functions with exacting properties [8], and a combination of tuple-
level encryption with index-like structures [9]. Below, we briefly discuss the blind
custodians architecture vis-a-vis these two alternatives

We observe two important performance criteria for a non-trusting database
service: (1) the family of queries that can be processed should be as general as
possible, and (2) the service provider should do as much of the work as possible,
and the amount of data transmitted should be as small as possible.4

Clearly, a strong encryption function that is a homomorphism for general
queries would provide an ideal solution, as it would fully satisfy both require-
ments. Note that because the encrypted answers sent to the client would be
exact, all work (except for decryption) would done at the server, and data trans-
mission would be minimal. Unfortunately, such ideal encryption functions are
not available. Hence, the main disadvantage of the approach advocated in [8] is
that it severely limits the generality of queries that can be processed. And if more
general queries are attempted, then the burden of processing shifts drastically
to the client.
4 Note that the relative amount of work done at the server and the volume of data

transmission are strongly related: More work accomplished at the server implies less
data transmitted, and vice versa.

350 A. Motro and F. Parisi-Presicce

A similar disadvantage is also apparent in the index-based architecture [9]. To
increase query processing capabilities, indexing structures must be devised for
most every attribute; and even then some queries (e.g., certain statistical queries)
may require the entire set of tuples to be sent to the client. Consequently, clients
must have substantial database management capabilities to process the tuples
they receive.

In contrast, the blind custodian architecture has a clear advantage in the first
of the two criteria, as it places no restrictions on the types of queries allowed.
It is difficult to estimate its relative performance with respect to the second
criteria, as it depends strongly on the profile of the queries submitted, and the
implementation of the other architectures (i.e., the types of encryption functions
adopted in the first approach, and the extent of indexing performed in the second
approach).

How much work is done at a blind custodian client? It can be described as
a “light” database management system. Among other tasks, it should be able
to convert queries to appropriate execution plans, join relations through their
ciphers, and apply final extractions. Except for the ciphers, data is only cached
temporarily at the client, and only limited storage capabilities are therefore
necessary. Of course, the client system does not need to manage functions such
as backup, recovery, or transaction synchronization.

6 Conclusion

We outlined an architecture for a database service that provides confidentiality
by means of information dissociation. The essential paradigm of our architecture
— decompose the database into fragments and then transform queries on the
original database into queries on the fragments — is similar to that of distributed
databases, with a notable difference: The motivation for the decomposition is
different. In distributed databases decomposition is dictated by requirements
such as (1) data must be stored only in the computers of their owners, (2) data
is preferably stored in computers that access them frequently, and (3) data could
be replicated to provide redundancy and to reduce transmission; whereas here,
the decomposition is motivated by the need to protect the data from the server,
while letting the server store as much information as possible.

The discussion in this paper is only preliminary and many issues still have to
be addressed in appropriate detail. Several of these research issues have already
been given limited treatment earlier, and we mention here three additional issues.

Queries. We considered at some detail queries that are join-selection-projec-
tion expressions. Other important query operations include set operations (e.g.,
union or difference) and statistical functions (e.g., count or average). We con-
jecture that these operations can be accommodated in the architecture without
requiring any modifications. Indeed, as the architecture is analogous to a dis-
tributed database, every query should be feasible, the only constraint being that
its execution plan should maintain the requisite level of protection.

Protection. We analyzed protection levels under the naive assumption that
no external knowledge is used in attempts to gain hidden information, and our

Blind Custodians 351

protection analysis assumed uniform probability distribution functions. In var-
ious circumstances, external information available to the server may allow it
to infer a non-uniform probability distribution function that is much closer to
the actual function. For example, there may be 40 different values of YearBorn
and 20 different values of YearHired, but of the 800 combinations, some com-
binations may be known to have probabilities that are much higher than those
of other combinations. Such knowledge may lower substantially the protection
level. Additionally, the cardinalities of some domains may be misleadingly high.
For example, there may be 3,000 different salary values in the database, yet for
practical purposes one may consider similar all salaries that round to the same
$1,000, resulting in a much smaller number of “significantly different” values.
These and other issues require a more elaborate analysis of protection levels.

Encryption. A basic feature of the blind custodians architecture is that it
does not involve encryption. The architecture attempts to protect relationships,
while assuming that there is no harm in disclosing the values in the database.
Yet there may be circumstances in which even the domain values should not
be made public. This could be achieved by substituting the domain values with
identifiers and associating the identifiers with the actual values by means of a
new client relation. This solution is not attractive because it increases the storage
requirements on clients beyond the essential ciphers. Alternatively, we could use
field-level encryption to hide values when necessary.

References

1. A. Abou El Kalam, Y. Deswarte, G. Trouessin, and E. Cordonnier. A generic
approach for healthcare data anonymization. In Proceedings of WPES 04, the
2004 ACM Workshop on Privacy in the Electronic Society, pp. 31–32, 2004.

2. M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford. Secure
Outsourcing of Scientific Computations, Volume 54 in Advances in Computers,
pp. 215–272. Elsevier, 2001.

3. C. Boyens and O. Gunther. Trust is not enough: Privacy and security in ASP and
Web service environment. In Proceedings of ADBIS 02, Advances in Database and
Information Systems, LNCS No. 2435, pp. 8–22. Springer, 2002.

