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Preface

The 19th Annual IFIP Working Group 11.3 Working Conference on Data and
Applications Security was held August 7-10, 2005 at the University of Con-
necticut in Storrs, Connecticut. The objectives of the working conference were
to discuss in depth the current state of the research and practice in data and ap-
plication security, enable participants to benefit from personal contact with other
researchers and expand their knowledge, support the activities of the Working
Group, and disseminate the research results.

This volume contains the 24 papers that were presented at the working con-
ference. These papers, which had been selected from 54 submissions, were rigor-
ously reviewed by the Working Group members. The volume is offered both to
document progress and to provide researchers with a broad perspective of recent
developments in data and application security.

A special note of thanks goes to the many volunteers whose efforts made the
working conference a success. We wish to thank Divesh Srivastava for agreeing
to deliver the invited talk, Carl Landwehr and David Spooner for organizing the
panel, the authors for their worthy contributions, and the referees for their time
and effort in reviewing the papers. We are grateful to T. C. Ting for serving
as the General Chair, Steven Demurjian and Charles E. Phillips, Jr. for their
hard work as Local Arrangements Chairs, and Pierangela Samarati, Working
Group Chair, for managing the IFIP approval process. We would also like to
acknowledge Sabrina De Capitani di Vimercati for managing the conference’s
Web site.

Last but certainly not least, our thanks go to Alfred Hofmann, Executive
Editor of Springer, for agreeing to include these proceedings in the Lecture Notes
in Computer Science series. This is an exciting development since, in parallel to
the printed copy, each volume in this series is simultaneously published in the
LNCS digital library (www.springerlink.com). As a result, the papers presented
at the Working Conference will be available to many more researchers and may
serve as sources of inspiration for their research. The expanded availability of
these papers should ensure a bright future for our discipline and the working
conference.

August 2005 Sushil Jajodia and Duminda Wijesekera
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Streams, Security and Scalability

Theodore Johnson®, S. Muthukrishnan?, Oliver Spatscheck?, and Divesh Srivastava'

! AT&T Labs—Research
{johnsont, spatsch, divesh}@research.att.com
2 Rutgers University
muthu@cs.rutgers.edu

Abstract. Network-based attacks, such as DDoS attacks and worms, are threat-
ening the continued utility of the Internet. As the variety and the sophistication of
attacks grow, early detection of potential attacks will become crucial in mitigat-
ing their impact. We argue that the Gigascope data stream management system
has both the functionality and the performance to serve as the foundation for the
next generation of network intrusion detection systems.

1 Introduction

The phenomenal success of the Internet has revolutionalized our society, providing us,
e.g., the ability to communicate easily with people around the world, and to access
and provide a large variety of information-based services. But this success has also
enabled hostile agents to use the Internet in many malicious ways (see, e.g., [10,9,36]),
and terms like spam, phishing, viruses, worms, DDoS attacks, etc., are now part of the
popular lexicon. As network-based attacks increase, the continued utility of the Internet,
and of our information infrastructure, critically depends on our ability to rapidly identify
these attacks and mitigate their adverse impact.

A variety of tools are now available to help us identify and thwart these attacks, in-
cluding anti-virus software, firewalls, and network intrusion detection systems (NIDS).
Given the difficulty in ensuring that all hosts run the latest version of software, and the
limitations of firewalls (e.g., worms have been known to tunnel through firewalls), NIDS
are becoming increasingly popular among large enterprises and ISPs. Network intrusion
detection systems essentially monitor the traffic entering and/or leaving a protected net-
work, and look for signatures of known types of attacks. In practice, different NIDS use
different mechanisms for the flexible specification of attack signatures. Snort [34], e.g.,
uses open source rules to help detect various attacks (such as port scans) and alert users.
Bro [32], e.g., permits a site’s security policy to be specified in a high-level language,
which is then interpreted by a policy script interpreter.

As the variety and the sophistication of attacks grow, early detection of potential at-
tacks will become crucial in mitigating the subsequent impact of these attacks (see, e.g.,
[16,23,25,26,29,24,33,38]). Thus, intrusion detection systems would need to become
even more sophisticated, in particular for traffic monitored at high speed (Gbit/sec)
links, and it becomes imperative for the next generation of NIDS to:

— provide general analysis over headers and contents of elements in network data
streams (e.g., IP traffic, BGP update messages) to detect potential attack signatures.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 1-15, 2005.
(© IFIP International Federation for Information Processing 2005



2 T. Johnson et al.

— provide highly flexible mechanisms for specifying known attack signatures over
these network data streams.

— provide efficient (wire-speed) mechanisms for checking these signatures, to iden-
tify and mitigate high speed attacks.

In this paper, we explore the utility of a general-purpose data stream management
system (see, e.g., [2,1,4,11]), in particular, Gigascope [13,14,15,12,20], for this purpose
We argue that Gigascope has both the functionality and the performance to serve as the
foundation for the next generation of network intrusion detection systems.

The rest of this paper is structured as follows. Section 2 presents the main features
of Gigascope’s query language in an example driven fashion. Section 3 describes a few
representative network-based attacks, and illustrates how Gigascope can be used to aid
in the detection of these attacks. Finally, Section 4 describes aspects of Gigascope’s
run-time architecture that enables high performance attack detection.

2 Gigascope

Gigascope is a high-performance data stream management system (DSMS) designed
for monitoring of networks with high-speed data streams, which is operationally used
within AT&T’s IP backbone [13,14,15,12,20]. Gigascope is intended to be adaptable
so it can be used as the primary data analysis engine in many settings: traffic analy-
sis, performance monitoring and debugging, protocol analysis and development, router
configuration (e.g., BGP monitoring), network attack and intrusion detection, and var-
ious ad hoc analyses. In this section, we focus on the query aspects of Gigascope, and
defer a discussion of Gigascope’s high-performance implementation until Section 4.

Gigascope’s query language, GSQL, is a pure stream query language with an SQL-
like syntax, i.e., all inputs to a GSQL query are data streams, and the output is a data
stream [20,27]. This choice enables the composition of GSQL queries for complex
query processing, and simplifies the implementation. Here, we present the main features
of GSQL in an example driven fashion. Later, in Section 3, we show how GSQL can be
used to detect various network attacks.

2.1 Data Model

Data from an external source arrives in the form of a sequence of data packets at one or
more interfaces that Gigascope monitors. These data packets can be IP packets, Netflow
packets, BGP updates, etc., and are interpreted by a protocol. The Gigascope run-time
system interprets the data packets as a collection of fields using a library of interpreta-
tion functions. The schema of a protocol stream maps field names to the interpretation
functions to invoke [20].

PROTOCOL packet {
uint time get time (required, increasing);
ullong timestamp get timestamp (required, increasing);
uint caplen get caplen;
unit len get len;
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PROTOCOL Ethernet (packet) {
ullong Eth src addr get eth src addr (required);
ullong Eth dst addr get eth dst addr (required);

}

PROTOCOL IP (Ethernet) {
uint ipversion get ip version;
}

PROTOCOL IPV4 (IP) {
uint protocol get ipv4 protocol,;
IP sourcelP get ipv4 source ip;
IP destIP get ipv4 dest ip;

}

Network protocols tend to be layered, e.g., an IPV4 packet is delivered via an Ether-
net link. As a convenience, the protocol schemas have a mechanism for field inheritance
(specified in parentheses). For example, the Ethernet protocol contains all the fields
of the packet protocol, as well as a few others.

2.2 Filters

A filter query selects a subset of tuples of its input stream, extracts a set of fields (pos-
sibly transforming them), then outputs the transformed tuples in its output stream. The
following query extracts a set of fields for detailed analysis from all TCP (protocol
= 6) packets.

@3 SELECT time, timestamp, sourcelP, destIP,
source port, dest port, len
FROM TCP
WHERE  protocol =6

Gigascope supports multiple data types (include IP), and multiple operations on
these data types. The following query extracts a few fields from the IPV4 tuples whose
sourceIP matches 128.209.0.0/24, and names the resulting data stream as £gq
(this can then be referenced in subsequent GSQL queries).

Q5: DEFINE  { query name fq; }
SELECT  time, sourcelP, destIP
FROM IPV4
WHERE  sourcelP & IP VAL255.255.255.0’ =IP VAL128.209.0.0°
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2.3 User-Defined Functions

While GSQL has a wide variety of built-in operators, there are situations where a user-
defined function would be more appropriate. Gigascope permits users to define func-
tions, and reference them in GSQL queries. The following query, for example, uses
longest prefix matching on the sourceIP address against the local prefix table to ex-
tract data about IPV4 packets from local hosts.

QJ: SELECT  time/60, sourcelP
FROM IPV4
WHERE  getlpmid(sourcelP, ‘localprefix.tbl’) > 0

2.4 Aggregation

The following aggregation query counts the number of TPV4 packets and the sum of
their lengths from each source IP address during 60 second epochs.

Q%: SELECT tb, sourcelP, count(*), sum(len)
FROM IPV4
GROUP BY time/60 as tb, sourcelP

Aggregation can be combined with user-defined functions to create sophisticated
analyses. The following aggregation query uses a group variable computed using a user-
defined function, to count the number of IPV4 packets and the sum of their lengths
from each local host during 60 second epochs.

25: SELECT tb, localHost, count(*), sum(len)
FROM IPV4
WHERE  getlpmid(sourcelP, ‘localprefix.tbl’) > 0
GROUP BY time/60 as tb,
getlpmid(sourcelP, ‘localprefix.tbl’) as localHost

2.5 Merges and Joins

A GSQL merge query permits the union of streams from multiple sources into a single
stream, while preserving the temporal (ordering) properties of one of the (specified)
attributes. The input streams must have the same number and types of fields, and the
merge fields must be temporal and similarly monotonic (both increasing or both de-
creasing). For example, the following query can be used to merge data packets from
two simplex physical (optical) links to obtain a full view of the traffic on a logical link.
Such merge queries have proven very useful in Gigascope for network data analysis.

Q7: DEFINE  { query name logicalPktsLink; }
MERGE  Ol.timestamp : O2.timestamp
FROM opticalPktsLink1 O1, opticalPktsLink2 O2
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A GSQL join query supports the join of two data streams, with a temporal join
predicate (possibly along with other predicates), and will emit a tuple for every pair
of tuples from its sources that satisfy the predicate in the GSQL WHERE clause. The
following query, for example, computes the delay between a tcp synanda tcp ack.

Q{: SELECT  S.tb, S.sourcelP, S.destIP, S.source port,
S.dest port, (A.timestamp — S.timestamp)
FROM tcp syn S, tcp ack A
WHERE  S.sourcelP = A.destIP and S.destIP = A.sourcelP and
S.source port = A.dest port and S.dest port = A.source port
S.tb = A.tb and S.timestamp <= A.timestamp and
(S.sequence number + 1) = A.ack number

Joins can be combined with aggregates for complex GSQL queries.

2.6 User-Defined Aggregation and Sampling

GSQL permits users to define aggregate functions (UDAFs), and reference them in
queries, just like regular aggregates [12]. The specification of the UDAF consists of
multiple functions: INITIALIZE (which initializes the state of a scratchpad space), I'T-
ERATE (which inserts a value to the state of the UDAF), OUTPUT (to support multi-
ple return values from the same UDAF computation), and DESTROY (which releases
UDAF resources).!

For example, using GSQL’s UDAF mechanism, approximate quantile streaming al-
gorithms can be coded, and accessed like in the following query, to compute the median
value of 1en for each source IP address and 60 second epoch:

Q%: SELECT  tb, sourcelP, count(*), percentile(len,50)
FROM IPV4
GROUP BY time/60 as tb, sourcelP

The UDAF mechanism is useful to obtain point values (e.g., median packet length),
but it is cumbersome for obtaining set values, such as in returning a sample of the
data stream (e.g., a subset-sums or a reservoir sample). Given the utility of sampling to
analyze high-speed streams, GSQL supports a sampling operator that can be specialized
by users to implement a wide variety of stream sampling algorithms [21]. The key
observation employed is that even though there are many differences between various
stream sampling algorithms, they follow a common pattern. First, a number of items are
collected from the original data stream according to a certain criterion (possibly with
aggregation in the case of duplicates); this is the insert phase. Then, if a condition on
the sample is triggered (e.g., the sample is too large), the size of the sample is reduced
according to another criterion; this is the compress phase. This alternation of insert and
compress phases can be repeated several times in each epoch. At the end of the epoch,
the sample is output; this is the output phase. For example, the following query will
report the 100 most common source IP addresses within a 60 second epoch.

! Additional functions are needed to deal with Gigascope’s two-level architecture, which we do
not discuss further.
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Q%: SELECT  tb, sourcelP
FROM IPV4
GROUP BY time/60 as tb, sourcelP
CLEANING WHEN  local count(100) = TRUE
CLEANING BY count(*) < current bucket() — first(current bucket())

2.7 Query Set

Complex analyses are best expressed as combinations of simpler pieces. By permitting
GSQL queries to be named, and re-used in the FROM clause of other GSQL queries, a
set of inter-related queries, forming a query DAG, can be defined.

3 Attacks

A large variety of network-based attacks have been discussed in the literature, including
viruses, worms, DDoS attacks, etc. (see, e.g., [10,9,16,23,25,26,29,24,33,36,38]). Here,
we discuss a few representative attacks, and illustrate how Gigascope can be used to aid
in the detection of these attacks.

3.1 Denial of Service

A denial of service (DoS) attack is characterized by an explicit attempt by attackers to
prevent legitimate users of a service from using that service [7]. DoS attacks have been
among the most common form of Internet attacks. The basic form of a DoS attack is to
consume scarce computer and network resources, such as kernel data structures, CPU
time, memory and disk space, and network bandwidth.

Email Bombing: An example DoS attack that attempts to consume system and network
resources is Email Bombing, where attackers send excessively many and large e-
mail messages to one or more accounts at a specific victim site [8]. When the attacker
makes use of a dispersed set of sources to coordinate such an attack, it is referred to as
a distributed DoS (DDoS) attack.

Email Bombing can be detected at the victim site if email is sluggish, possibly
because the mailer is trying to process too many messages. An alternative way of check-
ing for this possibility is to monitor the SMTP traffic entering a protected network using
Gigascope, and check for hosts that show significant deviations in expected traffic at
port 25/SMTP. The following simple GSQL query can track the total SMTP traffic for
individual destination IP addresses. Deviations can be monitored by comparing recent
behavior with more historical trends.

Q%°s:DEFINE  { query name smtp perhost; }
SELECT tb, destIP, count(*), sum(len)
FROM TCP
WHERE  protocol = 6 and dest port =25
GROUP BY time/60 as tb, destIP
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Note that, since the number of destination IP addresses in a protected network is
likely to be limited, the number of groups created by this query would not explode, even
under email bombing. This is similar to “semi-streaming” where we maintain statistics
per group or entity [31]. Only the count of the number of packets, and the sum of the
packet lengths, would increase for victim hosts.

If the number of destination IP addresses in a network is very large, one can use
GSQL’s sampling mechanism to keep track of the destination IP addresses, e.g., with
the largest counts, using a variant of query QJ%.

TCP SYN Flood: A more complex attack against network connectivity, by consuming
kernel data structures, is the TCP SYN Flood attack [6], which exploits the 3-way
handshake used to establish a TCP connection between a sender and a receiver. In a
normal scenario, a sender initiates a TCP connection by sending a SYN packet, the
receiver responds with a SYN/ACK packet, and the sender completes the 3-way hand-
shake with an ACK packet. After sending the SYN/ACK packet, the receiver allocates
connection resources (kernel data structures) to remember the pending connection for
a pre-specified amount of time. A TCP SYN Flood attack occurs when an attacker
repeatedly sends SYN packets, typically with different source addresses, causing the
receiver to deplete its connection resources, preventing service to legitimate users.

In principle, TCP SYN Flood can be identified by correlating the SYN packets
with matching ACK packets in the stream of TCP packets, and alarming when too many
SYN packets in a specified time interval appear to be unmatched. The GSQL query set
for this purpose, Q3°%, makes use of joins, as shown below. The outer join ensures that
output tuples will be computed even when there are no matched SYN packets in an
epoch. Note that this is an estimate since in certain loss conditions, and due to epoch

boundary issues, we might get approximate results.

Q%°*DEFINE  { query name toomany syn; }
SELECT  A.tb, (A.cnt — M.cnt)
OUTER JOIN FROM all syn count A, matched syn count M
WHERE  A.tb=M.tb

DEFINE  { query name all syn count; }
SELECT  S.tb, count(*) as cnt

FROM tcp syn S

GROUP BY S.tb

DEFINE  { query name matched syn count; }

SELECT  S.tb, count(*) as cnt

FROM tcp syn S, tcp ack A

WHERE  S.sourcelP = A.destIP and S.destIP = A.sourcelP and
S.source port = A.dest port and S.dest port = A.source port
S.tb = A.tb and S.timestamp <= A.timestamp and
(S.sequence number + 1) = A.ack number

GROUP BY S.tb
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Over a high-speed (e.g., 1 Gbit/sec) link, one could see up to 3 million SYN packets
per second [29]. In the worst-case, for reasonably large (multi-second) round-trip times,
this may require too much memory to compute the join in matched syn count. In
such cases, one could sample random SYN packets in the incoming stream (see Sec-
tion 4.3), and check if they are matched (see, e.g., [17]). A sampling algorithm like
reservoir sampling [37], which has been instantiated using GSQL’s sampling operator,
would suffice for this task.

Alternatively, one could simply count the number of SYN packets and the number
of ACK packets in specified windows, and declare the possibility of an attack if there
are more of the former than of the latter (as advocated by [38]). The query in Gigascope
for this approach is shown below.

Q%°s:DEFINE  { query name toomany syn; }
SELECT  A.tb, (S.cnt — A.cnt)
OUTER JOIN FROM all syn count S, all ack count A
WHERE S.tb = A.tb and (S.cnt — A.cnt) > 0

DEFINE  { query name all syn count; }
SELECT  S.tb, count(*) as cnt

FROM tcp syn S

GROUP BY S.tb

DEFINE  { query name all ack count; }
SELECT  A.tb, count(¥) as cnt

FROM tcp ack A

GROUP BY A.tb

3.2 Worms and Viruses

A worm is self-propagating malicious code [9]. Unlike a virus, which requires a user to
do something (such as opening an infected email attachment) for its negative impact, a
worm exploits vulnerabilities in the underlying operating system to inflict its damage,
and to replicate and propagate by itself. They have been widely discussed in the pop-
ular press, because of the significant damage they have caused to the productivity and
infrastructure of users.

Viruses rely on user action for their propagation, and hence tend to spread slowly.
However, the highly automated nature of worms, along with the relatively widespread
nature of the vulnerabilities they exploit allows a large number of systems to be quickly
compromised. For example, the Code Red worm exploited a vulnerability in Mi-
crosoft IIS servers, and infected more than 250,000 systems in about 9 hours on July
19, 2001. As another example, the Slammer worm exploited a vulnerability in Mi-
crosoft’s SQL Server 2000 code, and affected nearly 100,000 hosts in 10 minutes on
January 25, 2003. Some worms include built-in DoS attack payloads, while others have
web site defacement payloads (e.g., Code Red). But, often, their biggest impact is in
the collateral damage they cause as they rapidly propagate through the Internet.
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Known Worms: Worms can be identified by their payload, and their specific mechanism
of propagation. For example, activity of the S1ammer worm is identifiable in a network
by the presence of 376-byte UDP packets, destined for port 1434/UDP of SQL Server,
using the following query.

QVV:DEFINE  { query name slammer worm; }
SELECT tb, destIP, count(*)
FROM UDP
WHERE  protocol = 17 and dest port = 1434 and total ipv4 length = 376
GROUP BY time/60 as tb, destIP

A number of such header profiles have been identified by detailed traffic analy-
sis [28], and can be encoded directly as GSQL queries.

Unknown Worms: Since worms are self-replicating, ongoing worm propagation should
be reflected in the presence of higher than expected string similarity among the payloads
of network packets. This similarity is due to the unchanging portions of the worm packet
payload, which is expected to be present even in polymorphic worms. This intuition
has been exploited by various systems like EarlyBird [33] and Autograph [25], which
use the frequency of substrings in packet payloads to generate signatures of sources of
content similarity (which in turn are indicative of potential worms). A GSQL query akin
to Q5 could be used to compute heavy hitters on the substring counts of the payload,
for this purpose.

Recent work has also examined the utility of the inverse distribution (for a given
frequency f, the number of substrings that appear with that frequency) to permit faster
detection of potential worms [24]. The following GSQL query can be used for compu-
tation of the inverse distribution.

QYV:DEFINE  { query name inverse distrib; }
SELECT  B.tb, B.cnt, COUNT(*) AS invCnt
FROM base distrib B
GROUP BY B.tb, B.cnt

DEFINE  { query name base distrib; }
SELECT  C.tb, C.SId, COUNT(*) AS cnt
FROM ContentStrings C

GROUP BY C.tb, C.SId

The cost of this query depends on the number of distinct substrings over all pay-
loads, which is independent of the frequency of worm propagation.

3.3 Probing for Vulnerability

Attacks exploit known vulnerabilities in services. A typical precursor to attacks is the
identification of machines that have specific services available, and hence can be po-
tentially exploited. This takes the form of an attacker probing for open ports on a set of
host machines (see, e.g., [23,29]).
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Ingress Detection: To determine if a port is open, an attacker sends a packet to a host,
attempting to connect to the specific port. If the target host is listening on that port, it
will respond by opening a connection with the attacker. This implies that during the
probing phase, the attacker would not spoof the sourceIP address. By monitoring
the number of distinct (destIP, dest port) pairs with the same sourcelIP,
one can check for anomalous activity using the following GSQL query.

Qf”: SELECT tb, sourcelP, count distinct(PACK(destIP, dest port)) AS cnt
FROM TCP
GROUP BY time/60 as tb, sourcelP

A simpler GSQL query, below, simply tracks the number of distinct targets probed
(potentially from different hosts, as would arise in a distributed vulnerability probe),
and uses an anomalous increase in this number as an indicator of suspicious activity.

Qb": SELECT  tb, count distinct(PACK(destIP, dest port)) AS cnt
2

FROM TCP

GROUP BY time/60 as tb

Egress Detection: 1If the target host does not have a listening process on a port, a dif-
ferent kind of response may be generated. For example, a packet sent to such a UDP
port may generate an ICMP “port unreachable” response, while a packet sent to such a
TCP port may generate an RST packet in response. Vulnerability probes (or, port scans)
can hence be also identified by monitoring the number of distinct destination addresses
generating such responses [29]. This can be easily captured by a variant of Q5" above.

4 Scalability

Gigascope is designed for monitoring very high speed data streams, using inexpen-
sive processors. For example, in [22], non-trivial query sets were run at over 200,000
packets/sec, while using only 38% of one CPU in a two CPU system. To accomplish
this goal, Gigascope uses an architecture optimized for its particular applications, in-
corporating unblocking using timestamps and heartbeats, a two-level architecture, and
sophisticated sampling algorithms, each of which are described below.

4.1 Unblocking, Timestamps and Heartbeats

The Gigascope DSMS evaluates queries over potentially infinite streams of tuples. To
produce useful output, it must be able to unblock operators such as aggregation, join,
and union. In general, this unblocking is done by limiting the scope of output tuples that
an input tuple affects. One unblocking mechanism is to define queries over windows of
the input stream.

Gigascope’s technique for localizing input tuple scope is to require that some fields
of the input data streams be identified as behaving like timestamps, e.g., be monotone
increasing [14]. The locality of input tuples is determined by analyzing how the query
references the timestamp fields. For example, a merge or a join query must relate times-
tamp fields of both inputs, and an aggregation query must have a timestamp field as one
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of its group-by variables. For example, suppose that time is labeled as monotone in-
creasing in the TCP stream. Then the tb group-by variable in Query ()¢ (which counts
the packets from each source IP address during 60 second epochs) is inferred also to be
monotone increasing. When this variable changes in value, all existing groups and their
aggregates are flushed to the operator’s output. The values of the group-by variables
thus define epochs in which aggregation occurs, with a flush at the end of each epoch.

The timestamp analysis mechanism is quite effective for unblocking operators as
long as all input streams make progress. However, if one of the input streams stalls,
operators that combine two streams (such as merge, which preserves timestamp order in
the output data stream) can stall, possibly leading to a system failure. This can happen,
for example, when merging traffic from a gigabit primary link and a backup link (which
is used only when the primary link fails, and hence usually carries almost no traffic),
for attack analysis. The main problem is that while the presence of tuples in the stream
carries temporal information, their absence does not. In such situations, heartbeats or
punctuations (see, e.g., [35]) can be used to unblock operators.

Gigascope’s punctuation-carrying heartbeats [22] are generated by source query
operators by regularly injecting the heartbeat messages carrying temporal update tu-
ples into their output streams. A streaming operator in a subsequent query node in the
query DAG emits temporal update tuples whenever it receives a heartbeat from one
of its source streams. Thus, the heartbeats propagate throughout the query DAG. [22]
discusses detailed implementation issues, and demonstrates the effectiveness of these
heartbeats (significant reduction in memory load with a negligible CPU cost), using
experiments with join and merge queries over very high-speed data streams.

4.2 Two-Level Architecture

Gigascope has a two-level query architecture, where the low level is used for data re-
duction and the high level performs more complex processing [14,12]. This approach is
employed for keeping up with high streaming rates in a controlled way. High speed data
streams from, e.g., a Network Interface Card (NIC), are placed in a large ring buffer.
These streams are called source streams to distinguish them from data streams created
by queries. The data volumes of these source streams are far too large to provide a
copy to each query on the stream. Instead, the queries are shipped to the streams. If a
query @) is to be executed over source stream S, then Gigascope creates a subquery ¢
that directly accesses S, and transforms @ into @’ which is executed over the output
from q. In general, one subquery is created for every table variable that aliases a source
stream, for every query in the current query set. The subqueries read directly from the
ring buffer. Since their output streams are much smaller than the source stream, this
two-level architecture greatly reduces the amount of copying (simple queries can be
evaluated directly on a source stream).

The subqueries (which are called “LFTAs”, or low-level queries, in Gigascope) are
intended to be fast, lightweight data reduction queries. By deferring expensive pro-
cessing (expensive functions and predicates, joins, large scale aggregation), the high
volume source stream is quickly processed, minimizing buffer requirements. The ex-
pensive processing is performed on the output of the low level queries, but this data
volume is smaller and easily buffered. Depending on the capabilities of the NIC, we
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can push some or all of the subquery processing into the NIC itself. In general, the most
appropriate strategy depends on the streaming rate as well as the available processing
resources. Choosing the best strategy is a complex query optimization problem, that
attempts to maximize the amount of data reduction without overburdening the low level
processor and thus causing packet drops.

Gigascope uses a large number of optimizations to lower the LFTA processing costs.
Low-level operators are compiled into C code that are linked directly to the runtime
library to avoid expensive runtime query interpretation. To ensure that aggregation is
fast, the low-level aggregation operator uses a fixed-size hash table for maintaining the
different groups of a GROUP BY. If a hash table collision occurs, the existing group
and its aggregate are ejected (as a tuple), and the new group uses the old group’s slot.
That is, Gigascope computes a partial aggregate at the low level which is completed at
a higher level. The query decomposition of an aggregate query () is similar to that of
subaggregates and superaggregates in data cube computations.

The Gigascope DSMS has many aspects of a real-time system: for example, if the
system cannot keep up with the offered load, it will drop tuples. To spread out the pro-
cessing load over time and thus improve schedulability, Gigascope implements traffic-
shaping policies in some of its operators. In particular, the aggregation operator uses
a slow flush to emit tuples when the aggregation epoch changes. One output tuple is
emitted for every input tuple which arrives, until all finished groups have been output
(or the epoch changes again, in which case all old groups are flushed immediately).

4.3 Sampling

The complex query set needed to analyze high-speed streams for attacks would often
need to rely on approximations, using streaming algorithms, to keep up with their input.
Many of these streaming algorithms compute samples (i.e., a small-sized representative
of the data suitable for specific queries) in one pass over a high speed data stream.
These stream sampling algorithms include generic sampling methods such as fixed-
size reservoir sampling [37], as well as methods for estimating specific user-defined
aggregates such as heavy hitters [30], distinct counts [18], quantiles [19], and subset-
sums [3].

One approach developed in [21] is to develop a single operator that can be special-
ized to implement a wide variety of stream sampling algorithms. The sampling algo-
rithms that can be implemented as specializations of the sampling operator permit a very
simple communication structure, i.e., only between individual samples and the sample
summary. The process of sampling is in some ways similar to that of aggregation, since
they both collect and output sets of tuples that are representative of the input, while
achieving data reduction. This analogy leads to an efficient implementation, based on
the use of multiple hash tables, of all specializations of the sampling operator.

An alternative, more flexible, approach to implementing individual stream sampling
algorithms in Gigascope is with user-defined aggregate functions (UDAFs). This ap-
proach was explored in [12], where both sampling-based UDAFs and sketch-based
UDAFs were implemented. The added flexibility of the UDAF approach, even for
sampling-based algorithms, is that it permits the specification of algorithms that need
“inter-sample communication”, especially during the compress phase (such as the quan-
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tile algorithm of [19]). Several key performance lessons were identified. First, early data
reduction is critical for complex querying of very high speed data streams, and Gigas-
cope’s two-level architecture is highly suitable for this purpose. Second, there is often
a range of early data reduction strategies to choose from for processing complex ag-
gregates, including use of appropriate subaggregation. The most appropriate strategy
depends on the streaming rate as well as the available processing resources; choosing
the best strategy is a complex optimization problem, with the goal of maximizing the
amount of data reduction without overburdening the low-level query processor.

5 Conclusion

Network-based attacks, such as DDoS attacks, worms, and viruses are now common-
place, and the variety and sophistication of attacks keeps growing over time. Early de-
tection of potential attacks will become crucial in mitigating the subsequent impact of
these attacks. Thus, it is imperative for the next generation of NIDS to:

— provide general analysis over headers and contents of elements in network data
streams to detect potential attack signatures.

— provide highly flexible mechanisms for specifying known attack signatures over
network data streams.

— provide efficient (wire-speed) mechanisms for checking these signatures, to iden-
tify and mitigate high speed attacks.

We argue that the Gigascope DSMS has both the functionality and the performance
to serve as the foundation for the next generation of network intrusion detection sys-
tems. The functionality is provided by the expressive, yet high-level, GSQL query lan-
guage, which supports a rich variety of features including filters, user-defined functions,
user-defined aggregation and sampling, and joins. Using example GSQL queries, we
have illustrated the utility of these features for discerning and specifying attack signa-
tures. The performance is provided by the Gigascope architecture for monitoring very
high speed data streams, incorporating features like unblocking using timestamps and
heartbeats, a two-level architecture, and sophisticated sampling algorithms.

As network-based attacks evolve, Gigascope will need to evolve as well. Sophisti-
cated cooperation between a distributed set of Gigascope installations will be needed
to identify highly distributed attacks on the network infrastructure. Statistical anomaly
detection algorithms, both parametric and non-parametric, will need to be expressed in
the query language. Sampling and signature computations on the payload, involving re-
assembly of network packets, will prove useful. We think that Gigascope will be able
to meet these challenges.
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Abstract. The protection of privacy in today’s global infrastructure
requires the combined application solution from technology (technical
measures), legislation (law and public policy), and organizational and
individual policies and practices. Emerging scenarios of user-service in-
teractions in the digital world are also pushing toward the development
of powerful and flexible privacy-enhanced models and languages.

This paper aims at introducing concepts and features that should
be investigated to fulfill this demand. In particular, the content of this
paper is a result of our ongoing activity in the framework of the PRIME
project (Privacy and Identity Management for Furope), funded by the
European Commission, whose objective is the development of privacy-
aware solutions for enforcing security.

1 Introduction

Traditional access control systems are based on regulations (policies) that es-
tablish who can, or cannot, execute which actions on which resources. How-
ever, in today’s systems the definition of an access control model is compli-
cated by the need to formally represent complex policies, where access deci-
sions depend on the application of different rules coming, for example, from
laws practices, and organizational regulations. Given the complexity of the sce-
nario, these traditional policies are too limiting and do not satisfy all the above
requirements. Although recent advancements allow the specifications of poli-
cies with reference to generic attributes/properties of the parties and the re-
sources involved, they are not designed for enforcing privacy policies. For in-
stance, privacy issues that are not addressed by traditional approaches include
protecting user identities by providing anonymity, pseudonymity, unlinkability,
and unobservability of users at communication level, system level, or applica-
tion level. Therefore, the consideration of privacy issues introduces the need
for rethinking authorization policies and models and the development of new
paradigms for access control and in particular authorization specification and
enforcement.

In this paper, we present our recent research work in the context of the
PRIME project [12]. Our work deals with three main key aspects:
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— Resource representation. Writing access control policies where resources to
be protected are pointed at via data identifiers and access conditions are
evaluated against their attribute values is not sufficient anymore. Rather, it
is important to be able to specify access control requirements about resources
in terms of available metadata describing them.

— Context representation. Distributed environments have increased the amount
of context information available at policy evaluation time (e.g., location-
based one), and this information is achieving a more and more important
role.

— Subject identity. Evaluating conditions on the subject requesting access to
a resource often means accessing personal information either presented by
the requestor as a part of the authentication process or available elsewhere.
Identifying subjects raises a number of privacy issues, since electronic trans-
actions (e.g., purchases) require disclosure of a far greater quantity of infor-
mation than their physical counterparts.

A privacy-enhanced authorization model and language is then described al-
lowing for definition and enforcement of powerful and flexible access restrictions
based on generic properties associated with subjects and objects. We also bring
forward the idea of exploiting the semantic web to allow the definition of access
control rules based on generic assertions defined over concepts in the ontologies
that control metadata content and provide abstract subject domain concepts,
respectively [16]. These rules are then enforced on resources annotated with
metadata regulated by the same ontologies.

The remainder of this paper is organized as follows. Section 2 presents the
different types of privacy policies we have identified. Section 3 and Section 4 illus-
trate our privacy-enhanced model and language, respectively. Section 5 describes
a possible representation of expressing our language by using an XML-based syn-
tax. Finally, Section 6 presents our conclusions.

2 Privacy Policies

To address the requirements mentioned in the previous section, different types
of policies need to be introduced.

— Access control policies. They govern access/release of data/services managed

by the party (as in traditional access control) [4].

Release policies. They govern release of properties/credentials/PII of the

party and specify under which conditions they can be disclosed [2].

Data handling policies. They define the personal information release will be

(or should be) deals with at the receiving party [15].

— Sanitized policies. They provide filtering functionalities on the response to be
returned to the counterpart to avoid release of sensitive information related
to the policy itself.



18 C.A. Ardagna et al.

Access Control Policies. Access control policies define authorization rules con-
cerning access to data/services. Authorizations correspond to traditional (pos-
itive) rules usually enforced in access control systems. For instance, an autho-
rization rule can require the proof of majority age and a credit card number
(condition) to read (action) a specific set of data (object). Also, an obligation
can specify that the credit card number must be deleted at the end of the transac-
tion or that the server must log any request. When an access request is submitted
to the party, it is first evaluated against the authorization rules applicable to it.
If the conditions for the required access are evaluated to true, access is permit-
ted. If none of the specified conditions that might grant the requested access
can be fulfilled, then the access is denied. Finally, if the current information is
insufficient to determine whether the access request can be granted or denied,
additional information is needed and the client receives an undefined response
with a list of requests that she must fulfill to gain the access. For instance, if
some of the specified conditions can be fulfilled (e.g., by signing an agreement),
then the party prompts the requester with the actions that would result in the
required access.

Release Policies. Release policies define the party’s preferences regarding the
release/disclosure of its Personal Identifiable Information (PII). More precisely,
these policies specify to which party, for which purpose/action, and under which
conditions/obligations a particular set of PII can be released/disclosed [2]. For
instance, a release policy can state that credit card information can be disclosed
only in the process of a buy action and upon presentation of a nondisclosure
agreement (condition) by the party. The disclosure of PII may only be performed
if the release policies are satisfied.

Data Handling Policies. Data handling policies specify how PII is used and
processed [15]. More precisely, they should regulate how PII will be used (e.g.,
information collected through a service will be combined with information col-
lected from other services and used in aggregation for market research purposes),
how long PII will be retained (e.g., information will be retained as long as neces-
sary to perform the service), and so on. Clients use these policies to define how
her information will be used and processed by the counterpart. In this way, user
can manage the information also after its release.

Sanitized Policies. Sanitized policies provide filtering functionalities on the re-
sponse to be returned to the counterpart to avoid release of sensitive informa-
tion related to the policy itself (or to the status against which the policy has
evaluated). This happens when an undefined decision together with a list of al-
ternatives (policies) that must be fulfilled to gain the access to the data/service
is returned to the counterpart. For instance, suppose that the policy returned
by the access control is “citizenship=EU”. The party can decide to return to
the user either the policy as it is or a modified policy (obtained by applying
the sanitized policies) simply requesting the user to declare its nationality (then
protecting the information that access is restricted to EU citizens).



Towards Privacy-Enhanced Authorization Policies and Languages 19

CLIENT SERVER
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,
: Ontologies !
| |
| |
[ === \
I
| |
|
} |
|
access request : | Y !
. ! AC module |<—| Resoner Policy editor |
L. I access decision : H
| |
! l
| I
| of e o) :
|
! AC }
| policies !
! _ \
: Portfolio I
| I

Fig. 1. Architecture

In the following, we deal with access control and release policies: data han-
dling and sanitized policies will be added in future work.

3 Scenario and Basic Elements of the Privacy-Enhanced
Model

We consider parties that interact with each other to offer services (see Figure 1).
As in a usual client/server interaction, a client asks for a service and a server
provides for the service. However, each party can be interchangeably as either
a client or a server at different times, with respect to a specific instance of a
service request. The access request is processed by the Access Control module
(AC module). The AC module interacts with the Reasoner that takes the access
control policies together with the subject, object, and credential ontologies as
input and computes the expanded policies including semantically equivalent ad-
ditional conditions. These conditions, specified in disjunction with the original
ones, allow for increasing the original policy’s expressive power. The AC module
returns to the client a yes, no, or undefined decision. In the latter case, it returns
the information about which conditions need to be satisfied for the access to be
granted. In this last case, the problem of communicating such conditions to the
counterpart arises.

The access control policies are based on generic properties (attributes) as-
sociated with the subjects requesting accesses and the resources (data/services)
subjects interact with. In the following, we illustrate these basic elements of our
model in details.

3.1 Portfolio

The set of properties associated with subjects and objects are represented by
means of a portfolio [2]. More precisely, a portfolio includes two types of in-
formation: declarations and credentials. A declaration is a statement issued by
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the party while a credential is a statement issued and signed (i.e., certified) by
authorities trusted for making the statement [8]. As an example, the driver li-
cense number maintained as a data value at a party and communicated in a
negotiation is a declaration. A digital copy of the driver license, released by the
public administration to the party, and that the party can submit to a server
to prove that it has a driver license or that the administration certifies some
properties (e.g., address), is a credential. At a practical level, we view a cre-
dential as characterized by two elements: i) a signed content, and 4i) the public
digital signature verification key to verify the signature. We can also imagine the
existence of (meta)information associated with a credential, outside the signed
content. Such information cannot however be trusted as being certified by the
authority that signed the credential. In the following, we consider credentials
such a mean to allow query for specific data, such as name or address in a driver
license, number or expiration date in a credit card. To refer to specific data in a
credential we introduce the concept of credential term.

Definition 1. A  credential term is an expression of the form
credential name (predicate list), where credential name is the name of
the credential, and predicate list is a possibly empty list of elements of the form
predicate name (arguments).

Intuitively, a credential term can be used to specify a condition on
credentials (we will elaborate more on this in Sect. 4). Some exam-
ples of credential terms are: driver-license(equal(name, “John Doe”))
and identity-card(greater than(age,18)). The first term denotes the
driver-license credential where attribute name should be equal to John. The
second term denotes credential identity-card where attribute age should be
greater than 18. Declarations and credentials in a portfolio may be organized into
a partial order. For instance, an identity-document can be seen as an abstrac-
tion for credentials driver-license, passport, and identity-card. Finally,
the functionalities offered by a server are defined by a set of services. Intuitively,
each service can be seen as an application that clients can execute.

3.2 Omntologies and Abstractions

Our model provides the support for ontologies that allow to make generic as-
sertions on subjects and objects [13,14]. More precisely, we use three ontologies:
a subject ontology, an object ontology, and a credential ontology. The subject
ontology contains terms that can be used to make generic assertions on subjects
(e.g., in a medical scenario possible terms are Physician, Patient, assists).
The object ontology contains domain-specific terms that are used to describe
the resource content such as Video and shows how. Finally, the credential on-
tology represent relationships among attributes and credentials (part-of and
is-a relationships) to establish what kind of credentials can be provided to
fulfill a declaration or credential request. For instance, an ontology can state
that attributes birth date and nationality are part of driver-license,
identity-card, and passport. In this way, the reasoning process can point out
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all the credentials that a user, for example, can provide to prove the satisfaction
of a given constraint. To fix ideas and make the discussion clear, suppose that a
user can use an on-line car rental service only if she is an European citizen. The
access is then allowed if the user can prove her nationality and, according to the
credential ontology, this can be done either by showing the driver-license,
identity-card, or passport.

Abstractions can also be defined within the domains of users as well as ob-
jects. Intuitively, abstractions allow to group together users (objects, resp.) with
common characteristics and to refer to the whole group with a name.

4 Privacy-Aware Language

We are now ready to describe the basic constructs of the language used to define
the privacy policies and the syntax of the language.

4.1 Basic Elements of the Language

We have identified the following predicates:

— a predicate declaration where the argument is a list of predicates of the
form predicate name (arguments);

— a binary predicate credential where the first argument is a credential term
(see Definition 1) and the second argument is a public key term. Intuitively,
a ground atom credential (¢, K) is evaluated to true if and only if there
exists a credential ¢ verifiable with public key K.

— a set of standard binary built-in mathematic predicates, such as equal(),
greater than(), lesser than(), and so on.

— a set of non predefined predicates that evaluate information stored at the site.

The above predicates constitute the basic literals that can be used in access
control and release policies. Note that predicates declaration and credential
have been introduced to distinguish between conditions on data declarations
and conditions on credentials (we will elaborate more on this in the following
sub-section).

4.2 Policy Components
Syntactically, an access control rule (release rule, resp.) has the following form:

subject WITH subject-expression CAN action FOR purpose ON object WITH
object-expression IF conditions FOLLOW obligations

where:

— subject (object) identifies the subject (object) to which the rule refers;

— subject-expression (object-expression) is an expression that allows the refer-
ence to a set of subjects (objects) depending on whether they satisfy given
conditions that can be evaluated on the user’s portfolio (object’s profile);
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— action is the action to which the rule refers (e.g., read, write, and so on)!

— purpose is the purpose (e.g., scientific) to which the rule refers and rep-
resents how the data is going to be used by the recipient;

— conditions is a boolean expression of generic conditions that an access request
to which the rule applies has to satisfy;

— obligations is a boolean expression of obligations that the server must follow
when manage the information/data/PII.

We now look at the different components in the rule.

Subject Expression. These expressions allow the reference to a set of subjects
depending on whether they satisfy given conditions that can be evaluated on the
subject’s portfolio. Note that the conditions specified through these expressions
are very similar to generic conditions. The difference is that while the subject
expression is evaluated on the user of the request, generic conditions specify
generic constraints that are not evaluated on the requester. More precisely, a
subject expression is a boolean formula of terms of the form:

— declaration(predicate list) , where predicate list is a possibly empty list of
elements of the form predicate name (arguments). Intuitively, a declaration
predicate is evaluated to true if each predicate specified in the predicate list
is evaluated to true.

— credential (credential term,K), where credential term is defined as
credential name (predicate list) (see Definition 1). Intuitively, a credential
predicate is evaluated to true if there exists credential credential name for
which each predicate predicate (arguments) in predicate list is evaluated
to true and credential name is verifiable with public key K.

Note that the predicates specified as arguments of the declaration and
credential predicates can be: i) location-based predicates, i) the standard
built-in mathematic predicates, and 4) the non predefined predicates that eval-
uate information stored at the server.

To make it possible to refer to the user of the request being evaluated without
the need of introducing variables in the language, we introduce the keyword user,
whose appearance in a conditional expression is intended to be substituted with
the actual parameters of the request in the evaluation at access control time.

Ezxample 1. The following are examples of subject expressions:

— declaration(equal (user.name,Bob) ,greater than(user.age,18)) denot-
ing requests made by a user whose name is Bob with age greater than 18;

— credential (passport (equal (user.job,professor) ) , K7) denoting requests
made by users who are professors. This property should be certified by show-
ing the passport credential verifiable with public key K;

! Note that abstractions can also be defined on actions, specializing actions or grouping
them in sets.
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Object Expression. These expressions allow the reference to a set of objects
depending on whether they satisfy given conditions that can be evaluated on
the object’s profile. Note that the conditions specified through these expressions
are very similar to generic conditions. The difference is that while the object
expression evaluated on the object (or associated profile) to which the request
being processed refers, generic conditions specify generic constraints that are
not evaluated on the requested object. More precisely, an object expression is a
boolean formula of terms of the form:

— declaration(predicate list) , where predicate list is a possibly empty list of
elements of the form predicate name (arguments). Intuitively, a declaration
predicate is evaluated to true if each predicate specified in the predicate list
is evaluated to true.

Note that the predicates specified as arguments of the declaration predicate
can be: i) the standard built-in mathematic predicates, and 4) the non predefined
predicates that evaluate information stored at the server.

Like for subjects, to make it possible to refer to the object to which the
request being processed refers, without need of introducing variables in the lan-
guage, we introduce the keyword object, whose appearance in a conditional
expression is intended to be substituted with the actual parameters of the re-
quest in the evaluation at access control time.

Ezxample 2. The following are examples of object expressions:

— declaration(equal (object.creator,user)) denoting all objects created
by the requester;

— declaration(lesser than(object.creation date,1971)) denoting all
objects created before 1971.

Conditions. We assume that the type of conditions that can be specified in the
conditions element are only conditions that can be brought to satisfactions at
run-time processing of the request. These conditions can be related to agreement
acceptance, payment fulfillment, or registration. Conditions can be associated
with data at different levels (i.e., attribute, credentials’ attributes and creden-
tials) and can be certified or uncertified. More precisely, conditions are boolean
formula of terms of the form:

— predicate name (arguments).

Note that the predicates specified in the conditions element can be: i) trusted-
based conditions stating that, for example, the requester should use a trusted
platform, i) the standard built-in mathematic predicates, and 4ii) the non pre-
defined predicates that evaluate information stored at the server.

Ezxample 3. The following is a simple example of condition.

— £ill in form(user,form1) checks if the requester has filled in form formlI.
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Obligations. They establish how the released PII must be managed by the coun-
terpart. For instance, obligations may state that some data should be deleted
after three time accessed, the owner of some data should be notified after every
access to the data, some data should be obfuscated or deleted after 3 months,
and so on. Obligations can be attached to a particular instance of release data
in order to give to the counterpart some rules that must be follow in the PII
management.

5 An Example

We now present an example of policy (other examples are omitted here for space
constraints) and a possible way of expressing policies by using an XML-based
syntax.

We define two namespaces: xmlns:pol is the namespace of the policy and
xmlns:ont is the namespace for the ontology statements. Every policy can con-
tain more than one rule combined through the combine-rule attribute. Each rule
has three main components:

— pol:target is the target of the policy (subject, object, action, purpose);

— pol:condition includes generic conditions (neither related to subject nor
object) such as assurance/trust conditions;

— pol:obligation includes further steps that the party must take in account
when the access is granted.

We now analyze the target component more in details. The target in-
cludes the pol:subject tag corresponding to the subject field described
in Section 4. Associated with the subject, there is the subject expression
(pol:subject-expression) that contains boolean operators (and, or) and a
set of constraints (pol:constraint). Every constraint has a type and is of the
form “left-value operator right-value”. The operator is a matching function, the
left-value (ont:datatype) have to be a class referencing an ontology structure
and the right-value (ont:instanceref) can be another class, an instance class,
or a literal (e.g., in the rule below the constrain is user.job = “doctor”). The
object and object expression have the same structure of the subject and subject
expression, respectively. Finally, the target includes an action (pol:action) and
a purpose (pol:purpose).

When a request is submitted to the system, the AC module selects all the
applicable policies by using the subject, object, action, and purpose specified in
the access request and then checks the (expanded) conditions inside the policies
to determine the access result (yes/no/undefined).

Example 4. Suppose that an access control policy stated that “A registered user
who works as a doctor, can read for research purposes data patientData with
the agreement of the patient”. This policy is expressed as follows.

registeredUsers WITH declaration (equal(user.work, "doctor")) CAN read FOR
research ON patientDatawithdeclaration (equal(object.patient agreement,yes))
IF no-condition FOLLOW no-obligation
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<pol:policy type="accessControl" combine-rule="first-grant"
xmlns:pol="http://example.com/policy-namespace"
xmlns:ont="http://example.com/ontology-namespace">
<pol:rule>
<pol:target>
<pol:subject>registeredUsers</pol:subject>
<pol:subject-expression>
<pol:constraint type="declaration">
<pol:function type="equal">
<ont:datatype>
<ont:user/> <ont:job/>
</ont:datatype>
<ont:instanceref>
<ont:user/> <ont:job/>
<ont:value>doctor</ont:value>
</ont:instanceref>
</pol:function>
</pol:constraint>
</pol:subject-expression>
<pol:object>patientData</pol:object>
<pol:object-expression>
<pol:constraint type="declaration">
<pol:function type="equal">
<ont:datatype>
<ont:object/> <ont:patient/> <ont:agreement/>
</ont:datatype>
<ont:value type="xsd:string">yes</ont:value>
</pol:function>
</pol:constraint>
</pol:object-expression>
<pol:action>read</pol:action>
<pol:purpose>research</pol:purpose>
</pol:target>
<pol:condition/>

<pol:obligation> ... </pol:obligation>
</pol:rule>
<pol:rule> ... </pol:rule>

</pol:policy>
Fig. 2. A simple example of policy

Figure 2 illustrates the policy expressed by using the XML syntax described
above. Note that our access control system operates also when the users want
to remain anonymous or disclosure only some attributes about themselves, pro-
tecting users privacy.

6 Conclusions

This paper has presented the preliminary results of our ongoing activity in the
framework of the PRIME project. Issues to be investigated include the filtering
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and renaming of policies and the addition of obligations. As discussed previously,
since access control does not return only a “yes” or “no” access decision, but
it returns the information about which conditions need to be satisfied for the
access to be granted (“undefined” decision), the problem of communicating such
conditions to the counterpart arises. The system should then provide meta-
policies for protecting the policy when communication requisites.
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Abstract. In [Schaad and Moffett, 2002] we have presented our initial inves-
tigations into the delegation of obligations and the concept of review as one
kind of organisational principle to control such delegation activities. This ini-
tial work led us to a more detailed and refined analysis of organisational con-
trols [Schaad, 2003], [Schaad and Moffett, 2004] with a particular emphasis on
the notion of general and specific obligations [Schaad, 2004]. In particular, this
distinction allowed us to formally capture how a principal may be related to an
obligation; how obligations relate to roles; and how the delegation of specific and
general obligations may be controlled through the concepts of review and super-
vision. This paper complements the delegation of obligation and authorisation
policy objects by discussing their revocation, based on the revocation schemes
suggested in [Hagstrom et al., 2001]. In particular, we will investigate how del-
egated general and specific obligations can be revoked and what effect the pres-
ence of roles has on the revocation process. We use the Alloy language and its
automated analysis facilities [Jackson, 2001] to formally support our discussion.

1 Introduction

Organisational control principles, such as those expressed in the separation of duties,
delegation of obligations, supervision and review, support the main business goals and
activities of an organisation. A framework has been presented in [Schaad, 2003] where
organisational control principles can be formally expressed and analysed using the Al-
loy specification language and its constraint analysis tools [Jackson, 2001]. Specifically
the delegation of obligations and arising review obligations has initially been treated in
[Schaad and Moffett, 2002] and later expanded in [Schaad, 2004]. The delegation of
policy objects must be complemented by their revocation. However, specifying revo-
cation controls may be very complex as, for example, demonstrated in the work of
[Griffiths and Wade, 1976], [Jonscher, 1998] or [Bertino et al., 1997], addressing revo-
cation of permissions in the context of operating and database systems. A more general
framework for revocation has only been proposed recently [Hagstrom et al., 2001]. This
is, however, limited to the revocation of permissions directly assigned to a principal and
does not include a notion of roles. Our paper explores how this revocation framework
can be applied for the revocation of obligation and authorisation policy objects in the
context of our control principle model. Specifically our distinction between general and
specific obligations requires a more detailed discussion of possible revocation schemes.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 28-39, 2005.
(© IFIP International Federation for Information Processing 2005
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The rest of this paper is structured as follows. Section 2 provides a summary of the
core static and dynamic concepts of our control principle model, a more detailed for-
mal discussion of which is provided in [Schaad, 2003]. Section 3 will then look at the
revocation of policy objects against the dimensions of resilience, propagation and dom-
inance, in particular focusing on the revocation of obligations. Section 4 summarises
and concludes this paper.

2 Definition of Policy Objects in the Control Principle Model

Within our control principle model [Schaad, 2003], policy objects are either authoriza-
tions or obligations, similar as those defined in Ponder [Damianou et al., 2001]. Princi-
pals, or the roles of which principals are a member of, may be subject to these policy
objects. In other words, a principal is related to a set of policy objects over the roles he
holds or on the basis of a direct assignment. The target of a policy object defines the
objects against which the actions of the policy are executed.

Authorisations state what a principal is permitted to do by using the actions defined
by the authorisation. Authorisations can be shared between principals through roles or
on the basis of direct assignments.

Obligation policies are an abstraction for defining the actions that must be per-
formed by a principal on some target object when some specified event occurs. We
extended the object model of [Damianou et al., 2001] and distinguish between general
obligations that may be assigned to a role or a principle (e.g. a general obligation to
process invoices from supply companies) and their specific instances (e.g. to process
the invoice il from supplier x1). To support this distinction we require the following
four rules to hold (these and are formally defined in [Schaad, 2004]):

1. An obligation instance must always relate to exactly one Principal.

2. An obligation instance has always one general obligation.

3. Every specific obligation a principal holds must be an instance of a general obliga-
tion he is a subject of through one of his roles or directly.

4. A general obligation can only have a principal or one of his roles as a subject, but
not both.

The s subject relation captures the assignment of a policy object to an object
(which can be a role, principal or other policy object). Using an approach called ob-
jectification of state [Jackson, 2001], we can model total order relationships of states,
where an expression like (s1.s subject).pl would result in all the policy objects
principal p1 is a subject of in state s1.

The first rule mentioned above demanding the direct assignment of an obligation
instance to a principal would thus translate as follows. Here & is the set intersection op-
erator and Principal the set of principals, while the expression obl. (s.s subject)
yields all the principals subject to an obligation instance obl:

fact {all s : State | all obl : ObligationInstance |
one (obl.(s.s_subject) & Principal)}
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For maintaining a history in such state sequences, we consider the following signa-
ture which maintains a DelegationHistory.

sig DelegationHistory{
delegating_principal : Principal,
receiving_principal : Principal,
based_on_role : option Role,
delegated_policy : PolicyObject
}

We do not maintain the information about which principal delegated which policy
object in the form of an explicit relation, but in an explicit signature with several bi-
nary relations. We can do this because we know that, for example, in the context of
the delegation of a policy, exactly one principal delegates exactly one policy object to
exactly one other principal in between two states. This cardinality is indicated by the
absence of the set keyword. The delegating principal may have chosen to delegate on
the basis of a direct assignment or over a role as indicated by using the option keyword.
Specifically this latter point could not be resolved in a n-ary relation like Principal
-> Principal -> Role -> PolicyObject as there is no kind of null value in Al-
loy that would allow us to express that no role but a direct assignment was used for
the delegation. A RevocationHistory and an AccessHistory signature have been
defined in a similar way in [2] together with a set of rules, that, e.g. define that for any
transition between states there can only be one history entry and other integrity preserv-
ing constraints. In essence, we can use Alloy to model sequences of states and define
and analyse object access, delegation and revocation activities over such sequences. The
history signature is then updated over the lifetime of such a sequence, and maintains,
for example, the changes in the s subject relation when moving from one state to
the next as possibly initiated by a delegation activity. This provides all the information
needed for supporting revocation activities.

3 Revocation of Policy Objects

In general, revocation of an object is based on its previous delegation and thus requires
the following pieces of information [Samarati and Vimercati, 2001]:

— The principals involved in previous delegation(s);
— The time of previous delegation(s);
— The object subject to previous delegation(s)

Our conceptual model provides this information through the defined history signa-
tures and may thus support the various forms of revocation as described in the revoca-
tion framework of [Hagstrom et al., 2001].

In this framework different revocation schemes for delegated access rights are clas-
sified against the dimensions of resilience, propagation and dominance. Since resilience
is based on negative permissions, we do not consider this here, as there is no correspond-
ing concept for the policy objects in our model (unlike Ponder [Damianou et al., 2001]
which does provide negative authorisation policies).
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The remaining two within our model dimensions may be informally summarised as
follows:

1. Propagation distinguishes whether the decision to revoke affects
— only the principal directly subject to a revocation (local); or
— also those principals the principal subject to the revocation may have further
delegated the object to be revoked to (global).

2. Dominance addresses conflicts that may arise when a principal subject to a revo-
cation has also been delegated the same object from other principals. If such other
delegations are independent of the revoker then this is outside the scope of revoca-
tion. If, however, such other delegations have been performed by principals who, at
some earlier stage, received the object to be revoked via a delegation path stemming
from the revoker, then the revoking principal may

— only revoke with respect to his delegation (weak);
— revoke all such other delegations that stem from him (strong).

Table 1. Revocation schemes

No Propagation Dominance Name

1 No No Weak local revocation

2 No Yes Strong local revocation
3 Yes No Weak global revocation
4 Yes Yes Strong global revocation

Based on these two dimensions, we established 4 different revocation schemes
which, due to the absence of the resilience property, are a subset of those described
by [Hagstrom et al., 2001]. These are summarised in table 1. We will now investigate
how far these schemes can be expressed and integrated with respect to our control prin-
ciple model and the specific types and characteristics of policy objects. The following
two sections will thus discuss the revocation of delegated policy objects along the lines
of the above revocation schemes.

3.1 Revoking Delegated Authorisations

Since authorisations are similar to the notion of permissions in [Hagstrom et al., 2001],
we will describe the four revocation schemes in terms of a possible delegation scenario.
We use function delegate auth(sl, s2, pl, p2, auth) to state that a principal
p1 delegated an authorisation auth to a principal p2 in state s1. Similarly, auth was
delegated by p1 to p3 in state s2; by p3 to p2 in state s3; by p2 to p4 in state s4;
by p2 to p5 in state s5; and finally by p6 to p4 in state s6. This is summarised in the
graph displayed in figure 1 where the nodes stand for the principals, and the arcs are
labeled with the respective delegation activity. We assume that in this specific above
example the principals always retain the authorisation they delegate. However, it must
be noted that in general a principal might decide to drop an authorisation at the time
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he delegates, which increases the complexity of delegation and revocation schemes as
shown in [Schaad, 2003].

A weak local revocation of an authorisation is the simplest case as it does not prop-
agate or dominate any other delegations of the authorisation. For example, if principal
p2 revokes auth from principal p5, then p5 will not hold auth anymore. If, however,
pl revokes auth from principal p2, then p2 will continue to hold auth due to the dele-
gation of auth by p3 in state s3.

A strong local revocation will address this later scenario, and if p1 strongly revokes
auth from principal p2 locally, then p2 will not continue to hold auth, however, p4
and p5 will. The strong revoke by p1 will only result in p2 losing auth completely,
because p3 had been delegated auth by p1 and then delegated it to p1. All delegations
of auth to p2 stem from p1. If, for example, p2 strongly revokes auth from p4, then
p4 will still hold auth because p2 has no influence on the delegation of auth by p6.

The weak global revocation addresses the revocation of policies which have been
delegated more than once through a cascading revocation. Thus, if p1 globally revokes
auth from principal p2 then this will result in p5 losing auth, but p2 and p4 will still
hold auth due to the delegation of auth by p3 and p6 in s3 and s6 respectively.

Letting p1 revoke auth from principal p2 strongly and globally, auth will then not
be held by p2 and p5 anymore, but p4 will still hold it due to the individual delegation

by pé.

delegate_auth (s6, s7, p6, p4, auth)

po6

delegate_auth(sl, s2, pl, p2, auth)

Fig. 1. A delegation scenario for delegating an authorisation auth

3.2 Revoking Delegated Obligations

The delegation of obligations should be complemented by revocation mechanisms as
well, and we investigate in the following whether the previously identified four revo-
cation schemes can also be applied in this context. Since we may delegate general and
specific obligations as discussed in [Schaad, 2004], their revocation must also be dis-
cussed separately.
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Revocation of Specific Obligations. We formally required an obligation instance to
be assigned to exactly one principal at any time [Schaad, 2004]. It is for this reason that
many of the problems we described for the revocation of authorisations cannot occur.
We illustrate this with respect to the two applicable dimensions of revocation:

— Dominance does not apply as it is not possible for a principal to have been delegated
the same obligation instance from different sources.

— Propagation may apply as a principal is able to delegate a delegated obligation.
However, when he delegates he may not retain this obligation.

With respect to the second point, we consider the example of a principal pl hav-
ing delegated an obligation instance iob to a principal p2 who in turn delegated it to a
principal p3. Should principal p1 now be able to revoke iob directly from p3 or only
from p2? We believe that a principal should only be able to revoke a delegated obli-
gation from the principal he delegated it to. The order of revocation thus corresponds
to the way the obligation was initially delegated. There may be organisations where a
direct revocation of iob from p3 by p1 may be desirable, e.g. a coercive organisation
with distinct command structures, where decisions may have to be made rapidly like a
hospital or military organisation [Mullins, 1999]. We do, however, not believe that any
further argumentation would contribute to the overall goal of this paper.