4. S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-
Hill, 1984.

5. E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P. Sama-
rati. Balancing confidentiality and efficiency in untrusted relational DBMSs. In
Proceedings of the 10th ACM Conference on Computer and Communication Secu-
rity, pp. 93–102, 2003.

6. M. Fischmann and O. Gunther. Privacy tradeoffs in database service architec-
tures. In Proceedings of BIZSEC 03, the First ACM Workshop on Business Driven
Security Engineering, 2003.

7. O. Goldreich. Foundations of Cryptography, Volume II: Basic Applications. Cam-
bridge University Press, 2004.

8. G. Ozsoyoglu, D. A. Singer, and S. S. Chung. Anti-tamper databases: Querying
encrypted databases. In Proceedings of the 17th Annual IFIP WG11.3 Working
Conference on Database and Application Security, 2003.

352 A. Motro and F. Parisi-Presicce

9. H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data
in the database-service-provider model. In Proceedings SIGMOD 02, International
Conference on Management of Data, pp. 216–227, 2002.

10. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On databanks and privacy ho-
momorphisms. In R. D. DeMillo, editor, Foundations of Secure Computations,
pp. 169–177. Academic Press, 1978.

11. J. D. Ullman. Database and Knowledge-Base Systems, Volume I. Computer Science
Press, 1988.

12. Y. Lindell and B. Pinkas. Privacy preserving data mining. In Proceedings of
CRYPTO 00, 20th Annual International Cryptology Conference, LNCS No. 1880,
pp. 36–54. Springer, 2000.

Author Index

Alhazmi, Omar 281
Ardagna, C.A. 16
Atluri, Vijayalakshmi 252
Aziz, Benjamin 295

Bai, Kun 178
Biskup, Joachim 267

Chang, LiWu 153
Chiang, Yi-Ting 114
Clifton, Chris 139, 166, 325

Damiani, E. 16
De Capitani di Vimercati, S. 16
Demurjian, S.A. 40
Doan, T. 40

Elovici, Yuval 54

Farkas, Csilla 99
Foley, Simon N. 295

Gouda, Mohamed G. 193
Gudes, Ehud 54

Herbert, John 295
Hsu, Tsan-sheng 114

Indrakanti, Sarath 222

Jiang, Wei 166
Johnson, Theodore 1

Kantarcıoǧlu, Murat 325
Kong, Jun 237
Krishnan, Harish S. 310

Lehnhardt, Jan 207
Liau, Churn-Jung 114
Li, Jun 69
Liu, Alex X. 193
Liu, Peng 178

Malaiya, Yashwant 281
Matwin, Stan 153
Michel, L. 40

Motro, Amihai 338
Mukkamala, Ravi 252
Muthukrishnan, S. 1

Nuckolls, Glen 84

Omiecinski, Edward R. 69

Parisi-Presicce, Francesco 338
Park, Joon S. 310
Pavlich-Mariscal, J.A. 40

Ray, Indrajit 281
Ray, Indrakshi 124

Samarati, P. 16
Schaad, Andreas 28
Shmueli, Erez 54
Song, Guanglei 237
Spalka, Adrian 207
Spatscheck, Oliver 1
Sprick, Barbara 267
Srivastava, Divesh 1
Swart, G. 295

Thuraisingham, Bhavani 99, 237
Ting, T.C. 40

Vaidya, Jaideep 139
Varadharajan, Vijay 222
Vimercati, S. De Capitani di 16

Waisenberg, Ronen 54
Wang, Da-Wei 114
Wang, Hai 178
Warner, Janice 252
Wiese, Lena 267

Xin, Tai 124

Youn, Inja 99

Zhang, Kang 237
Zhan, Justin 153
Zhu, Yajie 124

	Frontmatter
	Streams, Security and Scalability
	Towards Privacy-Enhanced Authorization Policies and Languages
	Revocation of Obligation and Authorisation Policy Objects
	Role Slices: A Notation for RBAC Permission Assignment and Enforcement
	Designing Secure Indexes for Encrypted Databases
	Efficiency and Security Trade-Off in Supporting Range Queries on Encrypted Databases
	Verified Query Results from Hybrid Authentication Trees
	Multilevel Secure Teleconferencing over Public Switched Telephone Network
	Secrecy of Two-Party Secure Computation
	Reliable Scheduling of Advanced Transactions
	Privacy-Preserving Decision Trees over Vertically Partitioned Data
	Privacy-Preserving Collaborative Association Rule Mining
	Privacy-Preserving Distributed {\itshape k}-Anonymity
	Towards Database Firewalls
	Complete Redundancy Detection in Firewalls
	A Comprehensive Approach to Anomaly Detection in Relational Databases
	An Authorization Architecture for Web Services
	Secure Model Management Operations for the Web
	A Credential-Based Approach for Facilitating Automatic Resource Sharing Among Ad-Hoc Dynamic Coalitions
	Secure Mediation with Mobile Code
	Security Vulnerabilities in Software Systems: A Quantitative Perspective
	Trading Off Security in a Service Oriented Architecture
	Trusted Identity and Session Management Using Secure Cookies
	Security Issues in Querying Encrypted Data
	Blind Custodians: A Database Service Architecture That Supports Privacy Without Encryption
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