Revocation of General Obligations. We have argued in [Schaad, 2004] that the del-
egation of general obligations can be treated almost identically to the delegation of
authorisations. Thus, the underlying question here is whether this also applies to the
revocation of general obligations. To clarify this, we again look at the revocation of
general obligations with respect to the two dimensions of revocation considered in this
context:

— Dominance applies since a general obligation may be held by several principals.
These may independently delegate this obligation, perhaps to the same principal at
different times.

— Propagation applies since a general obligation may be delegated several times be-
tween principals.

Considering the first item, the question is whether the revocation of a multiply del-
egated obligation may override other delegations or not. This has been referred to as
strong and weak revocation respectively. We believe that this issue can be addressed
like the strong and weak revocation of authorisations, as long as the defined constraints
hold. The second item demands to distinguish between local and global revocation.
The latter possibly causes a series of cascading revocations if a general obligation has
been delegated several times. Again, this can be theoretically treated as in the case of
revoking authorisations, but some additional points must be considered.

The delegation of a general obligation may have been followed by the delegation or
creation of some instances of that general obligation. This may influence the revocation
of a general obligation, because of the constraint that a principal may only hold an obli-
gation instance if he has the corresponding general obligation. So if a general obligation
is revoked, then this should result in the revocation of any existing delegated instances
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for the principal subject to a revocation. A different situation may, however, be where
an instance has been created on the basis of a delegated general obligation. The ques-
tion is whether the revoking principal should be able to revoke an obligation instance
he did never hold and subsequently never delegated. One approach may be to demand
that the principal holding such instances must first discharge these before a delegated
general obligation can be revoked. Another option may be to allow for the delegation of
such an instance back to the revoking principal by the principal the general obligation is
revoked from. Whatever the decision, we believe that these points present no technical
difficulties with respect to the actual revocation activity. A more detailed discussion on
organisational aspects of revocation is, however, outside this scope.

3.3 Defining Revocation Mechanisms for the CP Model

Several procedural revocation algorithms exist, as for example defined in the papers of
[Griffiths and Wade, 1976], [Jonscher, 1998] or [Fagin, 1978]. However, the definition
of a revocation mechanism in a declarative way is a non-trivial task and the only work
we are aware of is [Bertino et al., 1997], which is unfortunately strictly tied to their spe-
cific authorisation model, and may also be difficult to understand without the possibility
of tool supported analysis.

One main underlying design principle of our model is that a declarative specifi-
cation of delegation and revocation operations should reflect their possible procedural
counterparts. This means that they only cause a change to the s subject relation with
respect to the actual objects involved in the delegation and revocation. This has also
been defined by a set of framing conditions that support each Alloy function. The strong
local and the weak and strong global functions may however also cause changes to the
s subject relation with respect to other objects not explicitly defined when calling a
revocation function, since this only describes what the resulting state should look like.
We thus argue in the following, that the strong local, and weak and strong global re-
vocation can all be modeled in terms of a series of weak local revocations. This weak
local revocation supports revocation of authorisation and obligation policies.

For this reason we only formally outline the function weak local revoke() and
point to the discussion in [Schaad, 2003]. The three remaining types of revocation are
discussed less formally, as they may be understood as a series of weak local revocations.

Weak Local Revocation. Before considering the weak local revocation of a policy
object in more detail, we informally recall some possible delegation scenarios that may
have an effect on the behaviour of a weak revocation. These scenarios consider whether:

1. A policy object may have been delegated by a principal on the basis of a direct or
role-based assignment; or whether
2. The principal a policy object was delegated to may have already been assigned with
the object
— either because he was assigned with the object at the time of system setup or;
— because of a prior (and not yet revoked) delegation from some other principal.
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Depending on the situation, a weak local revocation may behave differently with
respect to the changes in the s subject relation. For example, we consider that a prin-
cipal p1 delegates an authorisation policy object auth he directly holds to a principal
p2 in state s1. In this example, as a result of this delegation p1 loses auth. Principal
p2 is also delegated auth by some other principal p3 in state s2. In state s3 principal
p1 revokes auth from p2. Because of the delegation by p3 in state s2, p2 must not
lose auth. Principal p1 must be assigned with auth again and the revocation of auth
from p2 by p1 must be recorded by an update to the revocation history of state s3. A
variation of this scenario may be that principal p1 delegated auth in state s1 on the
basis of a role he is a member of. This would then mean that when he revokes auth
from p2 in s3, the s subject relation would not change at all. This is because of the
delegation by p3 in state s2 and the fact that the initial delegation by p1 in s1 was
based on a role, indirectly demanding the retainment of auth by p1 through his role
membership. Nevertheless, the revocation would still have to be recorded by an update
to the revocation history.

It would not be helpful to provide an exhaustive list of all such possible delegation
scenarios here, and the two above examples only reflect in parts the complexity of a
weak local revocation within our framework. There are, however, four general proper-
ties that need to be evaluated. These concern whether:

— there were multiple delegations of a policy object by and to the same principal;

— whether a role was used for delegation;

— whether there were multiple independent delegations;

— and whether the receiving principal was already subject to the delegated policy
object before any delegations.

Based on these two dimensions and more general above properties, we established
four different revocation schemes which, due to the absence of the resilience property,
are a subset of those described in the revocation framework by [Hagstrom et al., 2001].
This subset is summarised in table 1 and the following four function headers 1-4 outline
the behavior and expected return values.

These four functions are now composed to define the weak local revoke function
5. For reasons of space we only show the first half of this function. The revoking prin-
cipal p1 must have delegated a policy object pol to p2 for any revocation to succeed
(Precondition). If no role was used for the delegation (Case I) and the delegation
was performed on a direct assignment instead, then we check whether there were no
delegations of pol to p2 by other principals (Case I.1). This is sufficient as a prin-
cipal must not delegate the same object twice without an intermediate revocation as
defined in the precondition. If Case I.1 holds, then we check whether principal p2
held pol initially or not (Case I.1.a and I.1.b) and update the revocation history
and s subject relation accordingly.

If there were delegations by other principals (Case I.2) then we do not need to
check for any initial assignments and just update the revocation history and s subject
relation. The second part of the function checks for the case of a role having been
used for the delegation and is not shown here as it is similar in its structure to the first
part. The full function and sequence of delegations and revocations we used to test and
validate this weak local revocation with can be found in [Schaad, 2003].
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Alloy Function 1. The precondition of revocation. This function evaluates true if a
revoking principal p1 delegated the policy object pol to a principal p2 in some state
before the current state cstate and did not revoke pol from p2 between that delegation
and cstate.

fun revocation_precondition
(cstate: State, disj pl, p2: Principal, pol: PolicyObject) {...}

Alloy Function 2. A role was used for the delegation. This function evaluates true if
a principal pl delegated the policy object pol to p2 in a state before the current state
cstate on basis of a role-based assignment to pol.

fun role_was_used_for_del_of_pol
(cstate: State, disj pl, p2: Principal, pol: PolicyObject) {...}

Alloy Function 3. The object to be revoked was delegated by some other principal.
This function evaluates true if some principal p other than pl delegated the policy
object pol to principal p2 and did not revoke it before the current state cstate.

fun pol_was_delegated_by_other_p
(cstate: State, disj pl, p2: Principal, pol: PolicyObject) {...}

Alloy Function 4. The principal p2 a policy object pol is to be revoked from may have
held pol even before any prior delegation by the revoking principal pl. This function
evaluates true if principal p2 held pol directly in the first state of a state sequence.

fun rev_p_held_pol_initially
(cstate: State, disj pl, p2: Principal, pol: PolicyObject) {...}

Strong Local Revocation. A strong local revocation would be almost identical in its
specification. As in the function weak local revoke() we would have to check whether
a principal was delegated the policy object to be revoked from some other principal. If
this is true, like in the example in figure 1, and all delegations of an authorisation policy
object auth to a principal p2 stem from principal p1 requesting the revocation, then p2
will not be subject to auth anymore. On the other hand a strong local revoke of auth
from p4 by p2 would have no effect on p4’s assignment to auth due to the previous
delegation of auth to p4 by p6.

These scenarios emphasize again the need for not only keeping track of delegated
but revoked policy objects as well. Due to the underlying assumption of our model
that only one revocation may happen at a time, such a strong local revocation function
cannot be used directly, since it may change several relationships which we cannot keep
track of. Nevertheless it may be used to assert that a certain sequence of weak local
revocations would suffice for the definition of a strong local revocation. With respect to
figure 1 this would mean that a sequence of weak local revocations of auth from p2 by
p1 and p3 should be equal to a single strong local revocation of auth from p2 by p1.
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Alloy Function 5. Weak local revocation function composed of functions 1-4.

fun weak_local_revoke (disj sl, s2: State,
disj pl, p2: Principal,
pol: PolicyObject){

//Precondition: pl has delegated pol to p2 before sl
revocation_precondition(sl, pl, p2, pol) &&

//Case I: No role was used for this initial delegation
('role_was_used_for_del_of_pol(sl, pl, p2, pol) =>
//Case I.1: No other delegations occurred

(!pol_was_delegated_by_other_p(sl, pl, p2, pol) =>
//Case I.1.a: p2 did hold pol initially
(rev_p_held_pol_initially(sl, pl, p2, pol) =>
update_rev_history(sl, pl, p2, pol) &&
s2.s_subject = sl.s_subject + pol -> pl) &&
//Case I.1.b: p2 did not hold pol initially
('rev_p_held_pol_initially(sl, pl, p2, pol) =>
update_rev_history(sl, pl, p2, pol) &&
s2.s_subject = sl.s_subject + pol -> pl
- pol -> p2)) &&
//Case I.2: Some other delegation occurred
(pol_was_delegated_by_other_p(sl, pl, p2, pol) =>
update_rev_history(sl, pl, p2, pol) &&
s2.s_subject = sl.s_subject + pol -> pl)) &&

//The following second part contains the same cases
//if a role was used for the initial delegation.

}

Weak and Strong Global Revocation. Alloy has only recently started to support re-
cursion, an indispensable mechanism to support global revocation as we described it
in the previous section. At the time of writing our specification there was no available
documentation or examples for the use of recursion. Nevertheless, we felt that at least
an outline of how to define global revocation must be provided. The constraint analyser
could provide us with a reasonable level of assurance about the working of a global
revocation function as defined in [Schaad, 2003].

Weak and strong global revocations are similar in their effects to their local coun-
terparts, however, they also consider any possible further delegations of the object to be
revoked by the principal this object is revoked from. We have described this in the pre-
vious section and only want to point out some specific issues that need to be considered
when defining such a global revocation.

Since recursion is required to provide for a global revocation, this means that the
weak and strong global revocations functions consist of two parts. In the first part we
check whether the object pol had been initially delegated by the revoking principal
pl to p2 as previously outlined. In the second part we then need to check whether
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there was any further delegation of pol to some other principal p. If this is so, the
global revocation function calls itself, now with p2 being the revoking principal and p
being the principal pol is revoked from. An example of such a recursive revocation is
provided in [Schaad, 2003].

A series of weak local revocations may achieve the same result as weak and strong
global revocations, but we did not investigate this any further considering formal proof,
as there was not immediate need in the context of this paper.

4 Summary and Conclusion

In this paper we have provided a first possible approach to the revocation of policy
objects in the context of our control principle model presented in [Schaad, 2003]. This
approach followed the schemes as proposed in [Hagstrom et al., 2001], but due absence
of negative authorisations and the specific notion of general and specific obligations and
their respective assignment to roles and principals, not all categories of the scheme had
to be considered.

We see our work as particularly useful in the context of workflow systems and their
security, since our understanding of obligations as event-condition-action rules matches
the notion of tasks. Our general obligations then refer to the tasks at the workflow model
level, while specific obligations are the occurring instances at execution time of the
workflow. The delegation of such tasks may then trigger the delegation of the required
permissions.

However, there is remaining work. We need to further analyse the effect of revo-
cation activities on existing review obligations. In particular, we would like to support
revocation of an obligation instance by any principal in a delegation chain. Secondly,
we specified in our framework that an obligation has a set of supporting authorisations.
Although we did not fully investigate this relationship between authorisations and obli-
gations in the context of delegation and revocation activities, we could observe that the
delegation and revocation of authorisation objects may violate existing separation of
duty properties [Schaad, 2003]. In particular, we could show how dynamic separation
properties are "circumvented" by colluding principals with the right to delegate and re-
voke. This is not a new problem [Harrison et al., 1976] but still requires further analysis
from a business process engineering perspective.

Overall, we have now completed the majority of our conceptual work and will
look at the implementation of the concepts of delegation, review, evidence, revoca-
tion of general and specific obligations and the possible schemes and their practical
feasibility in more detail. In fact, the work on collaborative workflows suggested in
[Schulz and Orlowska, 2004] will offer interesting perspectives and SAP Research has
already implemented collaborative workflow prototypes within which our organisa-
tional control principles and delegation and revocation schemes can be implemented.
Together with analysis tools such as described in [Rits et al., 2005], we may then
achieve a tight match between workflow tasks and the required permissions at appli-
cation, middleware and database level.
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Abstract. During the past decade, there has been an explosion in the
complexity of software applications, with an increasing emphasis on soft-
ware design via model-driven architectures, patterns, and models such as
the unified modeling language (UML). Despite this, the integration of se-
curity concerns throughout the product life cycle has lagged, resulting in
software infrastructures that are untrustworthy in terms of their ability
to authenticate users and to limit them to their authorized application
privileges. To address this issue, we present an approach to integrate
role-based access control (RBAC) into UML at design-time for permis-
sion assignment and enforcement. Specifically, we introduce a new UML
artifact, the role slice, supported via a new UML role-slice diagram, to
capture RBAC privileges at design time within UML. Once captured,
we demonstrate the utilization of aspect-oriented programming (AOP)
techniques for the automatic generation of security enforcement code.
Overall, we believe that our approach is an important step to upgrading
security to be an indispensable part of the software process.

1 Introduction

In recent years, the importance of security in software systems has risen to a high
level. The typical approach of integrating security into software applications at
latter stages of the process can lead to serious security flaws. In order to minimize
this problem, security must be considered as a first-class citizen throughout the
software process. The issues that must be considered when adding security to
a software application include: security policy definition to capture the security
requirements using tools and artifacts to define and check for consistency in the
security rules in order to minimize errors; and, secure application implementation
to automatically generate security enforcement code that realizes and integrates
the security policy with the application code.

In support of security policy definition, we have employed the unified mod-
eling language, UML [17], which is the de facto standard for software modeling.
In UML, while there are parallels between security and UML elements, direct
support for security specification is not provided. Our ongoing work [9,8,7] has
focused on the inclusion of RBAC[12] and MAC[4] by aligning the concept of role
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with actor, and by adding security properties to use-case, class, and sequence
diagrams to capture MAC and RBAC characteristics as well as lifetimes (i.e.,
the legal time intervals of access to UML elements), and translate them into
constraints. In support of RBAC, an actor represents one organizational role as
defined by the security officer. This organizational role differs from actor-use-
case roles in UML, which are used by actors to communicate with each specific
use-case. Each security requirement constraint is characterized mainly by the
UML elements involved, and the type of the constraints (e.g., Static Mutual
Exclusion between actors and other non-actor elements). Intuitively, when the
designer creates, modifies, or deletes a design element, s/he has changed the
design to a new state with respect to the set of design elements that previously
existed. Over time, a UML design can be characterized as the set of all states
representing a specific design snapshot. Given a point of design time, a state
function returns the information of the design space (UML elements, connec-
tions and security requirements) and whether an element is validly applicable
at that design time. With the state information, we can perform security anal-
ysis to check the validity of the design, thereby providing a degree of security
assurance.

Our work to date distributes security definition across use cases, class and
sequence diagrams. While this has the advantage of closely associating security
with the involved UML elements, it has the disadvantage of having the com-
bination of the security permissions (security policy) not easily understood by
designers and programmers. To complement this effort, and to provide a more
seamless transition from design to code, we introduce a new artifact, the role
slice, to visually represent permissions among roles in RBAC. In addition, our
role-slice approach can separate the security aspect from the non-security as-
pects of code, by defining mappings to aspect-oriented programming (AOP) [15]
for enforcing the access control policies that have been defined. The role-slice
notation uses specialized class diagrams that define permissions and roles, in the
form of UML classes and stereotyped packages, respectively, and employs UML
stereotyped dependency relationships for representing role hierarchies, relying
on model composition [5] for defining the permissions for each role, according
to its position in the hierarchy. Since the role-slice diagram utilizes a structure
akin to a class diagram, in concept, this security extension to UML occurs at the
design level rather than analysis; however, MAC and RBAC defined for actors,
use-cases, etc., can all be leveraged as part of the process of defining role slices.

In support of secure application implementation, once the policy has been
defined and checked for consistency, the integration of security into an appli-
cation’s code can be greatly improved by an adequate modularization of the
security-enforcement code. Using AOP, our intent is to separate application’s
security and non-security code, providing the means to more easily identify and
locate security definitions when changes are required, thereby lessening the im-
pact of these changes on the application. Object-oriented design/programming
is centered around the ability to decompose a problem into a solution that cap-
tures only one concern (perspective) of an application. AOP addresses this limit
by providing the ability to independently specify multiple orthogonal concerns.
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To support this, AOP provides abstractions to define concerns with aspects, and
a compilation technique, aspect weaving, that integrates aspects with the main
application code via an AOP compiler. In this paper, we present the role-slice
artifact and its mapping to access-control enforcement code via aspects.

The remainder of this paper is organized into four sections. Section 2 explains
background concepts on RBAC, model composition, and AOP. Using this as a
basis, our presentation on a model for secure design is divided into two parts:
Section 3 details the definition of role slices; and, Section 4 describes techniques
for mapping these definitions to AOP enforcement code. Section 5 reviews other
related research efforts efforts, highlighting the influence to our work, and de-
tailing the commonalities and differences. Section 6 contains the conclusions and
reviews ongoing research.

2 Background Concepts

In this section, we review background concepts on role-based access control,
model composition, and aspect-oriented programming. Qur objective is to pro-
vide the necessary material to set the context of our work for subsequent sections.

2.1 Role-Based Access Control (RBAC)

Role-based access control, RBAC [12], is a security policy schema that assumes
that the owner of the information in a software system is not the users, but the
organization to which they belong. Moreover, RBAC states that the access to
that information must be constrained according to the role that each user has
been authorized and activated to interact with the system. User-role authoriza-
tion is based on a set of tasks that the user performs inside the organization [11].
Users are authorized to access the system via a specific role, which holds the set
of privileges that the user will have when interacting with the system.

There are several different interpretations for privileges or permissions, (we
use both terms interchangeably). Depending on the specific application in which
privileges/permissions are used, they can represent different concepts, such as:
file access permissions in filesystems; query executions, table access, column or
tuple access in database systems; or, instance access, class access, method access
or attribute access in object-oriented systems. When using the object-oriented
paradigm, there is a class model that represents the main structure and function-
ality of an application. Our assumption for incorporating RBAC into these kinds
of applications, is that permissions are defined over the set of public methods
present in the class model. For the purposes of the work on role slices presented
herein, we define a permission as the ability to invoke the method of a class. We
also consider negative permissions, which explicitly deny the right to invoke a
method.

2.2 Aspect-Oriented Programming (AOP)

Software systems are inherently complex, and as information technologies evolve
(e.g., faster CPUs, more memory, etc.), their complexity continues to increase.
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Software developers faced challenges in the past when trying to manage that
complexity, which they solved via abstraction and modularization mechanisms
in programming languages, which has evolved into object-oriented design (UML)
and programming (Java, C++, etc). As complexity of software applications con-
tinues to increase, there has been an emphasis on providing techniques that
reduce complexity while still promoting the ability to construct large-scale ap-
plications. One classic technique is separation of concerns that focuses on dis-
tinguishing all of the important concerns of an application in modular units,
allowing them to be managed independently. According to Tarr et al. [19], in
order to achieve this goal, software formalisms may be required to provide: de-
composition mechanisms that can partition the software into simpler pieces that
are easier to manage; and, composition mechanisms to join all of the component
elements into a complete system.

In the object-oriented paradigm, the main composition and decomposition
mechanism is the class, which while offering a degree of separation of concerns,
is limited in its ability to support crosscutting concerns, which are requirements
of an application that have two common problems:

Scattering: Many concerns, which are specified in the requirements, tend to
be implemented by using different classes both in the design specification
and in the source code. For instance, the code for implementing persistence
(e.g., connecting to a database via ODBC/JDBC and issuing queries) in a
banking application can be scattered among multiple classes.

Tangling: One class can implement several different requirements simultane-
ously. Using the example above, each class that has code to access the
database may also have code which is related to business requirements, such
as cash flow calculations, mortage rates, etc.

There are several approaches that address crosscutting concerns [15,19,13]. The
key idea for most of them consists of a new form of modularization that decom-
poses a model into pieces that, if defined and chosen carefully, can be mapped
easily from requirements specification into design artifacts and code. Each piece
may represent a particular view of the system (the crosscutting concern) con-
sisting of sets of code that (ideally) are designable and implementable separately
by independent developers.

One such alternative is aspect-oriented programming (AOP). AOP defines
a unit of decomposition, called an aspect, in order to isolate each crosscutting
concern code into one location, and a weaving mechanism, to compose the aspect
code with the rest of the application as part of the compilation process. Each
aspect specifies the way to integrate its code with the rest of the application by
using:

Join Points, which are points in the execution of the program where the oc-
curence of events of interest to the crosscutting concerns can be observed,
and where an aspect advice that reacts to such events is inserted.

Pointcuts, which are sets of join points that are defined through static syntactic
and semantic conditions on the context surrounding the joint point. For
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example, in AspectJ, pointcuts can be defined as all of the call sites to a
polymorphic method within a class hierarchy.

Advices, which contain the code that is intended to be woven at specific join
points specified within a pointcut.

Another approach to separation of concerns that complements AOP is model
composition [5], which has its roots in subject-oriented programming, SOP, [13]
and multidimensional separation of concerns [19]. Model composition is an ex-
tension to UML that decomposes a class model into pieces, called subjects, that
represent a particular view of the system. Subjects are essentially class models
that can be used to represent crosscutting concerns. Later, they are composed
into larger class models until the system is finished and has all of the required
functionality.

3 Role Slices and Secure Design

Role slices are intended to allow a software designer to capture security infor-
mation in parallel with class design. The role slice provides an abstraction to
collect information on the security of a role that cuts across all of the classes in
an application, and to organize this information into a role-slice diagram, simi-
lar in concept to a UML class diagram. In this section, we introduce role slices,
and their placement within the security design process. Specifically, Section 3.1,
presents an example used throughout this paper. Next, Section 3.2 explores the
role-slice artifact, including both positive and negative permissions. Lastly, Sec-
tion 3.3 considers other issues related to the usage of role slices for real-world
applications.

3.1 A Survey Institution Example

To serve as a basis for illustrating the concepts related to role slices and the
generation of aspect-oriented enforcement code, we define an example application
based on the following scenario:

A Survey Institution performs and manages public surveys. After the
raw data of the survey is collected, the senior staff person adds a survey
header into the database. Then, a senior or junior staff adds questions
into that survey, may categorize questions, or add a new question cat-
egory. Special questions with sensitive content are restricted to senior
staff, who are the only ones who can modify them. Fvery staff person
can search for surveys in the system, and, according to their privileges,
access them for modification. Some survey results are public, so they can
be accessed by anybody who is intersted in viewing the results.

For simplicity and space limits, we utilize a simple design model that is better
suited to explaining the concepts rather than a real-world design.
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Given this scenario, Fig. 1 shows the class diagram where: Public Survey
Results holds public data about statistics and questions; Survey List and Sur-
vey Header provide an interface to access and modify the information about
surveys. Since the class Public Survey Results holds only public data, we decide
to control access only to the subsystem defined by the classes Survey List and
Survey Header. We call this set of classes a secure subsystem.

Survey_List Survey_Header
+Add_Survey_Header () +Create_Survey_Header ()
+Survey_Title_Search() +Add_Question()
+Update_Survey_List () +Add_Special_Question()
+Delete_Survey_ Header () +Categorize_Question()

+Add_Question_Category ()

Public_Survey_Results

+Get_General_Statistics()

+Get_Questions ()

Fig. 1. Class Model of a Survey Management Application

3.2 Role Slices

A role slice is a structure that denotes the set of class methods that a given
role can access in an application. Since we may not want to apply security to
every class in the class model of the application, we define role-slice permission
assignment with respect to a secure subsystem; the classes Survey List and Sur-
vey Header in Fig. 1. Visually, we represent a role slice as a UML stereotyped
package containing a specialized class diagram, which is a subset of the class
model of the application. Fig. 2 contains a diagram with roles slices for: Staff
that contains common privileges; Senior Staff for users that have the ability to
add a survey header and survey questions; and, Junior Staff with more limited
access. Each class present in the role slice will have only methods that are as-
signed to the corresponding role as positive or negative permissions. An abstract
role slice, Staff in Fig. 2, is tagged with the value abstract, cannot be assigned to
a user, and is intended to be used as a mean to classify roles that have common
permissions.

To represent role hierarchies, we define the role-slice composition relationship,
which represents a hierarchical relationship between a child role slice and a
parent role slice. The child role slice inherits the permissions from the parent
role slice. Visually, we represent this relationship as a stereotyped dependency
arrow that starts in the child and points to the parent. This relationship is shown
in Fig. 2 with Senior Staff and Junior Staff as children of Staff. To obtain the
complete set of permissions for a role in a hierarchy, we utilize the composition
with override integration defined in [5], which composes two class diagrams by
unifying their classes and methods into one diagram. For role slices, we match



46 J.A. Pavlich-Mariscal et al.

<<RoleSlice>>
Staff
{abstract}

- <<RoleSlice>>
SUI’VQyﬁLISt Senior Staff
+<<pos>> Survey_Title_Search() Survey List
+<<pos>> Update_Survey_List() —

+<<pos>> Add_Survey_Header()
+<<pos>> Survey_Title_Search()
+<<pos>> Update_Survey_List()

Survey_Header

+<<pos>> Add_Question()
+<<pos>> Categorize_Question()
+<<pos>> Add_Question_Category()

Survey_Header

/I\ /\ +<<pos>> Create_Survey_Header()
<<RoleSIiceCompositioh>> +<<pos>> Add_Question()
<<RoleSliceCompositién>> I +<<pos>> Add_Special_Question()
[ <<RoleSlice>> | +<<pos>> Categorize_Question()
Junior Staff 1 +<<pos>> Add_Question_Category()

Survey_List <<RoleSlice>>
Junior Staff

+<<neg>> Update_Survey_List()

<<RoleSlice>>

Survey_List

Senior Staff

Survey_List +<<pos>> Survey_Title_Search()
+<<neg>> Update_Survey_List()

+<<pos>> Add_Survey_Header()

Survey_Header

Survey_Header

+<<pos>> Add_Question()

+<<pos>> Create_Survey_Header() +<<pos>> Categorize_Question()
+<<pos>> Add_Special_Question() +<<pos>> Add_Question_Category
Fig. 2. Role-Slice Diagram Fig. 3. Composed Role-Slice Diagram

the names of the classes (i.e., classes with the same name in both role slices
compose into one class in the final diagram), and make the child override any
permission definition in the parent.

We define permissions for the roles in Fig. 2 as follows: Staff is abstract and
cannot be assigned to a user; and, Senior Staff and Junior Staff, which are non-
abstract roles and assignable to users. The Staff role defines a set of common
permissions: Survey Title Search, Update Survey List, Add Question, Catego-
rize Question and Add Question Category. For Senior Staff, the assigned meth-
ods are: Add Survey Header, Create Survey Header, and Add Special Question.
For Junior Staff, no permissions are directly assigned, but the permission to
call Update Survey List is explicitly denied. Note that the method stereotypes
< pos > and < neg > are used in the UML role-slice diagram for representing
positive and negative permissions, respectively. The final set of permissions for
each non-abstract role is defined through the composition of every non-abstract
role slice with their ancestors, as shown in Fig. 3. Each final role slice has the
union of all of the permissions from the ancestors (in this case, the parent Staff)
and the respective child (Senior Staff or Junior Staff), with the exception of Up-
date Survey List, which was overriden and restricted (negative) by Junior Staff.
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3.3 Considerations for Real-World Scenarios

The main objective of the role-slice model is to represent a complex access control
policy in a diagram that is easy to modify by security officers, and easy to
understand by software designers and developers. From a practical standpoint,
some issues must be taken into account:

— Any reasonably-sized application contains hundreds of classes, and the first
critical decision in the security-policy definition process is to determine the
subset of these classes to be included in the secure subsystem. A good ap-
proach is to only include the classes in the domain model that require access
control and to exclude classes related to other concerns (e.g., I/O libraries,
GUI components, etc.), since their presence would clutter the definition of
role slices.

— The conceptualization of permissions during software development must be
both be comprehensive and easy to understand by security officers and de-
signers. To facilitate this, the composition relationship can be used to not
only generate the final set of permissions for a security policy, but also to
represent the permissions of each role at any point during the software pro-
cess. This is especially useful when designing large role hierarchies, since the
permissions of a concrete role can be difficult to visualize when spread across
a significant portion of the role hierarchy.

Overall, issues related to the definition of security policies, their realization
via role-slice diagrams, and the interplay of role-slice diagrams and application
classes, are all critical to fully integrate the approach into the software process.

4 Mapping Role Slices to an Aspect-Oriented Application

This section details the transformation of role-slice definitions (as given in Sec-
tion 3) into the application’s code using aspect-oriented programming (AOP).
Recall that the main purpose of a role slice is to define the access-control policy
of an application regarding the authorized or prohibited methods (permissions)
for each user (playing that role) interacting with the application. To map this
information to aspect-oriented code and control the access to a method, it is
necessary to check whether that method is denied for the active role (the role
that the current user has when logged in) and raise an exception if that occurrs;
otherwise, the method is allowed to execute. This process is achievable with a set
of AOP advices. All of the information for security permissions (role slices) are
stored in a database. When a user logs into the system, an access-control aspect
obtains its role-slice permissions by intercepting the login method in the class
model and retrieves from the database the pertinent role slice for the user based
on his/her credentials. For method permissions, an advice intercepts every call
to methods in the secure subsystem (the classes Survey List and Survey Header
in Fig. 1), made from methods external to the subsystem (every call that orig-
inates from Public Survey Results in Fig. 1), and allow their execution if and
only if they are defined as a positive permission in the corresponding role slice.
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The process of mapping from a role-slice diagram to aspect-oriented enforce-
ment code will ultimately be automated with a code generator as shown in Fig. 4.
This tool, currently under development at UConn, takes a role-slice specification
(diagram and composed slices) as input, and outputs:

— A policy database that contains all of the information on roles and permis-
sions (as defined in the composed role slices), and an authorization schema
to store user instances and their assigned roles. We assume that a user is
only permitted to play a single role at any given time (but can switch roles).

— An access-control aspect with the following characteristics:

e The role-slice specification, particularly the secure subsystem definition,
identifies the method invocations subject to access control. From this
information, pointcut definitions for the access-control aspect are ob-
tained.

e The advice code that is woven at the pointcuts defined previously, must
have access to the policy database, and be able to grant or deny access
to a user invoking access controlled methods, based on his/her active
role, and the call site.

Access-Control
Aspect

; &I > Code
| & Generator
. _

Role Slice
Specification

Policy Database

Fig. 4. Code Generator Scheme

We now explore an example aspect code, generated by our prototype, that en-
forces access control for the survey management application. Different portions
of this aspect, implemented in AspectJ, are shown in Figs. 5, and 6.

Fig. 5 illustrates the portion of the access-control aspect that obtains the
current active user. The login pointcut references a call to a method in the
class SecurityAdmin, which returns the authenticated user. In this example,
assume a multi-threading environment where each thread serves only one user.
The advice using the pointcut stores the active user identification in a thread’s
local storage area.

Fig. 6 illustrates the code of the aspect that controls the access to methods
from call sites outside the secure subsystem. The externalCall pointcut iden-
tifies all of the calls made to classes in the secure subsystem (i.e., Survey List
and Survey Header), that originate from exogenous call sites. The advice code
associated to this pointcut definition obtains the user’s active role, and checks
if s/he has a positive permission for to the intercepted method call. If not, an
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public aspect AccessControl {
pointcut login() : call(User SecurityAdmin.logIn(..));

User around():login() {
User u = proceed();
activeUser.set(u);
return u;

}

private ThreadlLocal activeUser = new ThreadLocal() {
protected Object initialValue() {
return null;
}
};

private User getActiveUser() {
return (User)activeUser.get();

}
Fig. 5. Obtaining Active User

exception is raised. Due to Java’s semantics for exception handling, only runtime
exceptions can be raised from this aspect. In summary, this example as given
in Figs. 5 and 6, clearly illustrates the basic elements of the mapping from role
slices to AOP enforcement code. Note that we are currently in the process of
formalizing and implementing the role-slice code generator, as part of our overall
prototyping work using Borland’s UML tool Together Control Center [9,8,7].

public aspect AccessControl {

pointcut externalCall() : (call(x Survey_List.*(..)) || call(x Survey_Header.*(..)))
&& 'within(Survey_List) && !within(Survey_Header);
before() : externalCall() {
Role r = getActiveUser().getActiveRole();
if (!r.hasPosPermission(thisJoinPointStaticPart)) {
throw new org.aspectj.lang.SoftException(new PermissionDeniedException());

}

Fig. 6. Checking of Permissions from Outside Calls

5 Related Work

In terms of related research, role slices are based on [10], which proposes a
Network Enterprise Framework using UML to represent RBAC requirements for
a specific framework given in [20]. Permissions are represented as methods of an
interface-like artifact called object handle. Object handles are grouped in keys,
which are stereotyped UML packages; role hierarchies are achieved by interface
inheritance. In our approach, permissions are also represented as methods but, in
contrast, they are grouped in role slices, which define specific rules of composition
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for them. Role slices also add negative permissions and permission overriding by
descendent role slices. Our approach aims to be implementation-independent for
object-oriented systems.

Another effort that relates to role slices is [3], which defines a metamodel
to generate security definition languages. SecureUML [3,16] is an instance de-
fined by this approach; a platform-independent security definition language for
RBAC. The syntax of SecureUML has two parts: an abstract syntax indepen-
dent from the modeling notation; and, a concrete syntax which can be used as
an extension to a modeling language, such as UML. The abstract syntax de-
fines basic elements to represent RBAC: roles, which can be assigned to users
or groups of users; permissions, which are assigned to roles based on specific as-
sociated constraints; and, actions, which are associated with permissions, where
a role can have a permission to execute one or more actions. Actions can be
atomic, which means that they can be mapped directly to an action in the tar-
get platform, or composite actions, which are higher-level actions that may not
be mapped directly to the target platform, and may contain lower-level actions
within them. SecureUML’s concrete syntax is defined by mapping elements in
the abstract syntax to concrete UML elements [3]. We note that our role-slice
diagram and associated concepts can be an instance of the concrete-syntax of
the SecureUML notation, and that our syntax and associated mappings to UML
elements differ from their approach. We also note that the role-slice diagram is
only one component of our overall research. Specifically, our usage of compo-
sition in the role-slice diagram and the subsequent transition of the composed
diagram into AOP enforcement code, is significantly different than the approach
in SecureUML.

Another related approach, AuthUML [1,2] focuses on a process and a mod-
eling language to express RBAC policies using only use cases. Permissions are
defined by allowing or denying to actors the execution of use cases, and at a
lower level, the execution of finer-grained conceptual operations that describe
use-case behavior. Prolog-like predicates are used to represent the information
and to check its consistency. In contrast, our approach uses classes to group
permissions (methods), and role slices to group the entire set of permissions for
a role. We do not define a specific process to develop software, so the decision
of the way to utilize role slices to represent security information depends on the
designers and developers. If the design of a particular application mapped each
use case to a class, and each conceptual operation of a use case to a method,
then both approaches would represent the same information about permissions.

The UMLsec approach [14] is another effort in security modeling related to
our research. UMLsec is an extension to UML that defines several new stereo-
types towards formal security verification of elements such as: fair exchange to
avoid cheating for any party in a 2-party transaction; secrecy/confidentiality of
information (accessible only to the intended people); secure information flow to
avoid partial leaking of sensitive information; and, secure communication links
like encryption. As currently structured, the UMLSec model is not tightly tied
to RBAC, but the information it represents can be used to outline access control
policies.
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Regarding the aspect-oriented paradigm, [18] contains an example of com-
position of access-control behavior into an application by using aspect-oriented
modeling techniques, with the aim of integrating security into a class model that
allows designers to verify its access-control properties. Their approach takes a
generic security design and instantiates it in a model tied to the domain of the
application. In contrast, our code generation also requires the instantiation of
the design, but only the access control aspect has dependencies with the domain
class model. In addition, the role-slice notation provides a language to represent
the policy that can be implemented using the aspect-oriented paradigm.

Another similar effort [6], provides a general framework to incorporate secu-
rity into software using AOP. Similarities to our work include: the management of
authentication; and, the interception of method invocations to constrain them
based on permissions. The main difference is related to permissions. In their
work, each permission is represented as a specific method tied to a framework of
server objects that define them, and a set of client objects that invoke them. In
contrast, in our role-slice approach, permissions are definable over any method
in the class diagram, regardless of its structure.

6 Conclusions and Future Work

This paper has presented our efforts to define a new UML artifact to capture
RBAC, the role slice and an associated diagram, and has detailed the transition
from a role-slice diagram to security enforcement code, based on aspect-oriented
programming (AOP). We believe that the role-slice notation, as presented in this
paper, can assist designers and developers in the conceptualization of security
policy, and facilitate its evolution throughout the design process. In addition, the
automated mapping from a role-slice diagram (composed) to AOP enforcement
code can provide a seamless transition from a security specification to code, and
greatly facilitate the separation of concerns at the implementation level.

Ongoing and future research is focusing on achieving security policy com-
position via AOP, with the potential to also consider other, similar paradigms.
We are interested in enhancing our model with additional security concerns, in-
cluding: mandatory access control for security of methods based on classification
and clearance; and, delegation for the ability to pass on authority (role) from
one user to another. With three separate concerns (RBAC, MAC, and delega-
tion), we must have the ability to compose any combination, which may require
dynamic weaving of more than one set of constraints for access control, and the
definition of different policies for separated secure subsystems. To facilitate this
work on analysis and security extensions, we are formalizing role slices and their
mapping to access-control aspects.

Another planned topic of research is to refine the definition of permissions, so
they can support a wider-range of requirements. Specifically, we are interested in
defining instance-based permissions, where roles would be authorized to invoke
a method based on the instance of its class, and the value of their parameters.
For example, different Senior Staff members in our example might be in charge
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of different surveys; even if their roles are the same, we would want the role
parameterizable by instance so that they are restricted to particular survey in-
stances. This research is related to aspect compilers, since it needs an aspect
language that could support dynamic (runtime) join points that can be selected
according to instance data (class instances, parameters), so that access control
can be implemented seamlessly.

Lastly, we continue our joint implementation effort, focusing on integrating
the work described herein with our other UML research [9,8,7]. Our objective
is to provide a complete modeling framework from analysis and design through
coding, which will also include the implementation of a role-slice diagramming
tool, and the mapping from role slices to AOP security enforcement code. We are
utilizing Borland’s UML tool Together Control Center in support of this effort.
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Abstract. The conventional way to speedup queries execution is by
using indexes. Designing secure indexes for an encrypted database envi-
ronment raises the question of how to construct the index so that no in-
formation about the database content is exposed. In this paper, the chal-
lenges raised when designing a secure index for an encrypted database
are outlined; the attacker model is described; possible attacks against se-
cure indexes are discussed; the difficulty posed by multiple users sharing
the same index are presented; and the design considerations regarding
keys storage and encryption granularity are illustrated. Finally, a secure
database-indexing scheme is suggested. In this scheme, protection against
information leakage and unauthorized modifications is provided by us-
ing encryption, dummy values and pooling. Furthermore, the new scheme
supports discretionary access control in a multi-user environment.

1 Introduction

Increasingly, organizations prefer to outsource their data center operations to
external application providers. As a consequence of this trend toward outsourc-
ing, highly sensitive data is now stored on systems that are not under the data
owners’ control. While data owners may not entirely trust providers’ discretion,
preventing a provider from inspecting data stored on their own machines is dif-
ficult. For this kind of service to work successfully, it is of primary importance
to provide means of protecting the secrecy of the information remotely stored,
while guaranteeing its availability to legitimate clients [1].

Communication between the client and the database service provider can be
secured through standard means of encryption protocols, such as SSL (Secure
Socket Layer), and is therefore ignored in the remainder of this paper. With
regard to the security of stored data, access control has proved to be useful, on
condition that data is accessed using the intended system interfaces. However,
access control is useless if the attacker simply gains access to the raw database
data, thus bypassing the traditional mechanisms [2]. This kind of access can
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easily be gained by insiders, such as the system administrator and the database
administrator (DBA).

Database encryption introduces an additional layer to conventional network
and application security solutions and prevents exposure of sensitive information
even if the raw data is compromised [3]. Database encryption prevents unautho-
rized users from viewing sensitive data in the database and, it allows database
administrators to perform their tasks without having access to sensitive infor-
mation. Furthermore, it protects data integrity, as unauthorized modifications
can easily be detected [4].

A common technique to speed up the execution of queries in databases is
to use a pre-computed index [5]. However, once the data is encrypted, the use
of standard indexes is not trivial and depends on the encryption function used.
Most encryption functions preserve equality, thus, "Hash” indexes can be used,
however information such as the frequencies of indexed values is revealed. Most
encryption functions do not preserve order, so ”B-Tree” indexes, can no longer
be used once the data is encrypted.

Moreover, if several users with different access rights use the same index,
each one of them needs access to the entire index, possibly including indexed
elements that are beyond his access rights. For example, Google Desktop, allows
the indexing and searching of personal computers data. Using this tool, a legit-
imate user is able to bypass user names and passwords and view personal data
belonging to others who use the same computer, since it is stored in the same
index [6].

The contribution of this paper is threefold. First, we describe the challenges
arising when designing a secure index for an encrypted database. Second, we
outline design considerations regarding keys storage and encryption granularity.
Third, we present a new indexing scheme that answers most of these challenges.

The remainder of the paper is structured as follows: in section 2, related
works are outlined; in section 3, the problem statement is defined; in section 4,
design considerations regarding database encryption are described; in section 5,
we present a new secure database index; and section 6 presents our conclusions.

2 Related Work

The indexing scheme proposed in [7] suggests encrypting the whole database
row and assigning a set identifier to each value in this row. When searching a
specific value, its set identifier is calculated and then passed to the server, who,
in turn, returns to the client a collection of all rows with values assigned to the
same set. Finally, the client searches the specific value in the returned collection
and retrieves the desired rows. In this scheme, equal values are always assigned
to the same set, so some information is revealed when statistical attacks are
applied, as stated in [1].

The indexing scheme in [1] suggests building a B-Tree index over the table
plaintext values and then encrypting the table at the row level and the B-Tree at
the node level. The main advantage of this approach is that the B-Tree content
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is not visible to the untrusted database server. However, only the client can now
perform the B-Tree traversal, by executing a sequence of queries. Each query
retrieves a node located at a deeper level of the B-Tree.

The indexing scheme provided in [2] is based on constructing the index on
the plaintext values and encrypting each page of the index separately. Whenever
a specific page of the index is needed for processing a query, it is loaded into
memory and decrypted. Since the uniform encryption of all pages is likely to
provide many cipher breaking clues, the indexing scheme provided in [8] pro-
poses encrypting each index page using a different key depending on the page
number. However, these schemes, which are implemented at the level of the op-
erating system, are not satisfactory, since in most cases it is not possible to
modify the operating system implementation. Moreover, in these schemes, it is
not possible to encrypt different portions of the database using different keys.
The disadvantage of using only one key is discussed in subsection 3.6.

The database encryption scheme in [4] suggests encrypting each database cell
with its unique cell coordinates u (T, R, C') and each index value concatenated
with its unique row identifier, as illustrated in Fig. 1.

Figure 1 illustrates the database and index encryption as described in [4].
The use of cell coordinates for the encryption of the database table and of row
identifiers for the index entries, ensures that there is no correlation between

a) Table T before Encryption b) Index before Encryption
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¢) Encryption of Table T in [4] d) Encryption of the Index in [4]

Row C Row | Struc. Data
0 E,(10® (T,0,C)) 0 1,2 E (10110
1 E (5®u(T.1,0)) 1 34 E (5111)
2 E (39 u(T20) 2 5,6 E (15113)
3 E (150 (T 3,0)) 3 6 E(312)
4 E (17® (T 4,C)) 4 5 E (716)
5 E,(13® (T 5,C)) 5 4 E, (13115)
6 E (7® u(T,6,C)) 6 E (17114)

Fig. 1. Database and index encryption as described in [4]
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the indexed values and the database ciphertext values. However, this indexing
scheme is not resistant to tampering attacks.

The encryption function suggested in [9] preserves order, and thus allows
range queries to be directly applied to the encrypted data without decrypting
it. In addition it enables the construction of standard indexes on the ciphertext
values. However, the order of values is sensitive information in most cases and
should not be revealed.

In [10], a smart card with encryption and query processing capabilities is
used to ensure the authorized and secure retrieval of encrypted data stored on
untrusted servers. Encryption keys are maintained on the smart card. The smart
card can translate exact match queries into equivalent queries over encrypted
data.

In [11], the security of databases stored on smart cards is explored. However,
retrieval performance is not the focus of their work and it is not clear how much
of their techniques applies to general-purpose databases not stored on smart
cards, as stated in [9)].

3 The Problem Statement

3.1 The Attacker Model

The attacker can be categorized into three classes: Intruder - A person who gains
access to a computer system and tries to extract valuable information. Insider -
A person who belongs to the group of trusted users and tries to get information
beyond his own access rights. Administrator - A person who has privileges to
administer a computer system, but uses his administration rights in order to
extract valuable information [10].

All of the above attackers can use different attack strategies: Direct storage
attacks - Attacks against storage may be performed by accessing database files
following a path other than through the database software, by physical removal
of the storage media or by access to the database backup disks. Indirect Storage
attacks - An adversary can access schema information, such as table and column
names, metadata, such as column statistics, and values written to recovery logs in
order to guess data distributions. Memory attacks - An adversary can access the
memory of the database software directly [9] (The last one is usually protected
by the Hardware/OS level).

3.2 Information Leakage

According to [4], a secure index in an encrypted database should not reveal any
information on the database plaintext values. We extend this requirement, by
categorizing the possible information leaks:

Static leakage - Gaining information on the database plaintext values by
observing a snapshot of the database at a certain time. For example, if the
index is encrypted in a way that equal plaintext values are encrypted to equal
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ciphertext values, statistics about the plaintext values, such as their frequencies
can easily be learned.

Linkage leakage - Gaining information on the database plaintext values by
linking a database value to its position in the index. For example, if the database
value and the index value are encrypted in the same way (both ciphertext values
are equal), an observer can search the database ciphertext value in the index,
determine its position and estimate its plaintext value.

Dynamic leakage - Gaining information about the database plaintext values
by observing and analyzing the changes performed in the database over a period
of time. For example, if a user monitors the index for a period of time, and if in
this period of time only one value is inserted (no values are updated or deleted),
the observer can estimate its plaintext value based on its position in the index.

3.3 Unauthorized Modification

In addition to the passive attacks that monitor the index, active attacks that
modify the index should also be considered. Active attacks are more problematic,
in the sense that they may mislead the user. For example, modifying index
references to the database rows may result in queries returning erroneous set of
rows, possibly benefiting the adversary.

Unauthorized modifications can be made in several ways: Spoofing - Replac-
ing a ciphertext value with a generated value. Splicing - Replacing a ciphertext
value with a different ciphertext value. Replay - Replacing a ciphertext value
with an old version previously updated or deleted [11].

3.4 Structure Perseverance

When applying encryption to an existing database, it would be desirable that
the structure of the database tables and indexes is not modified during the
encryption. This ensures that the database tables and indexes can be managed
in their encrypted form by a database administrator as usual, while keeping the
database contents hidden. For example, if a hash index is used and the values
therein do not distribute equally, performance might be undermined, and the
DBA might wish to replace the hash function. In such a case, the DBA needs to
know structure information, such as the number of values in each list, but does
not need to know the values themselves.

3.5 Performance

Indexes are used in order to speed up queries execution. However, in most cases,
using encrypted indexes causes performance degradation due to the overhead of
decryption. Indexes in an encrypted database raise the question of how to con-
struct the index so that no information about the database content is revealed,
while performance in terms of time and storage is not significantly affected.
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3.6 Discretionary Access Control (DAC)

In a multi-user (discretionary) database environment each user only needs access
to the database objects (e.g., group of cells, rows and columns) needed to perform
his job.

Encrypting the whole database using the same key, even if access control
mechanisms are used, is not enough. For example, an insider who has the en-
cryption key and bypasses the access control mechanism can access data that
are beyond his security group. Encrypting objects from different security groups
using different keys ensures that a user who owns a specific key can decrypt only
those objects within his security group [15]. Following this approach, different
portions of the same database column might be encrypted using different keys.
However, a fundamental problem arises when an index is used for that column
as illustrated in Fig. 2.

- Security Group A

L]
[ - Security Group B
[ |

User Query

- Security Group C

Fig. 2. An Indexed Column Encrypted using Different Keys

Figure 2 illustrates an index that is queried by users who belong to different
security groups. Each one of them needs access to the entire index, possibly to
indexed elements, which are beyond their access rights. The same problem arises
when the index is updated.

4 Design Considerations

4.1 Key Storage

One important issue in any encrypted database is that of keys storage [1,2,12].
Several alternatives were proposed in the literature:
Storing the encryption keys at the server side - The server has full access to
the encryption keys. All computations are performed at the server side.
Storing encryption keys at the client side - The client never transfers the
keys to the server and is solely responsible for performing all encryption and
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decryption operations. When the database server has no access to the encryption
keys, most computations cannot be performed at the server side, since they
require decryption.

Keys per session - The database server has full access to the encryption keys
during the session but does not store them on disk. This ensures that during the
session, the user transaction can be performed entirely at the server side.

Table 1 summarizes the dependency between the trust in the server and the
keys storage. If we have no trust in the database server, we would prefer to keep
the encryption keys at the client side only. In cases where the database server
itself is fully trusted, but its physical storage is not, we can store the keys at the
server side in some protected region.

Table 1. Keys Storage vs. Trust in Server

Server Side Keys per Session Client Side

Absolute + + +
Partial - + +
None - - +

4.2 Encryption Granularity

Index encryption can be performed at various levels of granularity: single values,
nodes, pages or whole index. When choosing the level of granularity, the following
should be considered (see Table 2):

Information Leakage - The higher the level of encryption granularity, the
less information is revealed. Single values level encryption of the index reveals
sensitive information, such as frequencies of the index values. Whole Indez level
encryption ensures that information about the indexed data cannot be leaked,
since the index is encrypted as one unit.

Unauthorized Modifications - Encryption at higher levels of granularity makes
it harder for the attacker to tamper with the data. Single values level encryption
of the index allows an attacker to switch two ciphertext values without being
noticed. Whole Index level encryption implies that a minor modification to the
encrypted index has a major effect on the plaintext index and can easily be
detected.

Structure Perseverance - Higher levels of encryption granularity conceal the
index structure. Whole Index level encryption changes the structure of the index
since the basic element of reference is changed from a single value to the entire
index. Single values level encryption of the index preserves its structure.

Performance - Finer encryption granularity affords more flexibility in allow-
ing the server to choose what data to encrypt or decrypt. Whole Index level
encryption requires the whole index to be decrypted, even if a small number of
index nodes are involved in the query. Single values level encryption of the index
enables decryption of values of interest only.
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Table 2. Comparing Different Levels of Encryption Granularity

Information Unauthorized Structures  Performance

Leakage Modifications Perseverance
Single values Worst Worst Best Best
Nodes Low Low Medium Medium
Pages Medium Medium Low Low
Whole Index Best Best Worst Worst

Better performance and preserving the structure of the database cannot be
achieved using pages or whole index encryption granularity. However, special
techniques can be used in order to cope with unauthorized modifications and
information leakage, when single values or nodes granularity encryption are used.

In our scheme, which is presented in the remainder of this paper, we assume
that the encryption keys are kept per session and that the index is encrypted at
the single values level of granularity.

5 A New Secure Database Index

In this section, a secure database index, encrypted at the single values level
of granularity is suggested. Best performance and structure perseverance are
simply obtained since single values granularity encryption is used. Information
leakage and unauthorized modifications are protected against using encryption,
dummy values and pooling. Finally, a technique that supports discretionary
access control in a multi-user environment is presented.

5.1 Encryption
Let us assume that a standard index entry is of the form:
(Vire, IRs, ER) (1)

Where:

Vire - An indexed value in table ¢, row r and column c.

IRs - The internal reference (references between index entries)
ER - The external reference (reference to the database row).

An entry in the proposed secure index is defined as follows:

Where:

k - An encryption key.

E} - A nondeterministic encryption function.

Ej, - An ordinary encryption function.

SR - The entry self reference.

MAC) - A message authentication code function.
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The FEj; Function. The implementation of E} introduces a tradeoff between
static leakage and performance (see Table 3). If Fj, is a non-deterministic encryp-
tion function (that is, equal plaintext values are encrypted to different ciphertext
values), statistics such as the frequencies and distribution of values are concealed,
but comparing index values requires their decryption. On the other hand, if Ej
is an order preserving encryption function, some information about the index
values is revealed (e.g., their order) but it is possible to compare values without
the need to decrypt them.

Table 3. The Tradeoff between Security and Performance for Ej implementation

Security Performance

Nondeterministic High Worst

Equality Preserving Medium Low
Order Preserving Low Medium

No Encryption Worst High

We suggest using a non-deterministic E. A possible implementation of Fj
follows:
B (x) = Ej/(x|Ir) (3)

Where:

k - An encryption key.

E} - An ordinary encryption function.

r - A random number with a fixed number of bits.

Using the above implementation of Ej there is no correlation between
Ei(Vire) and the corresponding column ciphertext value (random numbers are
used before encryption) and thus linkage leakage attacks are eliminated.

The M AC}) Function. Most commercial databases implement indexes like
tables (as heap files). In this implementation, index entries are uniquely identified
using the pair: page id and slot number [5] (in our notations SR and IR).

Message authentication codes (MAC) are used to protect against unautho-
rized modifications of messages. They mix the message cryptographically under
a secret key, and the result is appended to the message. The receiver can then
recompute the MAC and verify its correctness. It should be impossible for an at-
tacker to forge a message and still be able to compute the correct MAC without
knowing the secret key.

In our scheme, we use a M AC, function to protect the index entries against
unauthorized modifications. Spoofing attacks are eliminated, since the MAC
value depends on Vj,.., and once Fy (Vi) is tampered with, V4. will not match
the V4. used in the MAC. Splicing attacks are eliminated since the MAC value
depends on SR and trying to substitute two encrypted index entries will be
detected, since SR would not match the SR used in the MAC. Replay attacks



Designing Secure Indexes for Encrypted Databases 63

can be eliminated by adding a new dimension, that of time, to each index node.
This enables the validity of the node version to be verified, just as SR was used
in order to verify its logical location.

The MAC value added to each index entry causes data expansion and thus,
its size introduces a tradeoff between security and data expansion.

Evaluating a Query. The following pseudo code illustrates a query evaluation
using the encrypted index ':

INPUT:
A table: T
A column: C
A value: V

A query: SELECT * FROM T WHERE T.C>=V

OUTPUT:
A collection of row-ids.

X := getIndex(T, C).getRootNode();
While (not X.isLeaf()) Do
If (not x.isValid())
Throw IllegalStateException();
Else
If X.getValue(D)<V Then
X := X.getRightSonNode();
Else
X := X.getLeftSonNode() ;
End If;
End If;
End While;

RESULT := {};

While X.getValue()<V Do
X := X.getRightSiblingNode();
End While;

While X is not null Do
RESULT := RESULT union {X.getRowId()};
X := X.getRightSiblingNode();

End While;

Return RESULT;

While isLeaf, getRightSonNode, getLeftSonNode and getRightSiblingNode
methods relate to the index structure and their implementation does not change,

! The encrypted index is assumed to be implemented as a binary tree. However, the
pseudo code can be easily be generalized to handle a B-Tree implementation.
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getValue and getRowld are implemented differently so that encryption and de-
cryption support is added. The new method, isValid, verifies the index entry
integrity using the MAC value.

Performance can be furthermore improved, if entries’ verification is performed
periodically on the entire index and not as part of each index operation.

5.2 Using Dummy Values and Pooling

In order to cope with dynamic leakage attacks, we need to reduce the level of
confidence an adversary has about the effect of new inserted data on the database
indexes. There is a trade-off between how much of the index is updated and
how much information an adversary is able to learn [13]. In this subsection, we
propose two techniques for reducing the adversary level of confidence:

Dummy values - We can insert dummy values to the index with each insertion
made by the user, and thus reduce the level of confidence. However, inserting
dummy values with each insertion results in data expansion. The number of
dummy values added in each insertion determines the level of confidence an
adversary has about the position of a value within the index.

Pooling - The use of pooling in order to improve performance of insertions
to database indexes was suggested by [14]. We suggest the use of pooling for
security reasons. We define a fixed size pool for each index holding the new
inserted values. Only when the pool is full, will the indexes be updated with
these values. Furthermore, the extraction of values from the pool should be
done in a random order, since it makes it difficult to link the extracted values
and their corresponding inserted values. When a query is to be executed, we
first need to search the pool, and then to search the rest of the index. The pool
size determines the level of confidence an adversary has about the position of a
value within the index. Note that a full scan has to be performed on the pool
whenever the index is used. Thus, the size of the pool is a privacy-performance
trade-off. Using a pool size that has space complexity of O(log |table size|) will
not affect the time complexity of the queries.

Figure 3 illustrates a database index using pooling. Figure 3a illustrates the
database table, index and pool after the insertion of three values: 17,5,24 where
the pool size is four values. Figure 3b illustrates the database table, index and
pool after the insertion of a fourth value: 36, that fills the pool. The values in the
pool are then extracted in random order and inserted into the database table
and index.

5.3 Supporting DAC

If indexes are used only by one user or if they are never updated, it is possible to
maintain a local index for each user. Securing indexes stored locally is relatively
easy. However, such local indexes do not work well in a multi-user environment,
since synchronizing them is difficult. Thus, it is necessary to store the indexes
in one site, such as the database server, and share them between users.

As mentioned in subsection 3.6, a fundamental problem arises when multiple
users share the same encrypted index and each user has different access rights.
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a) A database table, b) The database table, index
index and a pool with and the pool after insertion of
three out of four values. a fourth value.
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Fig. 3. A Database Index Using Pooling
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We suggest a simple but elegant solution to this problem: split the index into sev-
eral sub-indexes where each sub-index relates to values in the column encrypted
using the same key. A similar approach for disseminating XML documents was
proposed in [15].

Figure 4 illustrates sub-indexes where each sub-index relates to values in
the column encrypted using the same key. In order to evaluate a query, only
ciphertext values with the same access right are queried. All the values in a sub-
index belong to the same security group, and thus the problem that is illustrated
in Fig. 2 is eliminated.

Figure 5 illustrates how a query is executed using sub-indexes. A secure
session between the user and the database server is created (step 1). The user
supplies his encryption keys? (step 2). During the secure session, the user submits
queries to the server (step 3). The server uses the encryption keys in order to
find the set of indexes that the current user is entitled to access® (step 4). The
query is executed on the set of indexes found (step 5). The result set is returned
to the user (step 6).

6 Conclusions

In this paper, we outlined the challenges raised when designing a secure index
for an encrypted database. The challenges include: prevention of information
leakage; detection of unauthorized modifications; preserving the structure of the
index; and supporting discretionary access control; while performance in terms
of time and storage is not significantly affected. In addition, two design consid-
erations, keys storage and encryption granularity, were discussed. For each design

Table 4. Summary of Challenges and Solutions

Challenge Solution

Static Leakage Fj is nondeterministic
Linkage Leakage Different encryption functions for the index and the table
Dynamic Leakage Dummy Values and Pooling

Spoofing MAC (Vir. - the indexed value)
Splicing MAC (SR - the node self reference)
Replay MAC (Version)

Structure Perseverance Single values granularity; Structure data is not encrypted

Performance Single values granularity; Periodic verification

DAC Sub-Indexes

2 The encryption keys can be supplied using smart card architecture.
3 The database server can maintain a directory that maps the hash of a given encryp-
tion key to the corresponding sub-index.
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consideration, we proposed several alternatives and elaborated on the tradeoffs
between them.

A secure database index encrypted at the single values level of granularity
was suggested. Performance and structure perseverance are simply obtained since
single values granularity encryption is used. We used encryption, dummy values
and pooling in order to prevent information leakage and unauthorized modifi-
cations. Finally, in order to support discretionary access control in a multi-user
environment, we suggested splitting the index into several sub-indexes, where
each sub-index relates to values in the column encrypted using the same key.

Table 4 summarizes the challenges and solutions that were suggested through-
out this paper.
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Abstract. The database-as-a-service (DAS) model is a newly emerging
computing paradigm, where the DBMS functions are outsourced. It is de-
sirable to store data on database servers in encrypted form to reduce se-
curity and privacy risks since the server may not be fully trusted. But this
usually implies that one has to sacrifice functionality and efficiency for
security. Several approaches have been proposed in recent literature for
efficiently supporting queries on encrypted databases. These approaches
differ from each other in how the index of attribute values is created.
Random one-to-one mapping and order-preserving are two examples. In
this paper we will adapt a prefix-preserving encryption scheme to create
the index. Certainly, all these approaches look for a convenient trade-off
between efficiency and security. In this paper we will discuss the security
issues and efficiency of these approaches for supporting range queries on
encrypted numeric data.

1 Introduction

The database-as-a-service (DAS) model [1] is a new computing paradigm that
has emerged recently. To save cost, data storage and management are outsourced
to database service providers. In other words, highly sensitive data are now stored
in locations that are not under the data owner’s control, such as leased space and
partners’ sites. This can put data confidentiality at risk. Therefore, it is desirable
to store data in encrypted form to protect sensitive information. Also queries
may reveal private information about the user [2]. In this paper, we discuss
how to efficiently support searching functionality, in particular, range queries,
while preserving data confidentiality and user privacy. The motivation within
this model of processing is to provide security and privacy but also have the
database service provider do most of the query processing. Several approaches
have been proposed to generate the index that enables queries to be processed
against encrypted data with different levels of efficiency and security [3,4,5,6].
In this paper, we will adapt a prefix-preserving encryption scheme to create the
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index. We will also discuss the security issues and efficiency of these approaches
for supporting range queries on encrypted data.

One simple way to preserve the confidentiality is to decrypt the data when
performing search. There are several drawbacks with this approach. First, all
the data stored in the database needs to be decrypted for every query. Second,
this approach assumes the server is secure and fully trusted. This assumption is
less justified in the DAS paradigm.

A major type of database queries is range-based, composed of intervals in
the underlying domain of the attributes. Attributes such as name, not typi-
cally thought of as numerical, can be indexed and therefore linearized in some
fashion. In this paper we will mainly be concerned with interval-matching or
exact-matching as query conditions. Interval-matching is defined as a boolean
function fi, (), which returns true if and only if 2 € [a, b]. Because computers
can handle only inherently finite and discrete attribute values, one can assume
without loss of generality x, a and b are all nonnegative integers. Exact-matching
is a special case of interval-matching in which a is equal to b.

The paper is organized as the follows, in Sect. 2, we survey the related work
and discuss possible solutions based on well-known mechanisms. Section 3 shows
how a relation is encrypted and stored on the server. In Sect. 4, we present
a scheme that efficiently supports interval-matching as query conditions. First
we show how an interval-matching problem can be transformed into a set of
prefix-matching problems. Then the prefix-preserving encryption algorithm is
presented. At the end of the section, we describe that with prefix-preserving
encryption how a condition in a range query is translated to a condition over
server-side representation and how select operations are implemented. Section 5
analyzes one possible attack against the random one-to-one mapping scheme and
the prefix-preserving scheme, while in Sect. 6 we have some additional discussion
on the security of the prefix-preserving scheme. Section 7 compares the prefix-
preserving scheme with the random one-to-one mapping scheme in the aspects
of client side cost, server side cost and communication cost for supporting range
queries. We then conclude the paper in Sect. 8.

2 Related Work

Recently providing security and privacy in DAS has drawn considerable atten-
tion [3,4,5,6]. The bucket index technique proposed in [3,6] relies on partitioning
attribute domains of a client’s table into sets of buckets. The index value of
each remote table attribute value is the bucket number to which the corre-
sponding plain value belongs. This representation supports efficient evaluation
of both exact-matching and interval-matching predicates on the database service
provider; however, it makes it awkward to manage the correspondence between
bucket numbers and the actual attribute values present in the database. For
the convenience of comparison, in the rest of this paper, when we discuss about
this approach, we will assume that the size of each bucket is 1 and the bucket
number is generated by a random one-to-one mapping of the plaintext value. In
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this case, the server will not return any redundant data to the client. Therefore,
the client does not need any database functionality to filter out unsolicited data.
This fulfills the goal of the DAS model, i.e., outsourcing database management
and having the database server do most of the work.

In [4], the authors quantitatively evaluate the level of inference exposure as-
sociated with the publication of attribute indexes generated by a random one-to-
one mapping. In the solution they propose for supporting interval-based queries,
the task of determining BT-tree information is left to the customer. The advan-
tage of their solution is that the content of BT-tree is not visible to an untrusted
database service provider. The disadvantage is that a lot of data processing has
to occur on client machines. This mitigates the advantage of the DAS model.

In [7], a sequence of strictly increasing polynomial functions is used for
encrypting integer values while preserving their order. In [5], another form of
order-preserving encryption is provided for computing the index. It takes a user-
provided target distribution as input and transform the plaintext values in such
a way that the transformation preserves the order while the transformed values
follow the target distribution. The authors assume an application environment
where the goal is safety from an adversary who has access to all (but only) en-
crypted values (the so called ciphertext only attack [8]). In this paper, we will
not only examine the prefix-preserving scheme under ciphertext only attack, but
also examine it under known plaintext attack [8] (i.e., an adversary is assumed
to gain full knowledge to certain number of (plaintext, ciphertext) pairs through
means other than compromising the key).

All of the aforementioned schemes including the scheme proposed in this
paper suffer from a same problem, i.e., they preserve statistics. That is, an ad-
versary may know exactly how many entries each value has, even though the
plaintexts of the indexes themselves are unknown. This can lead the adversary
into an easier inference. Elovici et al. proposed an index scheme that does not
reveal database statistics [9]. However, it assumes that the cell coordinates (in-
cluding Table ID, Row ID, and Column ID) are stable. That is, insert, update
and delete operations do not change the coordinates of existing cells. This puts
additional restrictions to the implementation of the DBMS.

A potential technique that can support searching on encrypted data is com-
puting with encrypted data [10]. However, an expensive protocol between clients
and database service providers is needed. A closely related topic is Private In-
formation Retrieval (PIR) [2]. PIR mechanisms allow clients to query databases
without revealing which entries are of interest. PIR schemes often require mul-
tiple non-colluding servers, consume large amounts of bandwidth, and do not
guarantee the confidentiality of the data.

3 Data Organization

In a relational DBMS, data are organized in tables (e.g., the Employee data
in Table 1, where the underlined attribute represents the key of the table). The
database can be encrypted with regard to different units, which can be individual
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Table 1. Employee

FNAME LNAME  SSN ADDRESS SALARY DNO
John Smith 123456789 731 Fondren, Storrs, CT 30000 5

Franklin Wong 333445555 638 Voss, Storrs, CT 40000 5
Alicia  Zelaya 999887777 3321 Castle, Storrs, CT 25000 4
Ahmad Jabbar 987987987 980 Dallas, Storrs, CT 25000 5
James  Borg 888665555 450 Stone, Storrs, CT 55000 1
Table 2. Encrypted Employee
Enc tuple Issy  Isarary IDpno

fjftejcCcWsGqfChXcHuRzoriODCRxvD 068764019 6488 250
tprJMmfjX INs74fZZfL1TridemjZnWvY 277737042 45639 250
edVI8JvVSjmzXsrmDliosZabdFnnorwy 080581877 53798 224
z4tzGJUdsyy7EbOpuESat LCXOXckVTWA 203690710 53798 250
zzdqGlgngQgwJurSqsyFrejiiabKCNMk 929644962 20577 59

table, a column of a table, a row (tuple) of a table or a given column within
each row (i.e., the data item value). Encrypting at a coarser level of granularity
such as a table implies that the entire table must be returned as the result
of a query, although encryption/decryption will be more efficient. Encrypting
at a finer level such as a data item allows for more efficient query processing
but requires increased overhead for encryption/decryption [1]. As in [3,4,5,6],
we assume encryption to be performed at the tuple level. To provide the server
with the ability to select a set of tuples to be returned in response to a query, we
associate each encrypted tuple with a number of indexing attributes. An index
can be associated with each attribute in the original relation on which conditions
need to be evaluated for query processing.

Each plaintext relation will be stored as a relation with one attribute repre-
senting the encrypted tuple and additional attributes representing the indexes.
Each plaintext tuple t(41, ..., A,) is mapped onto a tuple t'(E(t),I1,..., I;)
where m < n. The attribute F(t) stores an encrypted string that corresponds
to the entire plaintext tuple, and each I; corresponds to the index over some
Aj. The encryption function E is treated as a black box in our discussion. Any
block cipher such as AES [11], DES [12] etc., can be used to encrypt the tuples.
Table 2 illustrates an example of the corresponding encrypted/indexed rela-
tion Encrypted Employee where Enc tuple contains the encrypted tuples, while
Issn, Isarpary, and Ipyo are indexes over attributes SSN, SALARY, and DNO
respectively.

4 A Prefix-Preserving Encryption Based Scheme

4.1 Transforming Interval-Matching into Prefix-Matching

In this section, we will transform interval-matching into prefix-matching. Prefix-
matching has been used widely in databases and networks. The transformation
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is based on the fact that an arbitrary interval can be converted into a union of
prefiz ranges, where a prefix range is one that can be expressed by a prefix [13].
For example, the interval [32, 111], the 8-bit binary representation of which is
[00100000, 01101111], can be represented by a set of prefixes {001, 010, 0110x}.
Throughout this paper, the notation * is used to denote an arbitrary suffix. To
verify that a number is in the interval is equivalent to check that the number
matches any of those prefixes in the set. For example, 37 (00100101 in binary) is
in the interval as it matches prefix 001%, while 128 (10000000 in binary) is not
in the interval since it matches none of those three prefixes.

Let n denote the length of the binary representation of the data, and let
prn, denote the number of prefixes needed to represent an interval. We have the
following theorem on the upper bound of p,.

Theorem 1. For any interval [ajas - - an,b1ba - - by] (n > 2), p, < 2(n—1).

The proof of this theorem is omitted here due to the lack of space and can
be found in our technical report [14]. Note that for interval [1,2™ — 2], it can be
easily verified that p,, is equal to 2(n — 1). Therefore, the upper bound is tight.

Theorem 2. For a given n, considering all possible intervals [a1as-- - an,
biba - - by, if we assume all the intervals appear with the same probability, i.e.,

all queries are equi-probable, the average number of p, is equal to
(n—2)22" " 4 (n4+1)2"+1

92n—14gn-1 , which is approximately equal to n — 2, when n is large.

The proof of this theorem is omitted here due to the lack of space and can
be found in our technical report [14]. From these two theorems we see that the
upper bound of p, is a linear function of n and the average number of p, is
approximately a linear function of n. This is a very nice feature.

In Fig. 1 we present a recursive algorithm to generate the set of prefixes for
a given interval [a1as - - - an, biba - - - by].

1. Starting from k = 1, find the most significant bit, numbered k, for which
ar < bi.

2. If k is not found, i.e., for all 1 < i < n, a; = b;, then the interval can be
denoted by prefix aiaz - - - an. Return aiaz - - - ay.

3. If for all k < i <m, a; =0 and b; = 1, then return ajasar—1* (return x* if

k=1).
4. Transform interval [a1az -+ an,biba - by]
into [al---ak,10Qk+1~--an,a1 ~--ak,1011---1] U

[a1---ax_1100---0,a1 - ap_11bgy1---bnl.

5. Run this algorithm with interval [ax+1 - an,11---1] as input, concate-
nate ai ---ax—10 before all the returned prefixes. Then run this algorithm
with interval [00 - - - 0,bg41 - - - bn] as input, concatenate a1 - - - ax—11 before all
the returned prefixes. Return all the prefixes.

Fig. 1. The algorithm for transforming interval [a1az - - - an, b1b2 - - - by] into prefixes
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We have seen that matching an interval based on a set of prefix-matchings
is both simple and efficient. Therefore prefix-preserving encryption algorithm
can be used to efficiently support interval-matching as a query condition while
preserving the confidentiality of data and queries.

4.2 Prefix-Preserving Encryption

After transforming interval-matching into prefix-matching, we need a prefix-
preserving encryption scheme to generate the index, so that the database system
will be able to answer the queries based on encrypted data and queries. We apply
an encryption scheme proposed by Xu et al. [15] for prefix-preserving IP address
anonymization.

Definition 1. (Prefiz-preserving encryption) ([15]) We say that two n-bit
numbers a = ajas - -a, and b = biby -+ - by, share a k-bit prefiz (0 < k < n), if
aiag - -ak = biba - by, and agy1 # bpy1 when k < n. An encryption function
E, is defined as a one-to-one function from {0,1}™ to {0,1}". An encryption
function E, is said to be prefiz-preserving, if, given two numbers a and b that
share a k-bit prefiz, Ep(a) and Ep(b) also share a k-bit prefiz.

® Flip
O Do Not Flip
O Leaf Node,

(b) encryption function

Fig. 2. An example of prefix-preserving encryption

It is helpful to consider a geometric interpretation of prefix-preserving en-
cryption [15]. If a plaintext can take any value of a n-bit number, the entire
set of plaintexts can be represented by a complete binary tree of height n. This
is called the plaintext tree. Each node in the plaintext tree (excluding the root
node) corresponds to a bit position, indicated by the height of the node, and a bit
value, indicated by the direction of the branch from its parent node. Figure 2(a)
shows a plaintext tree (using 4-bit plaintexts for simplicity).

A prefix-preserving encryption function can be viewed as specifying a binary
variable for each non-leaf node (including the root node) of the plaintext tree.
This variable specifies whether the encryption function “flips” this bit or not.
Applying the encryption function results in the rearrangement of the plaintext
tree into a ciphertext tree. Figure 2(c) shows the ciphertext tree resulting from
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the encryption function shown in Fig. 2(b). Note that an encryption function
will, therefore, consist of 2 — 1 binary variables, where n is the length of a
plaintext.

A general form of prefix-preserving encryption function is presented in [15].
Let f; be a function from {0,1}? to {0,1}, for i =1,2,---,n—1 and fj is a con-
stant function. Given a plaintext a = ajas - - - an, the ciphertext aja - -al, will
be computed by the algorithm given in Fig. 3. According to Theorem 1 (canon-
ical form theorem) in [15], the algorithm given in Fig. 3 is a prefix-preserving
encryption algorithm.

1. Compute a as a; @ fi—1(a1az - - - ai—1), where @ stands for the exclusive-or
operation, for i =1,2,---,n.
2. Return ajay---aj,.

Fig. 3. Prefix-preserving encryption algorithm

In [15], the prefix-preserving encryption scheme is defined as instantiating
functions f; with cryptographically strong stream ciphers or block ciphers as
follows:

fi(alag---ai) = E(R(alag---ai,f@')) (1)

where 4 = 1,---,n — 1 and £ returns the “least significant bit”. Here R is a
pseudorandom function or a pseudorandom permutation (i.e., a block cipher).
is the cryptographic key used in the pseudorandom function R. Its length should
follow the guideline specified for the pseudorandom function that is actually
adopted.

The encryption function can be performed quickly as it only involves n — 1
symmetric key cryptographic operations, and these n — 1 operations can be done
in parallel. A prefix expresses a prefix range, thus a prefix-matching query can
be efficiently processed as a range query with a B¥-tree index structure. We
will compare the performance of the prefix-preserving scheme with the random
one-to-one mapping scheme in Sect. 7.

4.3 Implementing Range Queries over Encrypted Relations

With the prefix-preserving encryption algorithm, denoted by E,, we can trans-
late specific query conditions in operations (such as selects and joins) to corre-
sponding conditions over server-side representation. This translation function is
called Mapconq. Since this paper is mainly focused on supporting range queries,
we will only consider select operations in this paper. This scheme can handle
other relational operations as well. The discussion is omitted here due to the
lack of space and can be found in our technical report [14].

A select query condition is a boolean expression specified on relation at-
tributes. It can be made up of a number of clauses of the form
<attribute> <comparison op> <value>,
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where <attribute> is the name of an attribute, <comparison op> is one of the
operations {=, <, >}, and <value> is a constant value from the attribute do-
main. Clauses can be arbitrarily connected by the boolean operators AND, OR,
and NOT to form a general query condition. It has been discussed in [3] how
to translate a composite condition to the corresponding condition over server-
side representation after each clause is translated. Hereafter we discuss how to
translate a single clause.

attribute = value: Since the prefix-preserving encryption is a one-to-one
mapping, the mapping is simply defined as follows:
Mapeona(Ai =v) = E,(Ai) = Ep(v).

attribute < value (attribute > value): A query condition A4; < v (4; >
v) is equivalent to an interval-matching of fi,,... v](4i) (flv,vme.](Ai)), Where
Umin (Umaz) 18 the lower (upper) bound of the attribute domain. The interval
[Vmin, V] ([V, Umaz]) can be converted into a union of prefix ranges, {P;, Po,- - -,
P}, with Algorithm 1. Therefore, interval-matching fi,, .. »(A:) can be trans-
formed to a set of prefix-matchings { Mp, (4;), Mp,(A4;), -, Mp,(4;)} (Mp, (A;)
denotes the boolean function, which returns true if and only if the value of A;
matches prefix Py ). Then the prefix-preserving encryption can be applied on the
prefixes. Therefore, the mapping is defined as follows:
Mapcond(Ai < U) =
{Mg,(p)(Ep(Ai)) OR Mg, (p,)(Ep(Ai)) OR -+ OR Mg, (p,)(Ep(4Ai))}-

Consider a select operation oc(R) on a relation R, where C' is a condition
specified on one or more of the attributes A, As,---, A, of R. The operation
can be rewritten as follows:
UC(R) - D(UMapcond(C) (E(R))a
where F(R) is the encrypted relational table (e.g., the Encrypted Employee table
presented in Table 2), and D is the corresponding decryption function of E. The
operation oarap.,,..(c)(E(R)) will be executed at the server. The results will be
transmitted to the client. The client then can get the query results by applying
decryption function D.

5 Attack with a Set of Queries

In this section, we will discuss the security issues of the prefix-preserving scheme
proposed in this paper and the schemes proposed in the literature, i.e., ran-
dom one-to-one mapping and order-preserving. There are many possible attacks
against these schemes [4,5]. We are not going to examine all the possible at-
tacks, instead we will discuss a particular one, which can be applied to both the
random one-to-one mapping scheme and the prefix-preserving scheme.

An adversary may compromise the confidential information by gathering
query predicate conditions. Sometimes it is reasonable for an adversary to as-
sume that the index set against one attribute from each query may be derived
from a single interval. In other words, each index set, though contains multiple
indexes, represents only a single interval. Based on this assumption, the encryp-
tion mapping may be revealed partially, i.e., the adversary can figure out a coarse
order of a set of indexes. This will be further explained in the rest of this section.
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The feasibility of this attack is constrained by the ability of adversaries to
collect enough queries. Furthermore, clients may not obey the assumption, i.e.,
they may not always submit a single interval-matching for each predicate against
one index attribute in a query. This will complicate the attack as well.

To alleviate this problem, clients may specify different keys to generate in-
dexes for different attributes, thus preventing an adversary from aggregating
information from different attributes. Also, clients can inject some noise into
their queries to undermine the adversary’s assumption. But the price paid is
that the clients will receive some data that are not of interest. This compro-
mises the purpose of the DAS model, since the clients still need certain database
functionality to be able to filter out redundant results.

The order-preserving encryption preserves the order of plaintexts, so it is
trivial for the adversary to figure out the order of any set of indexes generated
from the order-preserving scheme. In the remainder of this section we will analyze
possible attacks against the random one-to-one mapping scheme and the prefix-
preserving scheme.

5.1 Against the Random One-to-one Mapping Scheme

An adversary is assumed to be able to collect a set of queries. In each query
there is a tuple of index sets. Based on our assumption, the indexes in a set
should represent a single interval. Assume the size of the index domain is 2". If
the adversary is able to collect all the 2" — 1 two-index sets which contain two
consecutive indexes, then he/she will be able to figure out an order of all the
indexes, but without knowing whether it is an ascending or descending order.
If the adversary knows at least one plaintext/ciphertext pair, then he/she will
be able to decrypt any index. For example, when n = 2, if the adversary is
able to collect 3 index sets, {a, b}, {b, c}, {c, d}, the he/she will be able to figure
out an order of the indexes, a, b, ¢, d, without knowing if it is an ascending or
descending order.

An algorithm to collect two-index sets from a list of index sets is given in
Fig. 4.

1. Discard one-index sets.

2. For any two sets A, B in the list of index sets, if none of AN B, AN B,
AN B is an empty set, then add these sets into the new list of index sets (Note
that any of these resulted sets still represents a single interval).

3. If any new set is added, go to step 1. Otherwise, collect all two-index sets.

Fig. 4. The algorithm for attacking queries against the random one-to-one mapping

5.2 Against the Prefix-Preserving Scheme

To better illustrate the attack against the prefix-preserving scheme, we introduce
a definition as follows.
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Definition 2. Given two k-bit (k > 2) encrypted prefixes a = aras - - apx and
b= bibs - - - byx, if there exists an i, 1 < i < k—1 such that a; # b; and the range
of a and b can be merged into a single interval, then we call the set of prefixes
{a, b} a non-trivial two-prefir set with length k. We call an encrypted
two-prefix set {ajas - ag_1ap*,a1az - - - ag—1ax*} a trivial two-prefiz set.

It is easy to see that if an adversary has all (2F~! — 1) non-trivial two-
prefix sets of length k, then he/she will be able to create an order for all en-
crypted k-bit prefixes without knowing if it is an ascending or descending order.
If the adversary knows at least one plaintext/ciphertext pair, then he/she will
be able to decrypt any encrypted k-bit prefix. For example, if an adversary has
the following three non-trivial two-prefix sets of length 3, {ajasas*, ajasbs*},
{ajazbs*, arbacs*}, {a1bacs*, a1bads*}, then he/she will be able to figure out the
following order for all 3-bit prefixes: ajasas, ajazas*, ajasbs*, ajazbs*, ajbacs*,
ai1bacs*, ajbads*, ai1bads*x without knowing whether it is an ascending or de-
scending order. If the plaintext of ajasas* is known to be 001x, the adversary
will be able to decrypt any encrypted 3-bit prefix.

An adversary is assumed to be able to collect a set of queries. In each query
there is a tuple of encrypted prefix sets. Based on our assumption, the encrypted
prefixes in a set should represent a single interval. An algorithm to collect non-
trivial two-prefix sets of length k& from a list of encrypted prefix sets is given in
Fig. 5.

1. Preprocess the encrypted prefix sets.

— For any prefix longer than k-bit, a1az - - - agar+1 - - - arx (I > k), replace it
by a1az - - - agx*.

— For any prefix shorter than k-bit, a1az - - - a;x (I < k), replace it by all the
k-bit prefixes which share the [-bit prefix.
(Note that after the preprocessing, the encrypted prefixes in a set still
represent a single interval)

2. Discard trivial two-prefix sets and one-prefix sets.

3. For any two sets A, B in the list of prefix sets, if none of AN B, AN B,
AN B is an empty set, then add these sets into the new list of prefix sets
(Note that any of these resulted sets still represents a single interval).

4. If any new set is added, go to step 2. Otherwise, collect all non-trivial
two-prefix sets.

Fig. 5. The algorithm for attacking queries against the prefix-preserving scheme

Hereafter we give a simple example of this attack. Suppose an adversary
wants to attack the 3-bit prefixes, and he/she has the following encrypted pre-
fix sets from the queries. A = {a1a2a3%, a1a2%, a1box, arbebs*}, B = {ajazcs*,
a1ba*, a1bebsx}, C = {a1badsay*, arbax}. The adversary can get the following 3-
bit prefix sets. A’ = {ajaza3%, ajazcs*, ajascs*, a1bads*, arbads*, a1bobsx}, B’ =
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{a1a203*, aledg*, albgdg*, albgbg*}, O/ = {albgdg*, albgbg*, albgbg*}. Then he/
she will get the following non-trivial two-prefix sets: A’'NB’ ={ajazas*, ajascs*},
A n O/ = {albgdg*,alebg*}, B’ NnC" = {a1a203*,a1b2d3*}. Flnally the adver-
sary will be able to figure out the following order of the 3-bit prefixes: ajasaszx,
a1a2a3%, A102C3%, A102C3%, a1bads, a1bads*, a1babsx, a1babsx, without knowing
whether it is an ascending or descending order.

6 Additional Security Analysis for Prefix-Preserving
Encryption

In this section we will have more discussion about the security of the prefix-
preserving encryption scheme. It has been proved that with the instantiating
functions as (1) the prefix-preserving encryption scheme is indistinguishable from
a random prefiz-preserving function, a function uniformly chosen from the set of
all prefix-preserving functions when the adversaries are assumed to be computa-
tionally bounded. This is elaborated in [15]. Moreover, as mentioned in Sect. 4.2,
when plaintexts can take any value of a n-bit number, the prefix-preserving en-
cryption function consists of 2" — 1 binary variables. Therefore, we have a key of
22"—1 possibilities. For example, when n is only 16, the number of possible keys is
205535 Therefore, the key # in (1) can be sufficiently long such that it is imprac-
tical for adversaries to try each possible key to compromise the prefix-preserving
scheme.

In the remainder of this section, we discuss another possible way in which the
prefix-preserving scheme may be attacked. An adversary is assumed to have com-
promised (gain full knowledge to) certain number of (plaintext, ciphertext) pairs
through means other than compromising the key, i.e., the known plaintext attack
model [8]. Then he/she will be able to infer information from other ciphertexts
by prefix-matching, because the encryption is prefix-preserving. For example,
if an adversary knows (plaintext, ciphertext) pair (a1as - - an,ajab - -al,), then
given another ciphertext ajas---aj_,ayby_ ;- -0, he/she knows the k-bit pre-
fix of the plaintext should be aias - - - ar_1ax. Note that if an adversary knows
one (plaintext, ciphertext) pair (ajag - - - an,ajal - - - al ), then he/she should also
know the (plaintext, ciphtertext) pair (a1az - - - an, ajah - - - al,). Therefore, an ad-
versary always knows an even number of (plaintext, ciphertext) pairs.

Suppose an adversary knows 2 pairs of (plaintext, ciphertext). Given a ran-
dom ciphertext, let A(n) denote the average length of the prefix that can be
inferred by prefix-matching, where n is the length of the binary representation
of the data. The probability that the k-bit prefix of the plaintext can be inferred
is 21;“ for 1 < k < n — 1, while for k¥ = n, the probability is 2271. Therefore,
A(n) = Z;:ll S+ o = Z;:Ol 9 =2— 5.1 < 2. In other words, on the av-
erage an adversary can infer no more than 2 bits from a random ciphertext, if
he/she knowns 2 pairs of (plaintext, ciphertext) *.

! We are assuming the plaintext is uniformly distributed. The information leaked
by the known-plaintext attack can be significantly higher, if we consider that the
possible values are not uniformly distributed.
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We also analyze the situation that an adversary knows 2k (k > 1) pairs
of (plaintext, ciphertext) in our technical report [14]. In summary, when n —
00, given a ciphertext, the average length of the prefix that can be inferred is
bounded by log, k + 2 based on numerical results. So the prefix information an
adversary can obtain by comparing a ciphtertext against a few pairs of (plaintext,
ciphertext) is limited. Therefore, we claim that the prefix-preserving scheme is
secure even if a few pairs of (plaintext, ciphertext) are known by an adversary.
To make the system even more secure, the data owner may specify different keys
to generate indexes for different attributes, thus preventing an adversary from
aggregating information from different attributes.

7 Performance Comparison

7.1 Communication Cost

With the prefix-preserving scheme, the total length of the indexes for an interval-
matching query condition is less than 2n(n — 1) bits. With random one-to-one
mapping, the total length is [ - n, where [ is the length of the interval. So when
[ is larger than 2(n — 1), the prefix-preserving scheme is more efficient. If we
assume all the intervals appear with the same probability, the average length of

. . Zle i(i;rl) _ 93n—1,3.92n—1 9n
the interval is sy T C@miyon-1)

i=1
2" /3, when n is large. Therefore, the average number of bits of the indexes is
about n - 2™ /3, which is much greater than 2n(n — 1), when n is large.

, which is approximately equal to

7.2 Client Side Cost

During the encryption of the database, it costs more to use the prefix-preserving
scheme to compute the indexes for the records. Since normally the length of
the index attribute is smaller than the block size of a typical block cipher, to
compute one index, the prefix-preserving encryption will require n — 1 block
cipher encryptions. In contrast, the random one-to-one mapping will require
only 1 encryption. Similarly, to encrypt an exact matching query condition, it
costs more with prefix-preserving encryption. However, to encrypt an interval-
matching query condition, with prefix-preserving, at most 2(n — 1)? encryptions
are needed. With random one-to-one mapping, the number of encryptions needed
is equal to the length of the interval I. So when [ is larger than 2(n — 1), the
prefix-preserving scheme is more efficient. If we assume all intervals appear with
same probability, then the average length of the interval is about 2" /3, which is
larger than 2(n — 1)?, when n is larger than 8.

7.3 Server Side Cost

As for the server side cost, we will be mainly concerned about the cost of disk
accesses for executing an interval-matching query, since in most cases it is the
bottleneck. To estimate the cost of disk accesses, we must know the number of the
records (r), and the number of blocks (b) (or close estimates of them). Also, we
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need to know the number of levels (h) of B*-tree, which is the typical database
storage structure for indexes. Another important parameter is the selectivity
(sl) of an attribute, which is the fraction of records satisfying an exact-matching
condition on the attribute.

Without any index structure, to do a sequential scan of the whole database
table, the cost of disk accesses is b-ts, where ¢, is the time needed for a sequential
disk block access. In the random one-to-one mapping scheme, with a B*-tree
index structure the number of disk accesses needed for retrieving the indexes
is I - h, where [ is the length of the interval, and the number of disk accesses
needed for retrieving the actual records is [ - f - sl - b, where f is the percentage
of the values in the interval that actually exist in the table. Therefore, the total
timing cost of disk accesses is [(h+ f-sl-b) - t,, where ¢, is the time needed for a
random disk block access. As mentioned in Sect. 4.2, a prefix-matching query can
be processed as a range query. In the prefix-preserving scheme, with a B*-tree
index structure the number of disk accesses needed for retrieving the indexes
is less than 2(n — 1)(h — 1) 4+ [, and the number of disk accesses for accessing
the actual records is [ - f - sl - b. So the timing cost of disk accesses is less than
2(n—1)(h—-1)4+1+1-f-sl-b)t,. Therefore, when | > 2(n — 1), the prefix-
preserving scheme is more efficient then the random one-to-one mapping scheme,
if sequential scan is not needed. A typical value of n could be 32. Then when
1 > 62, the prefix-preserving scheme is more efficient. A typical disk block size is
32 K bits. A typical size of a pointer to a disk block is 32 bits. Assume the number
of records r in the database is 1 M, i.e., 220, Then the order of the B*-tree should
be 32 K/(32+32) = 2%, and the height h should be logys 220 = 3. Figure 6 shows
the number of disk accesses with random one-to-one mapping/prefix-preserving,
assuming f to be 100%, sl = 1/r = 2720 and the total number of disk blocks
in the database b is 256 K. Note that, assuming ¢, = 64 - t5, for the random
one-to-one mapping scheme, it will be more efficient to do a sequential scan of
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Table 3. Performance comparison of prefix-preserving and random one-to-one mapping
for supporting an interval-matching query

Average communication Average client side cost Server side cost (num-
cost (length of indexes) (number of encryptions) ber of disk accesses)

Prefix-preserving < 2n(n — 1) bits <2(n—1)? <2n-1)(h-1)4+1+
I-f-sl-b
Random mapping n - 2"/3 bits 2"/3 I(h+ f-sl-b)

the whole database table when [ > 1260. With the prefix preserving scheme, it
might be more efficient to do a sequential scan when [ > 3177.

In summary, we present the communication cost, client side and server side
cost for supporting an interval-matching query with random one-to-one mapping
/prefix-preserving in Table 3.

8 Conclusions

This paper discusses concerns about protecting sensitive information of data
and queries from adversaries in the DAS model. Data and queries need to be en-
crypted, while the database service provider should be able to efficiently answer
queries based on encrypted data and queries. Several approaches are studied in
this paper, random one-to-one mapping and prefix-preserving. Possible attacks
against these approaches and the performance of these approaches are investi-
gated. The prefix-preserving scheme is more efficient than the random one-to-one
mapping scheme for supporting interval-matching queries. In terms of commu-
nication cost, with prefix-preserving the length of indexes for an interval is less
than 2n(n —1) bits, while with random one-to-one mapping the average is about
n - 2" /3 bits. In terms of client side cost, with prefix-preserving the number of
encryptions needed is less than 2(n — 1)2, while with random one-to-one map-
ping the average is about 2™ /3. In terms of server side cost, the number of disk
accesses with the prefix-preserving scheme is smaller than the random one-to-
one mapping scheme, when the length of the interval is larger than 2(n — 1).
However, the prefix-preserving scheme is less secure than the random one-to-one
mapping scheme, because of the constraint of prefix-preserving. For example,
with the prefix-preserving encryption a coarse ordering of the encrypted data
can be determined by a grouping based on a k-bit prefix, but not with a random
one-to-one mapping.
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Abstract. We address the problem of verifying the accuracy of query
results provided by an untrusted third party Publisher on behalf of a
trusted data Owner. We propose a flexible database verification struc-
ture, the Hybrid Authentication Tree (HAT), based on fast cryptographic
hashing and careful use of a more expensive one-way accumulator. This
eliminates the dependence on tree height of earlier Merkle tree based pro-
posals and improves on the VB tree, a recent proposal to reduce proof
sizes, by eliminating a trust assumption and reliance on signatures. An
evaluation of the Hybrid Authentication Tree against the VB tree and
Authentic Publication showing that a HAT provides the smallest proofs
and faster verification than the VB tree. With moderate bandwidth lim-
itations, the HATs low proof overhead reduces transfer time to signif-
icantly outweigh the faster verification time of Authentic Publication.
A HAT supports two verification modes that can vary per query and
per Client to match Client resources and applications. This flexibility
allows the HAT to match the best performance of both hash based and
accumulator based methods.

1 Introduction

An increasing number and variety of applications and systems require access to
data over a network. Third party architectures offer one way to address availabil-
ity when the data source may have limited resources, by relying on a dedicated
third party Publisher to provide responses. The related Edge Server model in-
creases the availability of data services defined by a central server by replicating
them at edge servers closer to clients. Maintaining data integrity along with high
availability is a significant challenge. Providing database access introduces more
complications. Typically, the number of different responses that can be gener-
ated from queries on a single data set is much larger than the data set itself.
The integrity of query response involves showing that the response was correct,
meaning the returned data was from the correct data set, and that the response
is complete, meaning all matching data was returned.

We address the problem of verifying the accuracy of query results provided by
an untrusted third party in the third party Publisher model. The Owner relies
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on the untrusted Publisher to process Client database queries. In the related
Authentic Publication model [6], the Publisher is assumed to be untrusted, but
the Owner is trusted, so Clients use a small digest value computed over the
database by the Owner, to verify the query results. The same digest verifies
many different queries on the same database. This allows the Owner to rely on,
presumably cheaper, untrusted resources to handle Client requests. Authentic
Publication [6] uses the organization of a tree digest, based on Merkle trees, to
provide efficient verification for Clients.

Proof overhead can be significant when bandwidth is limited relative to pro-
cessing power. In the original Authentic Publication method, proof size depends
on the number of data points in the answer and the tree height, O(log N) ad-
ditional hash values for a tree over N data points. Pang and Tan [17] proposed
to eliminate this dependence on tree height with the verifiable B-tree (VB tree).
This requires some degree of trust in the Publisher, relies heavily on Owner
signatures and a proposed one-way digest function based on modular exponen-
tiation. The trust assumption is problematic and the use of expensive primitives
adds excessive overhead to both proof size and verification time.

In this paper we propose a flexible verification method, the Hybrid Authenti-
cation Tree (HAT), that eliminates the dependence on the tree height. Our novel
method carefully incorporates fast hash functions with a more expensive cryp-
tographic primitive, a one-way accumulator. The accumulator helps break the
dependence on tree height without relying on Owner signatures and the lighter
weight hash function speeds up the Client verification process. The design finds
an efficient balance between the two primitives, using the heavier accumulators
sparingly. Using the same one-time digest value, the HAT design allows the ver-
ification method to vary per query and per Client according to Client bandwidth
and application requirements. One verification mode relies on both fast hash
operations and the accumulator. The other mode bypasses the expensive accu-
mulator operations, relying only on fast hash operations in a Merkle tree like
method similar to Authentic Publication. In effect, we design a digest that gives
us two verification schemes in one. Our analysis shows that, even for reasonable
bandwidths of 1 mbps or more, the low proof overhead of the HAT improves
significantly over the VB-tree and the original Authentic Publication method.

1.1 Outline of the Paper

Section 2 gives some useful background. Section 3 presents the details of the
HAT construction and digest, explaining the motivation for using accumulator
functions to break the dependence on tree height in Section 3.1, describing how
completeness is verified in Section 3.2, and then defining the digest and verifica-
tion in 3.3 and 3.4. We establish parameters for evaluation in Section 4 and give
a detailed evaluation and comparison of the HAT with Authentic Publication
and the VB-tree in Section 5, looking at proof overhead in 5.1, verification cost
in 5.2, and bandwidth considerations in 5.3.

Section 6 describes how a HAT can bypass the use of the accumulator when
advantageous. We discuss related research in 7, discuss future directions in 8 and
conclude in 9.
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2 Preliminary Building Blocks

We briefly describe the hash functions, one-way accumulators, Merkle trees and
Authentic Publication.

2.1 Collision Intractable Hash Function

Hash functions such as MD5 or SHA-1 can be used to detect modifications
in files by recomputing the MD5 or SHA-1 checksum on the file in question
and comparing to the original checksum value. It is assumed to be difficult to
produce another file with the same MD5 checksum or the original. This property
is known as collision resistance or collision intractability. Though not formal
in the cryptographic sense, we can reasonably rely on the following notion of
collision resistance.

Definition 1. A function f mapping the set of all binary strings to the set
of strings of some fixed length is collision resistant if, given a “random” input
value x, and the image f(x), it is computationally infeasible for an adversary to
compute x' # x such that f(2') = f(x).

One informality evident is the reference to a random input. Since the size of
the input is not specified, the domain cannot be uniformly sampled. The formal
cryptographic definition of collision resistance handles this, and the function we
rely on, SHA-1, is widely relied on for collision resistance.

When f is a hash function, we write f(x1,22) to denote the application of
f to a single string constructed by concatenating x; and x2 and some unique
delimiter between them. The hash can apply to any number of strings with no
ambiguity about the value and number of inputs.

2.2 Merkle Trees and Authentic Publication

We review the basic Merkle tree construction [13] since it is a common thread
to many recent efforts in efficient query answer verification. The structure is a
binary search tree, over a data set D of size N, with the key key(d) and data for
each item d € D stored at the leaves. The key is simply a unique identifier for
d e.g. the primary key for a relational tuple. Our example, shown on the left in
Figure 2.2, uses a set of integer keys and ignores any associated data attributes.
The tree is digested using a collision-resistant hash function h to produce a value
f(v) at each node v as follows: Starting at the leaves, the value of a leaf is its key
value and the value of an internal node is the hash of the child values. Alternately
we can hash the associated attributes with the key to produce the leaf value.
The overall digest value of the tree, denoted X, is just the digest value at the
root. With this digest value, an efficient proof, of size O(log N) can be given
that a data item is or is not in the set. The proof consists of the intermediate
hash value for each sibling of a node along the search path.

We follow the general Authentic Publication model [6]: a trusted data Owner
relies on an untrusted third party Publisher to respond to Client queries on
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a data set. First, a trusted Owner computes a digest of the data set (e.g. as
in the binary search tree example). Next, the data is given to one or more
untrusted Publishers and the digest is distributed to Clients. Publishers send
additional proof values with each Client query response. Clients verify the answer
by partially recomputing the root digest. Clients can send any number of queries
on the data set to an untrusted Publisher and verify that the answers are the
same as the Owner used to compute Y. This approach scales well, with no
security assumptions on Publishers.

2.3 An Efficient RSA Based One-Way Accumulator

Benaloh and de Mare [2] define an accumulator as a family of one-way, quasi-
commutative hash functions. A hash function f is one-way if, given x € X and
v,y € Y it is hard to find 2/ € X such that f(x,y) = f(2/,y"). The function f
is quasi-commutative if

f(f(x,y1),92) = f(f(z,y2),91) Vo € Xy, 9 €Y

We define f(x,y1,92,...,yn) tobe f(... f(f(z,y1),¥y2)--.,yn) for convenience.
Given an initial value z, if z = f(x,y1,¥2,...,yn), the y; values can be input
into the accumulator in any order and still produce z. Now, given a value y; € Y,
let z; be the result of applying f to all the values in Y — {y;} with initial value
x. Then f(z;,y;) = z and, z; serves as a proof that y; was used to compute z.

The one-way property is weaker than strict collision resistance since the ad-
versary can not choose y’. However, quasi-commutativity directly provides the
means to break collision-resistance, and one-way is often sufficient since the val-
ues y; € Yy, used as input to the accumulator are themselves often the result of
a cryptographic collision resistant hash function. In fact, the domain set Y3 can
be restricted to the result of a hash on some input. In order to forge a proof for
a value that hashes to 7 with respect to a collection {y;}V, an adversary would
need to find an alternate proof Z; for a value g that can be changed, by choosing
a different value to hash, but not chosen, since the hash output is unpredictable.
We restrict input to accumulators to be the output of a collision resistant hash
function.

Benaloh and de Mare propose a one-way quasi-commutative accumulator
based on an RSA modulus and prove it’s security in [2]. Given n we define H,
by Hy,(z,y) = ¥ mod n. H, is quasi-commutative by the laws of exponents:
(z¥1)¥2 = (z¥2)¥r. To ensure H,, is one-way, the modulus n is chosen to be a
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rigid integer, meaning n = p - ¢ where p and ¢ are safe primes of the same bit
size. A prime p is safe if p = 2p’ + 1 and p’ is an odd prime. The factorization
of n is considered trapdoor knowledge and in our model is known only by the
Owner. Efficient methods for choosing rigid moduli are discussed in [2] and [12].

ForasetY = {y1,...yn} and z = Hy(x,y1,...,YN), 2; = aV1¥2 Vi-1Vis1UN
serves as a proof for y; € Y. The value of « is also chosen by the Owner, but is not
trapdoor knowledge. The Owner, knowing p, ¢, and thus ¢(n) = (p—1)(¢—1), can
exponentiate by first reducing the exponent mod ¢(n). This is an advantage we
cannot give the Publisher and Client since ¢(n) easily reveals p and q. However,
the Publisher can still compute a proof by exponentiating.

3 The Hybrid Authentication Tree

We combine an accumulator function with Merkle hashing to providing proofs
for answer correctness and completeness that are independent of tree height is
fairly straightforward. However, since accumulator operations are so much more
expensive than hashing, minimizing their use requires special consideration. We
then describe how completeness is verified and then present the complete digest
and verification processes.

3.1 Breaking the Dependence on Tree Height

A HAT is just a binary search tree with data stored at the leaves, along with
a digest procedure that incorporates a fast collision intractable hash function
h and an accumulator H. We want to take advantage of the input reordering
allowed by an accumulator to avoid checking the entire hash path to the root
as done when using Merkle trees as in Authentic Publication [6] and related
schemes. However, accumulators have larger output, typically near the 1024 bits
of an RSA modulus compared to the 160 bit output of SHA-1, and take longer
to verify a value y; against a proof z; for a set value z. For example, suppose
our range returned exactly one leaf w. Instead of the client verifying that w is
the correct answer by hashing from w up to the root of the tree, the client could
simply verify that w was included in a final accumulation value, requiring only a
constant size proof. Answer completeness would need to be addressed, but could
still be done with a constant size proof. This method breaks the dependence on
the height of a Merkle tree but does not scale well to larger answer sizes.

Our approach uses Merkle hashing to certain nodes of the tree and then use
the accumulator to verify the values of those nodes, eliminating the hashing
along remaining path to the root. One natural set of nodes to consider for a
range query is the set of canonical covering roots (CCRs) for the range in the
tree as shown in Figure 2. The set of CCRs in a search tree for a range query is
the set of nodes with disjoint subtrees whose leaves are the exact answer to the
range query. For a range returning 7" leaves, is not hard to show that there are
O(log T) CCRs and they have height O(logT).

The CCRs seem like good nodes to switch from Merkle hashing to accumu-
lation. Their size and number depend only on the answer size so they break the
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dependence on the tree height. In fact, using CCRs provides smaller proofs than
the scheme we present, but the number of accumulator computations required is
still high. In order to further reduce the number of accumulator computations,
we rely on the following.

Given a full binary search tree and range with T satisfying leaves, there are
at most two nodes of height O(logT) whose leaves contain all the leaves in the
range.

The pair with the smallest subtree is the covering pair for the range, or
covering node in case there is only one. The verification switches from Merkle
hashing to accumulator computations at the covering nodes (see Figure 2). This
reduces the accumulator verification to one or two values.

3.2 Completeness and Covering Node Adjacency

The previous section only addressed verification that data is from the correct
data set. We have not addressed how we can provide a proof that the answer is
complete, containing all values within the range. The client will be able to verify
that data matches the range, but not that all data matching the range has been
returned.

First, note that Merkle hashing does much of this implicitly. Nodes in the
middle of the range can’t be left out without changing the root hash value
without breaking the hash function. Verifying that no leaves were left off either
end is the only requirement. Authentic publication includes the next highest
and next lowest leaves in order to prove range completeness. It is easy to avoid
revealing the data not in the range by providing only the data key and a hash of
the data itself. However, they key, or at least some part of it, must be revealed.
One alternate approach includes the split values in the hash at each node. These
are checked in the verification and ensure range completeness. This approach
is described in [11]. The additional split values would introduce a significant
amount of additional proof overhead and it is not clear that much privacy can
be gained over the inclusion of boundary key values. Privacy with completeness
is an important concern, but is left to future research.

Given that we stop hashing at two covering nodes, and that the quasi-
commutative property of accumulators makes completeness harder, we have two
tasks. Prove that the ends are complete, and prove that the leaves of the two
covering nodes form a continuous range in the tree. Two nodes are adjacent if
their subtrees are disjoint and have adjacent leaves (see Figure 3). If we can show



90 G. Nuckolls

rav) = la(w )
__LCAofvand w forany LA @@

@ right adjacent to v = right znlJaLem node wto v @ @ adjcent pairs
%&gm %@é X g@é&o
Fig. 3. Node v’s right adjacent nodes and all adjacent pairs with same LCA

adjacent adjacent
leaf pair leaf pair

that our two covering nodes are adjacent, the Merkle hashing scheme used in
each subtree will ensure that the range is complete. A fact about trees provides
a simple and efficient way to show that any two adjacent nodes are, in fact,
adjacent.

Looking at any tree, it is clear that all adjacent node pairs defined by the
same adjacent leaf pair have the same least common ancestor, and that for any
single node v all of the left adjacent nodes to v produce the same lca. The
same holds for the right. We use la(v) and ra(v) to denote this single lca of v
with all left and right adjacent nodes respectively (see Figure 3). The fact that
ra(v) = la(w;) serves as a compact proof that v and w; are adjacent in the tree.
These left and right adjacency values are hashed in with the f; value at each node
after the standard Merkle hash and are given to Clients to use in verification.
After this, the resulting fo values at each node (see Section 3.3) will then be
used to compute a single value using the accumulator. The final digest value is
the hash of the root value of the Merkle hash and the accumulated value.

The Owner could achieve more or less the same effect as using the lca adja-
cency hash value by assigning some random value instead to serve as this proof,
but this has a number of potential disadvantages. In particular, it prevents the
Publishers from computing the digest on their own from the data and knowledge
of the general digesting scheme. The hash of this lca node is computed directly
from the structure and data set just as the root digest. Requiring that these ran-
dom number be sent for each adjacent leaf pair adds unnecessary complication.

3.3 Digest

For each data item d € D, key(d) and the hash output h(d) are both computed
in a way known to all parties from the attributes of d. Each leaf node of the
binary search tree corresponds to some d € D and they appear in the tree sorted
by key() value. Internal nodes v have left lc(v) and right Ic(v) child fields, and
every node has a left la(v) and right ra(v) adjacent lca node field as defined in
section 3.2. If no such node exists, the field is assigned some fixed value indicating
the left or right end. The digest uses a publicly known collision resistant hash
function h and accumulator H to compute the final digest value X' that the
Owner provides to Clients.

1. f1 is a standard Merkle hash using h.

filv) = {h(fl(lc(v)))7f1(rc(v))) v internal
h(key(d), h(d)) v is a leaf with associated data d
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2. f2 incorporates the hash values from adjacency lca nodes.

fa(v) = h(f1(v), f(la(v)), fi(ra(v)))

3. A value A is computed using the accumulator H with some initial value x.
If v1,v9, ... 0, are thee nodes of the tree,

A= H(z, fa(v1), f2(v2), .., f2(Um))

H is quasi-commutative so the node order will not affect the result.
4. Let root denote the root of the tree. The final digest value X' is computed as

X = h(A, fa(root))

3.4 Proof and Client Verification

The Client submits a range query [a, b] that returns T satisfying leaf nodes. We
assume that the Client has key(d) and h(d) for data item d associated with each
returned leaf v and the two boundary leaves. The Client can compute key(d)
and h(d) from the answer data except for the boundary leaves. We assume there
are exactly two covering nodes denoted v; and vgr. For a node v, 2, denotes
the proof that f2(v) was used to compute the value A using accumulator H as
described in Section 2.3. Verification proceeds as follows:

1. Compute f1(vr) and fi(vg)

In addition to the key(d) and h(d) values the Client already has, the bound-
ary values are required and the 2logT supporting hash values for each of
the covering nodes as in the Authentic Publication method.

2. Compute fa(vy) and fo(vg) values and check that vy, and vy are adjacent.
Check that f1(ra(vr)) = fi(la(vg)), and thus vy, and vy are adjacent.
Requires fi(ra(vr)) = fi(la(vr)), fi(la(vr)) and fi(ra(vr))

3. Check that H(zy,, fa(vr)), H(2vs, f2(vr)) both equal A.

Requires accumulator proofs z,, and z,, and value A.

4. Check that h(f2(root), A) = X. Requires fa(root).

4 Proof Size and Verification Cost

We derive expressions for the proof overhead and verification in this section. In
Section 5 we instantiate the hash and accumulator functions and give a detailed
analysis of realistic overhead and cost values in order to compare our protocol
with related proposals.

We assume that any node of the tree with M leaves has height at most
2log M. We also assume that the key size is negligible. The expression proofy st
is in bits and and verifyya is in bit operation per second. They are derived from
Section 3 and the balance assumption.

prOOfHAT = (4 IOg T)Shash + 2Sacc
verifyyar = (T + 21og T)Thash + 2T acc(160)

Hashing to the cover nodes takes at most 27" hashes. We assume here that
the few value comparisons involved are not significant.
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Table 1. Parameters used in performance analysis

Proof Overhead Parameters Verification Cost Parameters in bit operations

N Number of elements in data set. Thasn Compute hash output from one input block.
T Number of data elements in query range. Tace(b) Verifying accumulator proof for b bit value.
h Height of the tree.
Shash Bit size of the hash output, SHA-1 is 160. Bandwidth and Processing Parameters
Sace Bt size of accumulator output. t Bandwidth in bits per second.

We use the recommended 1024 bit modulus p Processing in bit ops per second.

for RSA here and for VB tree signatures. Tiotar Total time: transfer + verify.

Tprooy Time: transfer proof + verify.

Proof Size (i bits) per Answer Size 1 Verification Cost in seconds at 1Ghe, per Answer Size T
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Fig. 4. Proof sizes (bits) and verification cost (seconds) calculated at 64 x 10° bit ops
per second, for varying answer sizes T, both on log-log scale. Authentic Publication
depends on N for proofs, N and T for verification, so we plot for several values of N

5 Performance Comparison

We compare three different range query verification methods, Authentic Publi-
cation proposed by Devanbu, et al. in [6], Pang and Tan’s verifiable B-tree (VB
tree) in [17] and the proposals in this paper. We focus on Client proof overhead
and verification cost and then consider the effect of bandwidth.

5.1 Proof Overhead

We give expressions for the proof size in terms of bits for each scheme. A detailed
derivation of the expressions is omitted due to space considerations.

proofyar = 640logT + 2048
proof,p =640 -log N
proofygree = 4096 - log T — 1024

The proof size for the HAT was given in equation 4. We apply the parameters
chosen in the previous section. The proof overhead in the Authentic Publication
method consists only of supporting hash values. It is possible that split values
are also used at each node, but this adds to the proof size and key values at the
leaves are sufficient to give a proof that no values were omitted.
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We take our VB tree analysis from [17] and use a branching factor of 2 since
larger factors add significantly to proof size. We conservatively ignore overhead
from projections. Projections with VB trees do not handle duplicate elimination
and the other schemes produce smaller proofs in this case.

Figure 4 shows results for returned answer set sizes up to 10% and data set
sizes up to 10° for Authentic Publication. We assumed a tree balanced within
a factor of two at each subtree. The HAT has smallest overhead of any of the
schemes and is close to AP only when T is near N. HATs have roughly 3 to 4
times smaller proofs for small answer sizes.

5.2 Verification Cost

We use values derived from a detailed analysis, omitted here, and round con-
servatively. As before, these expressions were derived from a detailed analysis
omitted due to space considerations.

verifyyar = 28,500 T + 6.5 x 108
verifyap = 57,000 - log N + 28,500 - T
verifyygiee = 4 X 102 - T 4 1010 - log T — 4 x 10?

We assume a 1024 bit modulus for the one-way hash used in the VB tree
and the same modulus for the Owner RSA signatures. We also choose a low 16
bit public exponent for efficiency. As before, a binary branching factor is the
most efficient instantiation of a VB tree, and projection does not improve the
comparison. For Authentic Publication, Clients simply hash to the root using,
for our comparison, SHA-1. Verification depends on N in this case.

The Authentic Publication verification is only has faster than a HAT for
answer sizes up to 10°. The VB tree is the slowest and is nearly infeasible for
answer sizes more than 100,000. For answers of size less than 10,000, a HAT
remains roughly constant, dominated by the modular exponentiation on the two
160 bit hash values to check against the accumulator proof value. Only one
exponentiation may be required. Clearly our method is more practical than the
VB tree. For answer sizes above 10°, a HAT is as efficient as the Authentic
Publication, yet has smaller proof size.

5.3 Bandwidth Versus CPU

When bandwidth is limited in comparison to processing resources, proof over-
head is a larger factor. We compare the total time to transfer and verify proofs
with and without full data transfer for HATs and Authentic Publication. Both
comparisons are of interest since the Client may obtain data and proof from
different sources or channels. The Client may also want a proof without needing
all data sent. For an expired result similar to the current version, transmitting
changes may be much smaller than the data set.

However, we still compare transmission including data as well. We assume
that the data size per item is small, only 1024 bits, or 128 bytes. Clearly for
much larger data sizes, this transmission cost will dominate, but it is useful to
consider smaller, but reasonable sizes.
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Fig. 5. Transmission time in seconds vs number 7' of items in answer, assuming a 1
gigahertz 64 bit processor at 64 x 10° bit ops per second
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Toroof €xcludes the first term of Tio1q;. We keep the 1 GHz 64 bit processor
assumption since varying bandwidth will have largest affect and varying both
parameters adds too much complexity. Figure 5 shows total transfer and ver-
ification time for proof only and data included for average bandwidths to the
Publisher of 1 mbps and 10 kbps. For small answer sets, the HAT takes between
3 and 10 times less time depending on the size N and if the data is included. The
improvement is similar for both bandwidth values, but a little better as expected
for the lower value. The improvement is sustained up to answer sizes of 10* for 1
mbps and over 10° for 10 kbps, for proof transmission only, and for answer sizes
of less than 100 when answer data is included. Clearly, when bandwidth is very
high, much higher than 1 mbps, Authentic Publication’s verification time will
win for smaller answers, but for reasonable bandwidth assumptions, low proof
overhead shows significant improvement for smaller answer sizes.

Ttotal =

6 Flexible per Query Tradeoffs: A Hybrid Tree

The HAT digest structure supports a per query, per client choice of two verifi-
cation modes, both equally compatible with a single computation of the digest
value. We described the accumulator mode in Section 3.4 and evaluated it in
later sections. The hash only mode bypasses the accumulator checks and simply
hashes to the root as in the Authentic Publication scheme, treating the covering
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nodes the same as any other node. The only difference is that the Client hashes
in the accumulated value A with the root f, value at the end. This option is
available per query and effectively produces a hybrid scheme able to bypass the
accumulator step if advantageous.

The analysis and comparisons of Section 5 demonstrate one advantage of
this flexibility. It also allows Publishers responding to a heterogeneous Client
set to choose and adapt a verification strategy tailored to the Client’s (possibly
changing) resources, bandwidth, and application requirements.

7 Related Work

As discussed in Section 2.2 the proposed techniques are based on the original
work by Merkle [13]. Naor and Nissim [15] made refinements in the context of
certificate revocation. Goodrich and Tamassia [7] and Anagnostopoulos et al. [1]
developed authenticated dictionaries. Authentic Publication was introduced in
[6] where they showed how to securely answer some types of relational database
queries. Devanbu, et al. described authentication for queries on XML document
collections in [5]. Bertino, et al. focus in detail on XML documents in [3] and
leverage access control mechanisms as a means of providing client proofs of com-
pleteness. They also expand supported query types and provide a detailed inves-
tigation of XML authentication issues including updates, and address important
implementation issues.

Martel, et al. [11] establish a general model, Search DAGs, and provide se-
curity proofs for authenticating a broad class of data structures. Goodrich et al.
[8] show that a broad class of geometric data structures fit the general model
in [11] and thus have efficient authenticated versions. Similar Merkle hash tree
based techniques have been used by Maniatis and Baker [10] and most recently
Li, et al. [9] for secure storage. Buldas, et al. [4] describe methods that support
certificate attestation when there is no trusted Owner. Nuckolls, et al. show how
to extend the techniques in [6] to a distributed setting, allowing a collection of
Owners to rely on an untrusted Publisher or other untrusted resources to achieve
the same effect as a single trusted Owner while distributing the costs among the
trusted parties.

Pang and Tang [17] proposed the VB tree as a way of eliminating dependence
of proof size on the tree height, but require some trust of the Publisher since
they only ensure that answer data is a subset of the original set. They also
incorporate more expensive signatures and a proposed one-way function based
on modular exponentiation. We discuss the VB tree in our performance analysis
section and compare it to our proposed method.

Proving that values are not excluded in set membership queries, Micali, et al.
[14] have shown how to construct zero-knowledge databases that preserve pri-
vacy, in addition to authentication. Ostrovsky, et al. [18] tackle the same problem
for multi-attribute queries using a multidimensional range tree (MDRT).

Accumulators were proposed by Benaloh and de Mare [2] more constructions
followed in [16]. Many of the RSA based accumulators contain a trap door and
a proposal for accumulators without trapdoors has been given by Sander in [19].
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8 Future Directions

We’d like to extend the methods here to a wider range of structures. So far, no
systematic approach has been suggested for extending query verification tech-
niques to the relational model. Devanbu et al. [6] discuss projection and joins,
Martel et al. [11] present a solution for multidimensional range trees that sup-
port multi-attribute queries, and [17] suggest an approach to projections, but do
not address the issue of duplicate values. There are many remaining issues with
integrity on all types of relational queries.

The HAT relies on an accumulator with trapdoor information that must be
kept secret by the Owner. Accumulators without trapdoors exist [19] but are not
efficient enough for our purposes. An efficient quasi-commutative accumulator
without a trapdoor would speed up our verification time.

Efficiently eliminating the dependence on the tree size lends increased flexibil-
ity to the verification process. This improves support for different types of Client
applications and is worth exploring in the short term. One example is supporting
Client verification of data in an order appropriate to the end application. The
proposal in this paper easily adapts to provide priority verification for subranges
of a query and then subsequently, if required, full query verification, and should
also support incremental verification for small changes to previous requests.

We are also hopeful about the prospect of incorporating privacy in efficient
database query authentication. Another promising goal is to bridge the differ-
ences between the work started in [14,18] and the current state of the more
efficient authentication only methods, including the proposals of this paper. In
addition to privacy, we hope to see progress on the longer term goal of ensuring
that databases operated entirely by an untrusted and possibly distributed third
party, satisfy arbitrary and general security requirements.

9 Conclusion

We carefully evaluated three methods: 1) fast hashing, specifically Authentic
Publication over a binary search tree, 2) our hybrid authentication tree in accu-
mulator mode, and 3) the VB tree. We show that both Authentic Publication
and our accumulator based method significantly out perform the VB tree. We
also show that the HAT always produces a smaller proof size than Authentic
Publication and improves by a factor of 3 or 4 for smaller answer sizes.

HT Proof size is also smaller for answers significantly smaller than the
database size. Authentic publication, as expected, has more efficient verifica-
tion, but when bandwidth and transmission time is considered, the smaller
HAT proofs provide up to 10 times faster overall verification time than the
Authentic Publication method for smaller answer sizes. Even assuming infinite
bandwidth, for answer sizes around 10° or higher, the HAT matches the per-
formance of fast hashing in the Authentic Publication method. Our scheme is
also competitive when considering storage overhead, digest computation, proof
retrieval/generation, and updates.
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For high bandwidths, Authentic Publication will provide faster verification,
but our analysis shows there are significant benefits from a hybrid scheme that
takes the best of the fast hashing and accumulator methods. Good tradeoff values
can be analytically determined, changed on the fly per query with changing
network conditions and client preferences.

Our analysis assumes a nearly balanced tree. Skewed trees could make our
method even more attractive since hash trees performance depends on the length
of paths to the root. Many applications and specialized data structures, such as
XML document structures, are often not balanced. A HAT may provide flexibil-
ity in the data structure choice, reducing or eliminating the effect of unbalanced
trees on Client costs.
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Abstract. Two-way group voice communications, otherwise known as
teleconferencing are common in commercial and defense networks. One
of the main features of military teleconferences is the need to provide
means to enforce the Multilevel Security (MLS) model. In this paper we
propose an architecture and protocols facilitating MLS conferences over
Public Switched Telephone Network (PSTN). We develop protocols to
establish secure telephone conferencing at a specific security level, add
and drop conference participants, change the security level of an ongoing
conference, and tear down a conference. These protocols enforce MLS
requirements and prevent against eavesdropping. Our solution is based
on encryption methods used for user and telephone authentication and
message encryption, and trusted authentication centers and certificate
authorities. We provide an initial estimate of signaling delays of our pro-
tocols incurred due to the enforcement of the MLS requirements.

1 Introduction

The need to provide secure communication via public telephone systems has re-
sulted in custom designed and dedicated devices, like the secure telephone unit
third generation (STU-III) [3] and TeleVPN [2]. While these methods provide
some level of confidentiality, they require extensive setup procedures and ded-
icated hardware or do not require telephone device authentication. Our aim is
to enable current telephone technologies to provide voice privacy without the
extensive setup and maintenance requirements of the current systems.

Public Switched Telephone Networks (PSTN [13] - a circuit switched network
with almost zero down time and acceptable quality audio signals - use Signal-
ing System 7 (SS7) [4,5,9,7,8,6,11] as its signaling network to set up, configure,
maintain, and tear down voice circuits that are used to transmit continuous voice
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streams. Moreover, increasingly popular mobile telephones can also depend on
SS7. However, SS7 provides limited security to its signaling and voice networks,
as shown by Lorencz et al. [10]. Recognizing these limitations, Sharif et al. [12]
present protocols to ensure voice confidentiality over PSTN using the Discre-
tionary Access Control (DAC) model. Their solution uses public and secret key
encryption methods to authenticate the users and telephone devices, and to pro-
vide encrypted end-to-end communication. They show that authentication delays
are within acceptable range for PSTN. Youn et al. [14] extend the protocols of
Sharif et al. to DAC based secure teleconferences over PSTN. That is, partici-
pation in a conference is decided on the identity of the user (telephone device).
However, their methods do not satisfy the security needs of military conferences.
In this paper, we extend both these works to MLS based teleconferencing. We
adopt the Bell-LaPadula (BLP) [1] access control model.

BLP policies are expressed via security classification labels, assigned to sub-
jects (i.e., active computer system entities) and to objects (i.e., passive re-
sources). Classification labels form a lattice with a dominance relation among
the labels. BLP controls read and write operations on the objects based on the
classification labels of the requested data objects and the clearance of the sub-
ject requesting the operation. For example, BLP ensures that a subject can read
an object only if the subject’s clearance dominates the object’s classification
(simple-security property) and that a subject can write an object only if the
object’s classification dominates the subject’s clearance (*-property). Trusted
subjects are permitted to bypass the *-property of the BLP. The two axioms
of BLP ensure confidentiality by permitting information flow from a dominated
security class to a dominating security class but not in the other direction. While
MLS is considered too restrictive for general purpose applications, it is required
in the military domain.

In this paper we propose an MLS teleconference security model and provide
a set of protocols to establish and maintain an MLS teleconference at a spec-
ified security level. In our model, a user (conference participant) and his/her
telephone device together are considered as the subject; the conference (i.e.,
its content) is considered as the object. The user who initiates the conference,
called call controller, requests the join (add) of a user/telephone to an active
conference. However, the actual "adding” of a user/telephone must be permit-
ted by a referential monitor that enforces the simple security property of BLP.
That is, a user/telephone is permitted to join a conference only if the security
classification of the conference is dominated by the greatest lower bound of the
security clearances of the user and the telephone device. The human users are
trusted not to violate the *-property, i.e., a user is trusted not to reveal any
information that is classified higher than the level of the conference. Call con-
trollers are also trusted (trusted subject) to lower the security clearance of an
ongoing conference. To ensure that telephone devices cannot leak confidential
information, they are cleared based on their encryption capabilities and verified
hardware. We develop a set of protocols to ensure that the conference content
is protected from unauthorized disclosure at any time. We also perform analysis
of the conference dynamics and the necessary security evaluations to guarantee
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message confidentiality. Our aim is to limit the necessary delays incurred by the
authentication, security checking, and the conference key refreshment. We give
an analysis of the incurred delays for our secure teleconference.

The organization of the paper is as follows. Section 2 introduces our security
architecture and the MLS teleconferencing model. In Section 3 we present de-
scriptions of our protocols and the corresponding security requirements. Section
4 contains the delay calculation. Finally, we conclude and recommend future
research directions in Section 5. We included sample protocols in Appendix A
and the break down of the delay calculation in Appendix B.

2 Security Model

The main aim of our research is to build on top of the existing communication
infra-structure. Our protocols to set up, maintain, and tear down secure tele-
conferences use libraries on the Signaling System 7 (SS7) protocol stack. MLS
teleconferencing uses secure bridges [12,14].

2.1 Secure Teleconferencing Architecture

We distinguish between a single master-secure bridge (MSB) and slave-secure
bridges (SB). MSB has all the capabilities needed for teleconferencing and to
enforce MLS requirements. MSB connects to the call-master, i.e., the partic-
ipant who is initiating the conference. Slave-secure bridges (SB), connecting
the conference participants, performs participant and telephone authentication.
Each secure bridge is associated with an 1) Authentication Center (AC) to au-
thenticate users and telephones, and to manage secret keys, and a 2) Certificate
Authority (CA) to manage digital certificates and generate public/private key
pairs. Our model requires that each telephone has cryptographic capabilities
using symmetric and public keys. Telephones (and their corresponding secure
bridges) are trusted based on these cryptographic capabilities as well as hard-
ware verification of the physical device.

Additional PSTN components, like the Service Switching Points (SSP), Ser-
vice Control Points (SCP), and Signal Control Point, together with the secure
bridges form the secure teleconferencing architecture [14]. Our protocols use the
Digital Subscriber Signaling System no 1 (DSS1) to communicate between the
telephones and the local SSPs. ISDN user part (ISUP) is used for communication
between SSPs and Transaction capabilities Library (TCAP) as well as for trans-
actions between SSPs, ACs, CAs, and Line Information Translation Database
(LIDBs ).

2.2  Security Model

Our goal is to protect the confidentiality of the telephone conversation from
unauthorized disclosure. Note, that the problem of hiding the existence of an
unauthorized conference is outside of the scope of this paper. We propose meth-
ods to apply the BLP security model to teleconferencing. The subject of our
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model is the telephone device and the human user (conference initiator and par-
ticipants) using the telephone. Telephones are authenticated based on the tele-
phone line numbers (TLN), telephone device numbers (TDN), and the private
keys assigned to them. A security clearance label is assigned for each telephone,
based on its encryption capabilities, verification of hardware components (e.g.,
trusted hardware and reliability), and physical security. Telephone clearances
are considered relatively static. Increasing or decreasing a telephone’s clearance
level requires technical modifications, like encryption updates. We assume that
users are aware of the clearance of the telephone devices.

User authentication is performed by a claimed user identity and the corre-
sponding password. Each user with maximum security clearance A is associated
with a set of passwords, where each password )\ in the set corresponds to a
specific security level and A > ). To prevent the exposure of a higher secu-
rity password on a lower security telephone device, we require that each user
is authenticated with the password that is assigned to him/her for the level
of the telephone device. For example, a user U with Top-Secret (TS) security
clearance has different passwords for Unclassified, Secret, and Top-Secret levels.
When U uses a telephone with Secret clearance, the user is authenticated based
on his/her Secret level password. Note, that different approaches could be used
to limit exposure of user passwords on telephones. For example, users may be
restricted to use telephone devices only if the clearance level of the device dom-
inates the clearance level of the user. Finding the optimal approach is outside
of our current research and is dependent on the application area, the number of
levels, and the available hardware resources.

A secure bridge, serving a telephone with clearance A, stores the appropriate
(user-id, password) pairs for all levels X', where A > X, For each call activation by
a user U;, using the telephone T;, the permitted security clearance is calculated
as the greatest lower bound of [ A(U;), A(T3)], where A\(U;) and A\(T;) are the
clearances of user U; and device T}, respectively.

The protection object is the content of the telephone conference. Each confer-
ence is initiated at a specified security level. Conference classification levels may
increase and decrease along the dominance relation of the security lattice. We
require that a user/telephone pair is permitted to initiate or join a conference
only if the greatest lower bound of their joint security clearance dominates the
security classification of the conference.

This paper studies the conference dynamics, including initiating the confer-
ence, adding and dropping participants, changing security classification of an
ongoing conference, and changing the call controller of an ongoing conference.
Our security requirement is that an unauthorized user should not be able to dis-
close the conference content. That is, unauthorized users should not be permitted
to become participants of a conference or gain access to the secret key used to
encrypt the content of the conference. The later requirement protects against
passive eavesdropping. Our security requirements are supported by the proper-
ties of existing secret and public key encryption methods and by safeguarding
the encryption/decryption keys. In addition to the security requirement we want
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to limit the number of authentication procedures and key updates that cause
delays in the teleconferencing.

3 Protocols

We developed eight protocols to support secure telephone conferencing: 1) Es-
tablish a conference, 2) Add a new conferee by the call controller, 3) Add a new
conferee by his/her own request, 4) Drop a conferee by the call controller, 5)
Drop a conferee by his/her own choosing (hang up), 6) Change the classification
of an ongoing conference 7) Call teardown by the call controller hanging up,
and 8) Call teardown when the last slave conferee hangs up. Due to the space
restrictions of the paper we only present some of our protocols.

3.1 Protocol 1 - Teleconference Call Setup Process

The teleconference call setup process has five phases: 1) Telephone authenti-
cation, 2) User authentication, 3) Cross certification of the MSB, 4) Remote
telephone authentication, 5) Remote user authentication, 6) Cross certification
of the SSBs, and 7) Key distribution. Figure 1 shows the control messages for

T

( 011 MSB
ca.

SSP AC
controller) SSP, msb ‘msb

TSP

SETUP (CR)) [FIE:beginSecureCQiF-inv (1,) ]
TAM[FIE:beginSecureCONF-inv (M )]
B: [inv:telAuth-Req (M.)

C:[RR:telAuth-RR (M.)
PG[FIE:controllerID-Req (M.)]
CALPRC(CR) [FIE:controllerIp-Req(M,)) ]

FAC (CRy) [FIE:controllerID-RE(M,)]
CPG[FIE:controllerID-RR (M) ]
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C:[RR:controllefPWD-RR (M,)
PG[FIE:classCONF-Req (M,) ]
FAC (CR,) [FIE:classCONF-Req (M )]

FAC (CR,) [FIE:classCONF-RR

)

éPG [FIE:classCONF-RR (M) ]
C:[inv:classQONF-Req (M)
C:[inv:classfONF-RR (M ) ]

CPG[FIE:TLN-Req (M,) ]

FAC(CR) [FIE:TLN-Req(M;) ]
FAC (CR)) [FIE: TLN-RR (M) ]

CPG [FIE:TLN-RR(M_)]

C: [inv:[TLN-Req (M,),

M = K [K* [TLN;, TDN,, t,]]

M, = K*_ [ID_Request,R*, t,] Mg = K*,,[LC_Request, R* g, t ]

M, = K. (1D, R*, t,] M, = K_, [A(conference), R*, t,]]
M, = K*_ [PWD_Request,R*,t,] My = K., [TLN_Request, Ry, t,]]
M, = K, [PWD,, R*,t,] My = Ko [TLN,, R*, t,]

Fig. 1. Conference Call Setup: Initiation and call controller authentication
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conference set up steps and the authentication of the call controller. The protocol
is given below. The call controller’s (user Up) security clearance is determined
by the security clearance of the telephone device (Tj) used to initiate the con-
ference and the security clearance of the (Uy, passwordy) pair. The permitted
classification level of the conference to be initiated by Uy is MUp—permitted) =
GLBI\Ty), (MUy, passwordy))]. The call controller is permitted to initiate a
conference with security classification A, where A(Uo—permittea) > A'. The ac-
tual protocol steps are given in Appendix A.

1. [To] The call controller (Up) dials the teleconference access code. Once the
telephone enters the teleconference mode, the call controller enters the tele-
phone line number (TLN) of the master secure bridge (MSB).

2. [Ty = SSPy — SSPps — AChs) To invokes the facility that initiates the

conference sending My = K55 [ K§[T LNo, T DNy, to]] to MSB, where K,
is the public key of the M SB, and K is the private key of T.
This message is used for the authentication of the telephone device and
travels in the SETUP message (ISDN) between Ty and SSP, and in the
TAM primitive (ISDN) between SSPy and SS Py, s5. While the TAM message
travels through the SS7 network, the intermediate exchanges allocate the
voice trunks. The destination exchange (SSP,,s,) allocates the resources for
the secure teleconference (the Master Secure Bridge - M SB) and initiates
the teleconference transaction by sending the message M7 to AC,,sp.

3. [AC,,sp] The authentication center of the Master Secure Bridge verifies the
authenticity of the telephone set by extracting T LNy and T'DNy and com-
paring them against the ones stored in the database. It also checks the valid-
ity of the timestamp to prevent the replay attack. The authentication center
looks in its database for the telephone classification A(7p).

If authentication succeeds and the algorithm continues with the step 4.
Else SSP,,s clears the allocated voice trunks using a RELEASE/RLCOM
message pair that propagates along the allocated path.

4. [AChsp — SSPpsp — SSPy — Ty] MSB replies with a request for user

authentication embedded in a Call Progress (CPG) message:
M, = K} [ID Request, R§,t1], where Rf is a nonce generated by AC that
will be embedded in the message exchanged between call master and M .SB
during the teleconference session, and t; is a timestamp. Both the random
number and the timestamp are meant to prevent the replay attack. An IVR
message solicits the user to dial her user ID.

5 [To — SSPy — SSPps — AC,s] The call controller enters her/his ID
(ID())I M3 = Kmsb[IDOa R67 tg]

6. [AC,.sp] The authentication center of the M SB decrypts M3 and checks the
validity of the random number, timestamp, and looks in the database for
1Dy.

If authentication succeeds the protocol continues with the step 7.
Else, SSP,,s clears the allocated voice trunks using a RELEASE/RLCOM
message pair and ends the transaction with AC,, s
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7. [ACsp — SSPysy — SSPy — Tp] The authentication center sends a signed
acknowledgement in a CPG message, which contain a request for password:
My = K}, ,[PWD Request, R§, t]

8. [Ty — SSPy — SSPnsy — ACnsp] The call controller dials her password
(PW Dyg), which will be again send to AC,,s in a CPG message encrypted
by the public key of MSB. M5 = K,,s|PW Do, R, t5]

9. [AC;nsp) The MSB decrypts the message and checks the timestamp and the
(IDg, PW Dy) pair.

If authentication succeeds, i.e., there is an (I.Dg, PW Dy) pair, the AC,,sp
maps the user clearance A(Up, passwordy, ). ACp,s, computes A(permitted)
= GLB[XT;), AM(Uo, passwordy,)]. The protocol continues to assign security
classification for the conference.

Else, SSP,,s clears the allocated voice trunks using a RELEASE/RLCOM

message pair and ends the transaction with AC,,sp

3.2 Protocol 2 - Add a Participant to an Ongoing Conference

After the conference is set up, new participants U, may join the ongoing con-
ference. Up (call controller) places the teleconference on hold by pressing the
HOLD button. The other conferees are still able to talk while the conference is
on hold. Uy initiates the new participant by dialing the U,’s telephone number.
The minimal requirement after successful authentication of T, and U, is that
GLBINTy), AUy, passwordy)] > A(conf). Based on the conference dynamics,
the encryption key used for the conference may or may not need to be updated
(see Section 3.4).

3.3 Protocol 3 - Drop a Participant from an Ongoing Conference

Conference participants may be dropped from an active conference voluntarily
(conferee hangs up) or non-voluntarily (call controller drops the user to maintain
the MLS requirements). For example, a user with Secret clearance may decide
to discontinue participation in a Secret conference. The same user may rejoin
the conference at a later time. On the other hand, a user with Secret clearance
is "forced” to be dropped from a conference when the conference classification
is increased from Secret to Top-Secret. The MSB is responsible for enforcing the
drop of the participants, reallocating the system resources, and initiating a new
encryption key if a forced drop occurred.

3.4 Protocol 4 - Change the Security Classification of an Ongoing
Conference

The security classification of an ongoing conference may be changed during the
conference. For example, after discussing a Top-Secret topic, the security classi-
fication of the conference may be decreased to Secret to allow participation of
Secret users. Any change in the conference classification may have an effect on
the 1) minimum clearance requirement of the call controller, 2) new clearance re-
quirements of the participants of the ongoing conference, 3) dropping conference
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participants, and 4) need of new encryption key. Figure 2 shows the message
transfer to change the conference classification.

To change the security classification of an ongoing conference to a new clas-
sification, the call controller Uy must be cleared to the new classification. That
is, if AM(confy) denotes the security classification of the ongoing conference, and
A(con frew) denotes the requested security classification, then the new level is
permitted only if A(Up) > A(confpew). Moreover, to decrease the classification
of a conference, the call controller must be trusted. If A(U;) > A(confrew) is
not true for all participants U; then U; must be dropped and a new message
encryption key must be distributed among the remaining participants. Also, if
the conference classification is decreased and a new user U; is added such that
Aconfo) > AU;) > A(confrew) then a new message encryption key must be
distributed among the participants.

To

MSB SSB

(call | x
controller) SSP, SSP__. AC . AC, SSP (conferee)
Pt
TEAE DSSl
<(CRg) (Active, Idle)> Users U, who do not have
AC (CR)) [FIE:changeClhssCONF-inv (M,) ] A(conference-new) <= A(U, T,)
[Fac (F1E:chahgeclassconsf-inv (M) )
: [invichandeclassconrF (v,)

: [RR:changgClassCONF-RR (Ip,,Drop) ]

REL
r DISC(CR,)
RLC
RLSE (CR.)
RLCOM (CR.) |
M, = K [A(conference-new),R* ,t ]] AC, sSSP, L
M, = Ki[K*q‘b[l(conferencefnew), Users U, = {0, 1, 2 ... n} with
IOyr v s Ky R 8511 A(conference-new) <= A(U, T,)

: [keyDist-HR(M,;)]
CPGlkeyDist|(M,,)]

FAC(CR)) [FIE:
eyDist (M) ]

>

otify (CR;) [NIE:
keyDist-ACK (ID.)

| CPG (keyDisf-ACK (ID,) )

: [keyDist-JCK(ID,) ]

3

Fig. 2. Changing an ongoing conference classification

We consider the following three scenarios: decrease conference classification,
increase conference classification, and change the classification to an incompa-
rable level. Table 1 show our security analysis for these scenarios from the per-
spectives of security requirements for the call controller, active participants, new
participants, and the need of new key generation.

Note, that any change in the conference classification can be modeled as a se-
ries of single steps in the security lattice. That is, a change from label A\; to Ay is
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Table 1. Conference dynamics and security requirements

Decrease conference Increase conference Change to non-

level level compatible level

X(confg) > A(confnew) X(con fnew) > X(confg) A(confnew) 2 Xconfg)

A(confg) 2 Xconfnew)
Security require- Trusted Subject GLB[X(Tg), A(Ug, pass— Trusted Subject and
ment for call wordg)] > A(confnew) GLB[X(Tg), A(Ug, pass—
controller (Ug) must hold to authorize wordg)] > LUB[X(confy),
the change A(con fnew)]

must hold to authorize
the change

Security require- None, since GLB[X(T;), A\(U;, pass— GLB[\(Tj), A(U;, pass—
ment for active GLB[X(T;), AN(U;, pass— word;)] > A(confnew) wordi)] > LUB[A(confg),
user (Uj) word;)] > A(confg) > must hold not to be A(confnew)]
X(con frew) dropped must hold not to be
dropped
Security require- GLB[A(Tx), A(Ux, pass— GLB[A(Tx), A(Ux, pass— GLB[X(Tx), A(Ux, pass—
ment for new wordx)] > A(confnew) wordx)] > A(confnew) wordx)] > A(confnew)
user (Ux) must hold to join must hold to join must hold to join
Need of new YES YES YES
message encryption if a new participant with if any participants with if a new join with
key distribution A(confnew) < A(Ugx) < X(confg) A(U;) < A(confnew) has  A(confpnew) < A(Ug) but
joins the conference dropped out (voluntarily or NOT X(confg) < A(Ug) or
NO-if no new joins forced) if any participants with
NO-if no drops NOT X(confnew) < A(Uj)

has dropped out
NO-if no new joins
and drops

modelled as navigating the security lattice along the path Ay — Ao — ... — Ag,
where for all A\; — A; either A\; > A; or A\; > );. For a call master to initiate
the change of a conference level from A\; to A\ must be cleared to all intermedi-
ate levels, that is GLBI\(Tv), [A(Uo, passwordy)] > LU B[X(con fo), A(con frew)]
must hold. Similar restrictions hold for any active participant. Our analysis on
the need of new encryption key incorporates the possibility that any non-active
user may be eavesdropping on the conference before or after the change. The
requirements for distributing a new key are based on this possibility of eavesdrop-
ping. Application requirements may require periodic refreshment of the message
encryption key even if this is not necessary based on the conference dynamics.

4 Performance Analysis

We compute the delays of our protocol, using standard telecommunication con-
nections delays [16,17,18], published encryption/decryption delays for text [3],
and the switch response time delays. Table 2 in Appendix B summarizes our
findings. The encryption and decryption time for RSA encryption and decryp-
tion is considered to be 12ms, (we do not consider the possibility of a small
public key, therefore the encryption and decryption time is about the same).
Table 3 in Appendix B shows the network delays corresponding to our proto-
cols. The delays corresponding to the user interaction (like the time before an
user answer the phone, the time necessary for a user to enter the password, or
playing messages) are hard to measure and are user dependent, therefore are
not considered here. The user interaction delay may take considerable time, but
it is unavoidable and also part of traditional (un-secure) teleconferencing. The
worst case calculation, given in Table 3, shows that teleconference setup delay
is slightly less than 20 seconds under the assumption that all slave conferees are
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authenticated simultaneously (i.e., parallel authentication). Adding a user delay
is about 11 seconds. Dropping a user and changing the conference classification
create small (2-3 seconds) delays.

5 Conclusions

In this paper we present an architecture and protocols to facilitate multilevel se-
cure teleconferences over Public Switched Telephone Network (PSTN). Our goal
is to protect conversation confidentiality. Our protocols enable to establish se-
cure telephone conferencing at a specific security level, add and drop conference
participants, change the security level of an active conference, and tear down a
conference. The protocols protect against eavesdropping and unauthorized par-
ticipation in a MLS conference. MLS requirements are enforced by safeguarding
the message encryption key of the conference. We also provide an initial estimates
of delays incurred during setup (20 seconds) and adding a user (11 seconds).
The authors are not aware of any published acceptance delay range for au-
tomated teleconferencing. Based on our experiences using such services (e.g.,
observed delays of several minutes for conference set up) indicates that the de-
lays, incurred by our protocols, are within the acceptable range. Nevertheless,
for future references, we are planning to request evaluation of our protocols by
vendors and developers. For future work we are planning to simulate our proto-
cols to generate realistic measurements over the incurred delays. Furthermore,
we are investigating methods to include a protocol for negotiating encryption
algorithms, keys, and configurations specifications between the participants.
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Appendix A

Protocol 1 — Conference Set Up:

A. Call Controller Authentication:

1.

[To] The call controller (Up) dials the teleconference access code. Once the telephone
enters the teleconference mode, the call controller enters the telephone line number
(TLN) of the master secure bridge (M SB).

[To — SSPy — SSPusy — ACnsp) To invokes the facility that initiates the con-
ference sending M1 = Kpe[Kg[T'LNo, TDNo,to]] to MSB, where K, is the
public key of the MSB, and K is the private key of Tp. This message is used
for the authentication of the telephone device and travels in the SETUP message
(ISDN) between Tp and SSPy, and in the IAM primitive (ISDN) between SSPo
and SSP,,s,. While the TAM message travels through the SS7 network, the inter-
mediate exchanges allocate the voice trunks. The destination exchange (SSPpsb)
allocates the resources for the se-cure teleconference (the Master Secure Bridge -
MSB) and initiates the teleconference transaction by sending the message M; to
Acmsb-

[ACs6] The authentication center of the Master Secure Bridge verifies the authen-
ticity of the telephone set by extracting T'LNy and T DNy and comparing them
against the ones stored in the database, and by checking also the validity of the
timestamp to prevent the replay attack. The authentication center looks in its
database for the telephone classification A\(7;) and associates it with the initiated
teleconference.

If authentication succeeds and the algorithm continues with the step A.4.

Else, SSP,, clears the allocated voice trunks using a RELEASE/RLCOM message
pair that propagates along the allocated path.

[AC 56 — SSPmsy — SSPy — To] MSB replies with a request for user authenti-
cation embedded in a Call Progress (CPG) message:

M, = Kjr[ID Request, Rj,t1], where R{ is a nonce generated by AC that will
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be embedded in the message exchanged between call master and M SB during the
teleconference session, and t; is a timestamp. Both the random number and the
timestamp are meant to prevent the replay attack. An IVR message solicits the
user to dial her user ID.

[TO — SSPy — SSPnsy — ACns] The call controller enters her ID (IDg):
Ms = Kusp[I Do, R, t3]

[ACs6] The authentication center of the MSB decrypts M3 and checks the va-
lidity of the random number, timestamp, and looks in the database for I Dg.

If authentication succeeds the protocol continues with the step A.7.

Else, SSP,,sp clears the allocated voice trunks using a RELEASE/RLCOM mes-
sage pair and ends the transaction with AC,, s

[ACrsp — SSPpe — SSPy — To] The authentication center sends a signed
acknowledgement in a CPG message, which contain a request for password: My =
K, [PWD Request, Ry, ta].

[T0 — SSPy — SSPunss — ACws] The call controller dials her password
(PW Dyg), which will be again send to ACp,s in a CPG message encrypted by
the public key of MSB. Ms = Ko [PW Do, R, ts]

[AC:.s] The MSB decrypts the message and checks the timestamp and the
(IDg, PW Dy) pair.

If authentication succeeds, i.e., there is an (I Do, PW Dy) pair, the AC),s, maps
the user clearance A(Up). AChms computes A(permitted) =

GLBI[\(T;), A\(Uo)]. The protocol continues with step 10.

Else, SSP,,sp clears the allocated voice trunks using a RELEASE/RLCOM mes-
sage pair and ends the transaction with AC,,sp.

Conference Classification and the Telephone Line Numbers

The call master dials the number of the nc conferees, one by one (nc is a number
between 1 and 30). We suppose that only n conferees (n = nc) succeed in con-
necting to the conference. The other (nc — n) conferees do not connect or have
authentication failure.
[ACmsp — SSPmsty — SSPy — To] The authentication center requests the call
master to choose a classification for the conference (LC): Ms = K, ,[LC Request,
R§, ts]. This is requested as a list of options played using the IVR.
[To — SSPy — SSPmsp — AChmsp) The call controller sends the classification for
the conference: M7 = K,sp[A(conference), Ry, t7).
If A(conference) < A(permitted) then the protocol continues with step B.4.
Else SSP,,s clears the allocated voice trunks using a RELEASE/RLCOM mes-
sage pair and ends the transaction with AC,,sp.
The following steps are repeated for all remote parties (i =1,2...n)
(a) [ACmsy — SSPmsy — SSPy — Ty] MSB sends a request to the call controller
to dial the telephone line number of the first conferee:
Mg = Knmo|TLN request, Rg, tsi]
(b) [To — SSPy — SSPpsy — ACmsp] The call controller dials the telephone line
number of User; (T'LN;): Mg = Kp,sp[T LN;, R, tos]
For i = 1 to nc repeat the following steps (1 through 9) (nc is the number of
conferees called by Up). If A(con ference) < A(permitted) for user U; than associate
(Ui, A(permitted)) with the conference and continue the protocol. Else drop U; and
clear the connection.
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Cross-Certification

[AChsp — SSPps, — SSP;] ACmsp signals to SS P, to send the initial address
message (IAM) that seizes a trunk between the secure bridge for U; and the local
exchange of the remote user (SSP;) to establish a bidirectional circuit between the
secure bridge and the SSP;, followed by a call progress (CPG) message that has
as a parameter a ticket M10 = K, [IDo,ID1...IDye, A(conference), R;, t10]
signed by the bridge. Mo certifies the Up, initiate the conference, and transmits
the conference classification A(conference) to the SSBs.

. [SSP; — AC;] SSP; forwards M10 to AC; for authentication. If fails, the AC;

signals the SSP; to drop the User;. Otherwise, continues with step D.1.

. Remote Parties Authentication

. [AC; — SSP; — T; — SSP;] If authentication succeeds, AC; sends authentication

result to the SSP; in TCAP message M11 = K ;[IDo,ID;...IDp.,

Konsh, Ri ,t11:]. SSP; sends the result to the T; in an ISUP message. T; sends back:
Mz = Kooi[K{[TLN;, TDN;, R}, t12:]] encrypts and signs telephone device and
line numbers.

. [SSP; — AC;] The authentication center checks the telephone line and the device

numbers in M2 sent through the TCAP message by decrypting the message with
K}.;, and then checks the signature of T; using K;. After decryption and authen-
tication, the AC; also verifies whether the T'LN; and the T' DN, from the message
M2 coincides with the one in the local database. Also, AC; looks in its database
for the telephone device classification A(T;). If the authentication fails, or if the
security condition A(conference) < A\(T3) fails, AC; sends an error message to the
SSP;, which initiates the disconnection procedure for the User; from the secure
conference by sending a REL/RLCOM message pair to the M SB.

[AC; — SSP;, — T;] AC; sends Mis = K,[ID Request, R}, ti3;] in a TCAP
message as the return result to the SSP; where the random number R; is included
in the confirmation ticket sent by the AC; to the MSB.

[SSP; — T;] SSP; sends M3 to U; in a FACILITY message with a FIE containing
a user authentication request.

[T; — SSP;] T; sends the ALERT (C'R;) message to SSP;.

[SSP; — SSPy] SSP; sends the ALERT

[SSPy — To] SSPy sends the ALERT (C'Rp) message to Tp.

[T; — SSP;] When U; picks up the handset, 7; sends the CONNECT message to
SSP;, and the SSP; plays an IVR announcement informing U; of the conference
participants, after the SSP; plays a new IVR announcement to the T;: ”Please
enter your ID”.

[T; — SSP;] U; dials her ID that is encrypted with AC;’s public key. The U;’s
telephone knows the AC;’s public key, and sends it to the AC; over the network.
[SSP;, — AC;] SSP; forwards M14 = Kaci[IDi, R * i,t14] to the AC; in a
TCAP message. The authentication center verifies the pair (I D, password) sent
over by the SSP;. If the ID is not found in AC;’s database, or if the condi-
tion A(conference) = A(T3) is not fulfilled, the AC; issues an error message to
the SSP;, and the local exchange starts clearing the connection. Thus we have:
Aconference) = GLBAN(T;), A(U;)] = AN(T3,Us)

[AC; — SSP; — T;] If the authentication succeeds, AC; sends a PW D request to
the User;: Mis = K*aci[PW D Request, R}, t15:]

[T; — SSP; — AC;] User; answers with Mg = K;;[PW D;, R}, ti6]
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13. [AC;] AC; checks the password, and if authentication fails, clears the connections
with M SB and T;. If authentication succeeds, it continues with step E.1.

E. Cross-Certification

1. [AC; — SSP; — SSPps — AChsp] If authentication succeeds, SSP; sends
the following ticket to AC).s», completing the cross-certification phase: Mi7 =
K} [ID;, A(U17;]. The MSB receives now U;’s public key and clearance, and also
the telephone device classification. Thus, MSB and U; are able to communicate
without any further help from the slave secure bridge. MSB double-checks the
condition A(conference) = GLB(A(T3), \(U;)) = XT3, Us)

F. Key Distribution

1. The master secure bridge waits until either all users have connected or a connection
timeout occurred, and adds the IDs of all connected users to a list.

2. For i =0,1,...n repeat following steps 1 and 2.

(a) [ACmsy — SSPmsy — SSP; — T;]. The secure bridge starts the group shared
key distribution phase by sending Mis = K;[K;,.[KE, R, tis]] in a TCAP
message between the AC,,s and the SSP,,sp, in a CPG message between the
SSPpsp and the SSP; and in a FACILITY message between SSP; and T;.

(b) [T; — SSP; — SSPumsy — ACme] Ti decrypts Mis, checks the signature, the
random number and the timestamp, and recovers the group shared key Kg.
After this, the T; sends the Key — dist — ACK(ID;) back to the AC),sp.

3. As soon as the users receive the symmetric key, they can start the secure group
conversation. The voice is encrypted by the telephone device and is sent to the
Master Secure Bridge. The M S B takes care of forwarding the encrypted signal to
the destination telephone devices, where the signal is decrypted.

Appendix B

Table 2. Switch Response Delay Calculation

Type of Call Segment Switch Response time (ms)
Mean 95% confidence interval

ISUP Message 205 — 218 = 337 — 349
Alerting 400 =532
ISDN Access Message 220 — 227 = 352 — 359
TCAP Message 210 — 222 = 342 — 354
Announcement/Tone 300 =432
Connection 300 =432

End MF Address - Seize 150 = 282
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Table 3. Network delay

Table Delay under
Confer- assumptions: Description of the parameters
ence Call Delay n = 10, p = 10s, and assumptions
Phase a; = b; = 50ms
d =e=12ms
11007 + 667n The number of conferencing sub-
+(n+ 8)ao scribers is n

Call setup 48 - max{ai ...an} 19,181ms
+2-max{bi...bn}
+21-(d+e) ms

Add user 9855 + 3ag + 6an

by call +2-maxaj...an 10,769ms

controller +2-maxbi...b,
+11-(d+e) ms

Drop user 2001 + ao

by call +2-max{ai ...an} 2,323ms

controller +2-max{by...b,}

+3-(d+e) ms
Increase / 2001 + ag
change +2-maxai...an

conference +2 - maxb;...b, 2,323 ms
classifica- +3-(d+ e) ms

tion.

Decrease 2001 + ag

conference +2 - max{ai ...an} 2,275ms
classifica- +2 - max{bi...bn}

tion +(d+-e) ms

The transmission propagation
delay between To and AC,,sp is ao
and the transmission propagation
delay between T; and AC; is as,
where i = 1,2...n. (see ITU-T
Recommendation TABLE
1/Q.706). We will omit a maxi-
mum 2.5ms delay between Tp and
SSPy (under the realistic assump-
tion that the distance between Ty
and SSPO is less then 500km),
since it is not significant compared
with the total delay.

The transmission propagation
delay between AC.,,s» and AC; is
bi, where t =1,2...n

The delay to perform a RSA 1024
encryption/decryption is
e=d=12ms.



Secrecy of Two-Party Secure Computation*

Yi-Ting Chiang, Da-Wei Wang**, Churn-Jung Liau, and Tsan-sheng Hsu* **

Institute of Information Science Academia Sinica, Taipei, 115, Taiwan
{ytc, wdw, liaucj, tshsu}@iis.sinica.edu.tw

Abstract. Privacy protection has become one of the most important
issues in the information era. Thus, many protocols have been devel-
oped to achieve the goal of cooperatively accomplishing a computational
task without revealing the participants’ private data. Practical protocols,
however, do not guarantee perfect privacy protection, as some degree of
privacy leakage is allowed during the computation process for the sake of
efficient resource consumption, e.g., the number of random bits required
and the computation time. Although there are metrics for measuring the
amount of resource consumption, as far as we know, there are no effec-
tive metrics that measure the degree of privacy leakage. Without such
metrics, however, it is difficult to compare protocols fairly. In this paper,
we propose a framework based on linear algebra and information theory
to measure the amount of privacy leakage in protocols. This framework
can be used to analyze protocols that satisfy certain algebraic proper-
ties. We use it to analyze three two-party scalar product protocols. The
framework might also be extendable to the analysis of other protocols.

Keywords: Privacy Analysis, Private Computation, Scalar Product.

1 Introduction

Privacy protection is one of the most pressing issues in the information era.
The massive databases spread over the Internet are gold mines for some and,
at the same time, one of the greatest threats to privacy for others. How to
cooperatively accomplish a computational task without revealing participants’
private input has therefore gained a lot of attention and the development of
efficient solutions is now an active research area. In theory [11,7], it is possible
to securely compute almost any function without revealing anything, except the
output. Unfortunately, the theoretical results are not readily applicable to real
applications due to their high computational complexity.

Most theoretical approaches adopt a computationally indistinguishable view
of secrecy and try to find provable secure solutions, but such a definition leaves
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little room to quantify secrecy. Meanwhile, in application oriented studies, re-
searchers usually take an intuitive approach to the definition of secrecy and try
to prove the secrecy of protocols by refuting possible attacks. However, being
intuitive, this approach cannot actually prove the security of protocols per se. It
can only be argued that refuting possible attacks preserves some security. There
is a gap between the theoretical and intuitive approaches in terms of provable
secrecy. Although, privacy is a basic human right, it is not the only one. When
multi-party private computation is applied to the public sector, sometimes pri-
vacy must be compromised to accommodate other important social values. It
can also be applied to the private sector, such as in a business setting. For
example, two (or more) companies might want to compute a function coopera-
tively; however, neither of them wants to share their private information. In both
public sector and private sector applications, it would be beneficial to be able to
quantify secrecy so that some tradeoff, for example, between secrecy and compu-
tational efficiency, could be made. In [5], similar arguments are presented about
ideal secrecy and acceptable secrecy. In this paper, we propose an information
theoretical framework toward a quantifiable definition of secrecy for multi-party
private computation.

The remainder of this paper is organized as follows. We give a short review
of related works in Section 2. In Section 3, we present our formal framework. In
Section 4, we analyze several scalar product protocols to demonstrate our model
and summarize the results. Finally, in Section 5, we present our conclusions and
a short discussion about possible extensions of our model. We also indicate the
direction of future work.

2 Related Work

Secure two-party computation was first studied by Yao [11] and extended to
the multi-party case by Goldreich et al [7]. Through a sequence of effort, a
satisfactory definitional treatment was developed and precise proofs for security
were provided . A full description of these developments can be found in [6].
The general construction approach is as follow. To securely compute a function,
it is first converted to a combinatorial circuit. For each gate in the circuit, all
parties run a protocol to compute the result of that gate. Both the input and
the output of the gate are shared randomly and the final output is also shared
randomly among all parties, after which each party can exchange its share of
the information to compute the final result. Although, this general construction
approach is impressive, it implies that both the size of the circuit and the number
of parties involved dominate the size, i.e., complexity, of the protocol. Note that
the size of the circuit is related to the size of the input. Therefore, the approach
is not a feasible solution for a real world problem with a large input and/or a
large number of parties [9].

The high cost of the general approach for large problems has motivated re-
searchers to look for efficient solutions for specific functions and many protocols
have already been developed to solve specific problems. There are specific pro-
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tocols for general computation primitives, such as, scalar products [1,10], set
union and set intersection cardinality [8], and private permutation [2]. In ad-
dition, there are protocols for specific application domains, for example, data
mining, computational geometry, statistical analysis, etc. An excellent survey of
secure multi-party computation problems can be found in [3].

Almost all the approaches mentioned above are based on the notion of ideal
secrecy, as indicated in [5]. In that paper the authors ask if it would be possible to
lower the security requirement from an ideal level to an acceptable level so that
an efficient protocol could be developed. We extend their work by quantifying
the security level within an information theoretical framework.

3 Framework

In multi-party private computation, n players cooperate to compute a function,
and each player holds some private input that is part of the parameters for
computing the function. The goal is to compute the function and maintain the
secrecy of each party’s private input. Given a protocol, P, we use X! to denote
the private input of party i, and msg! to denote the message received by party
1. We use information theory to model the amount of information revealed after
running P. Before running P, each party has no information about other parties’
private input. However, after running P, each party may know something about
some of the other parties’ private inputs because of new information gathered
during the execution of P. Let H = H(X[) denote the entropy of random
variable X7 and HZ—I;- = H(Xip|msg]1-3) denote the entropy of random variable
XFP given msgf . The conditional entropy corresponds to the intuitive idea of
the amount of information (uncertainty) of X from party j’s perspective after
receiving msg]P .

We define the degree of secrecy of protocol P as min; ;(HJJ/HF), or min; ;
(HZ-I;-); and call the former relative secrecy and the latter absolute secrecy. When
comparing different protocols, we believe that relative secrecy is a better notion,
since it is normalized to a number between zero and one, where one indicates
perfect secrecy, and zero means no secrecy at all. However, for some specific ap-
plications, where the number of players and the types of private input are fixed,
absolute secrecy gives the user a direct measurement of the degree of uncertainty
that each private input contains after executing the protocol. Obviously we as-
sume the existence of private communication channels between any two parties.
To model the case of a broadcast channel, we simply replace msg!?” with msg”,
where msg? denotes the complete record of messages broadcast during the exe-
cution of the protocol. It is worth mentioning that our model can be extended to
model situations such as parties forming a coalition, where there is asymmetry
among data elements in the private inputs and among the parties. We do not
try to describe such a general model here, as the extension might detract from
our main points. In a later work, we hope to extend our model to a multi-party
setting.
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4 Analysis of the Protocols

4.1 Preliminaries

In this paper, we analyze the degree of secrecy of three two-party scalar product
protocols, each of which has two players, Alice and Bob, who have private input
X4 and Xp respectively. The private input of each player is an n dimensional
vector. After running the protocol, Alice and Bob receive the numbers u and v
respectively, such that u + v is the inner product of X4 and Xp, i.e., X - Xp.
Let * be the matrix product operator, and X% be the transpose of Xp. Then,
u+v =Xy, Xp=Xgx* Xg. Hereafter, we assume that X4, Xp € GF(p)",
where GF(p) is a Galois field of order p, and p is a prime number. We also
assume that both parties are semi-honest, i.e., they both follow the protocol and
do not deliberately deviate from it to get more information. Instead, they only
deduce information from messages they receive.
We first list some facts from information theory.

Fact 1
1. H(X|msg) = H(X, Rlmsg) — H(R|X,msg).
2. If R is a function of X and msg, then H(R|X,msg) =0 and H(X|msg) =
H(X, R|msg).
3. If H(R|X,msg) # 0 and H(X|R,msg) = 0, then H(X|msg) = H(R|msg) —
H(R|X,msg).

Let V and C be two random sources. If it is known that some functional
dependency exists between V' and C, then knowing information about C' reveals
information about V. That is, the entropy of V is reduced. For the case where
V,C € GF(p)™ and A is a matrix, we get the following:

Proposition 1. Let V,C € GF(p)™ be two vectors with all elements uniformly
randomly selected from GF(p), and let A be an mxn matriz with all its elements
in GF(p). If there exists a functional dependency AV = C and rank(A) =k,
then H(V|C) = (n — k) logp.

Proof: By AxV = C, let W7 and W5 be two vector spaces with ordered bases «
and (3 such that there is a linear transformation 7: Wi — Wa. [T]§ = A. Since
rank(A) = k, if C is known, we can find a vector space U C W; such that the
dimension of Uis n—k and V € U. Let s = (s1,...,8,—) be an ordered basis
of U. Then V can be expressed in the form:

V =a151 +azs2+ -+ aGn_pSn—k-
Thus, H(V|C) = H(a,...,an—k) = (n — k) logp.
The following lemma can be derived directly from the above proposition.

Lemma 1. Let AxV = C be a linear system of equations in GF (p). If there
are k linear independent equations in A xV = C, that is, rank(A) = k, and n
unknowns in V., then H(V|C) = (n — k) logp.

We now describe and analyze three scalar product protocols. In our analysis,
let I; be an ¢ x ¢ identity matrix, and 0;x; be an 7 x j zero matrix.
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4.2 Analysis of Protocol 1

The protocol is as follows. First Alice and Bob agree to an n*n invertible matrix,
M, and a positive integer, k, that is not larger than n.

Scalar Product Protocol 1 [5/

Alice Bob
1. Compute X'y = X4 % M. Compute Xy = (Mt x XI)T.
Let X!y = [za,,...,24,], Let X5 = [zB,,...,2B,],
XA:[mAlw--axAk]; XB:I:xBl""7ka:|7
XA:[‘rAk+1a"'axAn,] B ‘XB = [(EB,CJA,...,.’L'Bn]
2. Alice & Bob
. 68
Alice < Bob
3.u:XA*X£ v=Xsx X}

Let U be a matrix whose column vectors are the leftmost & column vectors of
matrix M, and let V' be a matrix whose row vectors are the last n—k row vectors
of matrix M ~'. We organize messages received by Alice and Bob in a matrix
form and use Lemma 1 to derive the conditional information of each private
input after the other party receives the messages sent during the protocol.

— Alice receives the message msga = {Xg} = {V * XL}. Thus, V+ X% =Xp
and rank(V) =n — k. By Lemma 1, H(Xp|msga) = klogp.

— Similarly, Bob receives the message msgp = {Xa} = {U * Xa}. Hence,
U X4 = X4 and rank(U) = k. By lemma 1, H(X a|lmsgp) = (n — k) logp.

Based on the above discussion, we have the following lemma.

Lemma 2. In Protocol 1, the degree of secrecy for Alice is H();I‘Z‘)?T)QB):

(n;fgglc;gp = (n—k)/n, and for Bob is H(ﬁ?)'?;)g“::izig =k/n. The degree of

secrecy for Protocol 1 is min(H();‘ELZS)gB), H(éfﬁ)‘gs)gf‘)) =min(k,n — k)/n < 1.

Remarks: In [5], it is mentioned, but not formally explained, that M should
be invertible and k should be selected as k = [n/2]. From our analysis, we
know that selecting M to be invertible and k& = [n/2]| maximizes the degree
of secrecy. It is also mentioned in [5] the selection of M should avoid the case
where X4 = [z4,,...,74,]; for example, that the selection of M = I,, is one of
the bad cases. However, in our framework, picking M = I,, and picking M to be
any invertible matrix are identical in terms of the degree of secrecy. Institutively,
the advice mentioned above indicates that, the case where an individual value
is fully revealed is definitely more serious than the cases where individual values
are partially revealed, even though the total information remains are the same.
The conflict will be resolved when our model is extended to consider asymmetry
among the data elements of private inputs.
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4.3 Analysis of Protocol 2

This protocol assumes the existence of a semi-honest party, C. In other words,
C does not collude with Alice or Bob. First C' generates two 1 X n random
matrices, R, and Rp; and then randomly picks two integers, r, and rp, such that
re + 7y = Ry * RbT. C sends R, and r, to Alice, and Ry and r, to Bob.

Scalar Product Protocol 2 [4,5]

Alice Bob
I.X:L‘:XA+R,1 X’B:XB+R(,
2. Alice Xa, Bob
Alice pud1 Bob

3. Bob generates a random value
v, and computes s = X *
Xg +7r,—v

4. Alice <>~ Bob

5u=8—(Ro* XZ)+7a

Because, in this protocol, the commodity party C' generates random variables
without receiving any message, C' gets no information about the private inputs
of Alice and Bob.

Alice receives the message msga = {XJp, rq, s} in Protocol 2, where

_ X/B:In*Xg“V‘In*Rl?J"O'Tb"_O'U’
— ra:01XR*X£+RQ*Rbel~rb+O-v, and
— s:Xx’L‘*XngOan*RbTJrl-rbf1~v.

Since H(Rp|Xp,msga), H(rs|Xp,msga), and H(v|Xp,msga) are all 0,
I, I, 0 O
we have H(Xpg|msga)=H(Xp, Ry, 5, v|msga). Let A; = | 015, Ro —1 0
Xy Oy 1 —1

)

Xp

T
RT XB
Zl = b s and Cl = Ta
Tb
S
v

Note that rank(41) = n+ 2, A1 x Z; = Ci, and Cy is essentially msga.
H(Xg|lmsga) =nlogp by Lemma 1.
Bob gets the message msgp = {r,, X'y} in Protocol 2, where

— L« X +1, R +0-r, = X', and
- 01Xn*X£+Rb*Rg—1'Ta:Tb.

X4

| I, I, 0 B # P
Let AQ = |:01><n Rb _1:|, Z2— ]:a ,and C’Q = |: - .

It is easy to verify that H(Ry|Xa,msgp) = 0, H(r.|Xa,msgp) = 0, and
rank(A) = n+ 1. Thus, H(X4|msgp) = H(Xa, Ra,ms|msgp). We know Az *
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Zy = Oy, and Cs is essentially msgp. By Lemma 1, H(X a|msgg) = (2n+1) —
(n+1))logp = nlogp.
Based on the above discussion, we have the following lemma.

Lemma 3. The degree of secrecy for Protocol 2 is min(

H(XB|msgA)):1’

H(Xg)

4.4 Analysis of Protocol 3

H(XalmsgB)
H(XA) ?

This protocol assumes M is a public n X n matrix, m is a publicly known constant
that is at most n, and rank(M) = k. Without loss of generality, we assume that

n can be evenly divided by m, and ¢ = n/m.

Scalar Product Protocol 3 [10/

1.

SRS

Alice

Generate a 1 X mn  random
matricx R. Let D be an
m X n  matrix whose ele-
ments are di;, where di; =
{ 0, otherwise

Define X'y = (X4 + M « RT)T
and Q =D« R”.

. Note that s = X} *Xg

=X« XE+R«WT—RxWT
=Xax XE+RxXT—R+«WT.
Since Alice knows X, she can
getu:XA*XBfR*WT.

Alice %Bob

Alice &SBOZ)

Bob

Lets = X"\« XL and gen-
erate a 1 X m random ma-
tric R\ = [rq,...,7m.].

Let W = [wy,...,wy,] be
a 1 X n matriz, where
Wii—1)xq+j = Tg, Vi €
[1,m] and Vj € [1,q].
Let Xi; = Xp*x M+ W.

Bob can compute v = R’ *
Q. Notes that R-WT =R'x
Q.

Alice receives the message msga = { X, s}, where

— XF=MT+« XL +1, W7 and
— s:Xx’L‘*XngOan*WT.
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T
Note that there are only m unknowns, r{,..., 7 in W. Let A = M, In ,
XA 01><n
_ [ X5 _ [ X5
=[] o= [¥F]

We know that H(W|Xp,msga) = 0, rank(A) =n+1, AxZ =C, and C
is essentially msga. By Lemma 1, H(Xg|msga) = (n +m — (n + 1))logp =
(m — 1) logp.

Bob receives the message msgp = {X/}, @} from Alice in Protocol 3, where

- XT=1,% X% + M« RT, and
— Q:Omxn*ng—i—D*RT.

In Bob’s case, H(R|X 4, msgp) may not be 0 if rank(M) = k # n. On the
other hand, H(Xa|R,msgg) = 0, even if k is not equal to n. So we have
H(Xalmsgp) = H(R|msgp) — H(R|X 4, msgp).

I, M X7
We first compute H(X 4, Rlmsgp). Let Ay = {Oan D} 7z, = [ A}, and
T

o) = %‘

It is clear that rank(A) = n+m, A;xZ, = C1, and C1 is essentially msgp. By
Lemma 1, H(R|msgp) = H(X 4, Rlmsgp) = (2n—(n+m))logp = (n—m) log p.

To compute H(R|X 4, msgp), X4 can be treated as a constant vector. There-

T T

fore, let Ay = []\g} Zy = [RT}7 and Cy = [XA 0 XA} = [M(S R]. From
Ay x Z1 = Cq, we can derive As x Zy = Cs.

Let rank(As) = e. From Lemma 1, H(R|Xa,msgp) = (n — e)logp. As
a result, H(Xa|msgp) = H(R|msgp) — H(R|Xa,msgp) = (n —m) — (n —
e))logp = (e —m)logp.

Note that e < n, m is an integer, and min (m — 1,e — m) < min(m — 1,
n—m)<(n-—2)/2.

Based on the above discussion, we have the following lemma.

Lemma 4. The degree of secrecy for Protocol 3 is:

H(XA|msgB)7 H(Xpg|msga) _ min(efm7 m— 1) < 1 1 - 1.

H(X4) H(Xpg) n n 2 n 2
Remarks: In our analysis, Protocol 3 achieves its maximum level of secrecy
when m = "I and rank(Az) = n However, we require that m = n/q for some
integer ¢, and m to be an integer. When n is even and m = n/2, the protocol
achieves its maximum level of secrecy. This provides a guideline for choosing M
and m.

min (

5 Conclusion and Future Works

In this paper, we propose the measurement of secrecy in the information the-
oretical sense, and use our model to analyze three two-party scalar product
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protocols. The results are summarized in Table 1. We note that although Proto-
col 2 achieves the highest level of security with the least complexity, i.e., random
bits, communication cost, and computational efforts, it requires a semi-honest
third party, which may be costly to implement in real applications. Protocol 3
may be slightly more secure than Protocol 1.

Table 1. Summary of results

Protocol 1 Protocol 2 Protocol 3
random bits 0 (2n + 1)[log p] (m+ n)[logp]
communication O(nlogp) O(nlogp) O(nlogp)
cost
computational O(n?) O(n) O(n?)
complexity
degree of secrecy < ; 1 < min("™ ™, m,jl)

<1™ 1
— 2 n
comments requires a n X n requires a semi-honest achieve max secrecy
inevitable matrix third party when m = |n/2]

We consider that maintaining secrecy is an important factor in multi-party
private computation, but it is not the sole goal. Thus, a tradeoff among com-
putational complexity, communication complexity, and secrecy can be explored.
The theoretical existential proof of solutions for multi-party private computation
is elegant and impressive; however, it is not practical for real world, large-scale
applications. For real applications, perfect secrecy is an ideal situation, but ad-
equate secrecy is sometimes sufficient. Being able to quantify the secrecy pre-
served by protocols is important in deciding if an adequate secrecy level can be
achieved. In this paper, we have proposed the use of an information theoretical
framework to measure the secrecy of protocols. Furthermore, we have analyzed
three two-party scalar protocols to demonstrate the efficacy of our approach.

Finally, there are two interesting research directions worthy of further study.
First, it would interesting and challenging to develop general analysis method-
ologies. So far, we have only investigated the linearly dependent relationship
between secret input and messages. More tools are needed to analyze more com-
plex protocols. The second interesting direction would be to explore possible
tradeoffs between secrecy and other performance related measurements.
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Abstract. The traditional transaction processing model is not suitable for many
advanced applications, such as those having long duration or those consisting
of co-operating activities. Researchers have addressed this problem by propos-
ing various new transaction models capable of processing advanced transactions.
Advanced transactions are characterized by having a number of component sub-
transactions whose execution is controlled by dependencies. The dependencies
pose new challenges which must be addressed to ensure secure and reliable ex-
ecution of advanced transactions. Violation of dependencies in advanced trans-
actions could lead to unavailability of resources and information integrity prob-
lems. Although advanced transactions have received a lot of attention, not much
work appears in addressing these issues. In this paper, we focus on the problem of
scheduling advanced transactions. Specifically, we show how the different depen-
dencies constrain the execution of the advanced transaction and give algorithms
for scheduling advanced transactions that preserve the dependencies. Our sched-
uler is not confined to any specific advanced transaction processing model, but
is capable of handling different kinds of advanced transactions, such as, Saga,
Nested Transactions and Workflow.

1 Introduction

Driven by the need for designing high performance and non-traditional applications, a
number of advanced transaction models [2,7,9,12,17,19] have been proposed in recent
years as extensions to the traditional flat transaction model. These advanced transaction
models, though differ in forms and applicable environments, have two common prop-
erties: made up of long running activities and containing highly cooperative activities.
We refer to these activities as subtransactions in this paper. Subtransactions need to be
coordinated to accomplish a specific task. The coordination among subtransactions is
achieved through dependencies. Existing research work in advanced transactions, like
ACTA [8] and ASSET [6], have discussed dependencies as means to characterize the
semantics of interactions between subtransactions. Using these dependencies, different
kinds of advanced transactions can be generated. Although a lot of research appears
in advanced transactions, reliable scheduling and execution have not been adequately
addressed.

Improper scheduling of subtransactions in an advanced transaction may result in
integrity and availability problems. For instance, suppose there is a begin on commit
dependency between subtransactions 77 and 7>, which requires that 7> cannot begin
until 77 commits. If the scheduler fails to enforce this dependency, then the integrity
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of the application may be compromised. As a second example, consider the existence
of a strong commit dependency between subtransactions 73 and 74 that requires 7 to
commit if 73 does so. Suppose the scheduler executes and commits 73 before 74. Later
if T4 needs to be aborted for some reason, then we have a complex situation: 7; needs
to abort as well as commit. In such a case, allowing T4 to complete will cause integrity
problems and keeping it incomplete raises issues pertaining to availability.

In this paper, we propose a solution that overcomes the problems mentioned above.
We first evaluate the scheduling constraints imposed by each dependency. We discuss
the data structures needed by the scheduler, and give the detailed algorithm. In some sit-
uations, each pair of subtransactions can be related by multiple dependencies. We show
how our algorithm can be extended to handle such scenarios. Note that, our scheduler
is extremely general — it can be used for processing any advanced transaction where
the transaction can be decomposed into subtransactions that are co-ordinated through
dependencies.

The rest of the paper is organized as follows. Section 2 defines our advanced trans-
action processing model and describes the different kinds of dependencies that may be
associated with it. Section 3 describes the different data structures needed by our sched-
uler. Section 4 presents the details of how an advanced transaction is scheduled by our
model. Section 5 discusses related work. Section 6 concludes the paper with pointers to
future directions.

2  Our Model for Advanced Transactions

Our definition of advanced transaction is very general; it can be customized for dif-
ferent kinds of transaction models by restricting the type of dependencies that can ex-
ist among component subtransactions. An advanced transaction AT is specified by the
set of subtransactions in AT, the dependencies between these subtransactions, and the
completion sets to specify the complete execution states. All subtransactions specified
in an advanced transaction may not execute or commit. A completion set gives the set
of transactions that needs to be committed for successfully completing the advanced
transaction. The application semantics decides which subtransactions constitute a com-
pletion set. The set of subtransactions that commit in an advanced transaction model
may vary with different instantiations of the advanced transaction. Thus, an advanced
transaction may have multiple completion sets. With this background, we are now ready
to formally define our notion of advanced transaction.

Definition 1

[Advanced Transaction] An advanced transaction AT =< §,D,C > is defined by S,
which is the set of subtransactions in AT, D, which is the set of dependencies between
the subtransactions in S, and C, which is the set of completion sets in AT. We assume
that the set of dependencies in D do not conflict with each other.

Definition 2
[Subtransaction] A subtransaction T; is the smallest logical unit of work in an ad-
vanced transaction. It consists of a set of data operations (read and write) and transac-
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tion primitives; the begin, abort and commit primitives of subtransaction 7; are denoted
by b;, a; and c; respectively.

Definition 3

[Dependency] A dependency specified between a pair of subtransactions 7; and 7; ex-
presses how the execution of a primitive (begin, commit, and abort) of 7; causes (or
relates to) the execution of the primitives (begin, commit and abort) of another sub-
transaction 7.

A set of dependencies has been defined in the work of ACTA [8]. A comprehensive
list of transaction dependency definitions can be found in [3,6,8,14]. Summarizing all
these dependencies in previous work, we collect a total of fourteen different types of
dependencies. These are given below. In the following descriptions 7; and T} refer to
the transactions and b;, c¢;, a; refer to the events of 7; that are present in some history H,
and the notation ¢; < e; denotes that event e; precedes event ¢; in the history H.

[Commit dependency] (T; — T;): If both 7; and 7; commit then the commitment of
T; precedes the commitment of 7. Formally, ¢; = (¢; = (¢; < ¢j)).

[Strong commit dependency] (7; — T;): If T; commits then T; also commits. For-
mally, ¢; = ¢;j.

[Abort dependency] (7; —, T;): If T; aborts then 7} aborts. Formally, a; = a;.

[Termination dependency] (7; —; T}): Subtransact10n T; cannot commit or abort until
T; either commits or aborts. Formally, ej=e;<ej, where ei€{ci,ai},eje{cj,a;}.

[Exclusion dependency] (7; — .. T;): If T; commits and T; has begun executing, then
T; aborts. Formally, ¢; = (b; = a;).

[Force-commit-on-abort dependency] (7; — o T;): If T; aborts, T; commits. For-
mally, a; = ¢;.

[Force-begin-on-commit/abort/begin/termination dependency] (7: —ypc/ fba/ fob) fbr
T;): Subtransaction 7; must begin if 7; commits(aborts/begins/terminates). For-
mally, C,‘(a,'/b,‘/T,') = bj.

[Begin dependency] (7; —, T;): Subtransaction T; cannot begin execution until 7; has
begun. Formally, b; = (b; < b;).

[Serial dependency] (7; —; T;): Subtransaction 7; cannot begin execution until T;
either commits or aborts. Formally, b; = (e; < b;) where ¢; € {c;,a;}.

[Begin-on-commit dependency] (7; — . T;): Subtransaction 7; cannot begin until 7;
commits. Formally, b; = (¢; < bj).

[Begin-on-abort dependency] (7; —;, T;): Subtransaction 7; cannot begin until T;
aborts. Formally, b; = (a; < b;).

Let’s see an example of an advanced transaction below.

Example 1

Let AT =< §,D,C > be an advanced transaction where S = {T,T»,T3,T»}, D =
{Tl —be T27T1 —be T3,T2 —ex T37T2 —a T4}, and C = {{Tl,T27T4},{Tl,T3)}}. Thus,
this transaction has two complete execution states: {T1,7»,74} and {T},73}. The ad-
vanced transaction can be represented graphically as shown in Figure 1.
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A real world example of such a transaction may be a workflow associated with mak-
ing travel arrangements: The subtransactions perform the following tasks. 77 — Reserve
a ticket on Airlines A; 7> — Purchase the Airlines A ticket; 73 — Cancels the reservation,
and 74 — Reserves a room in Resort C. There is a begin-on-commit dependency between
Ti and 7> and also between 7} and T3. This means that neither 7> or T3 can start before
T; has committed. This ensures that the airlines ticket cannot be purchased or canceled
before a reservation has been made. The exclusion dependency between 7> and T3 en-
sures that either 75 can commit or 73 can commit but not both. In other words, either
the airlines ticket must be purchased or the airlines reservation canceled, but not both.
And, there is an abort dependency between 7 and 7> - This means that if 7> aborts then
T, must abort. In other words, if the resort room cannot be reserved, then the airlines
ticket should not be purchased.

Fig. 1. Dependencies in the Advanced Transaction of Example 1

Sometimes one single dependency is not adequate for specifying the relationship
between two subtransactions. For example, if we want to specify that (i) 77 must be-
gin after 7> has committed and (ii) if 7> aborts then 77 must also abort. In such cases,
a single dependency is not sufficient for expressing the co-ordination relationship be-
tween T and T>. A composite dependency is needed under this situation. A composite
dependency contains two or more primitive dependencies which are applied towards
the same pair of subtransactions. The single dependencies will be henceforth referred
to as primitive dependencies. For example, the above two primitive could generate a
composite dependency: 7> — fpeq 11

Definition 4

[Composite Dependency] A composite dependency between a pair of subtransactions
T;, T; in an advanced transaction, denoted by T; — 4, 4,.... 4, 1}, is obtained by combining
two or more primitive dependencies dj,d>, ... ,d,. The effect of the composite depen-

dency is the conjunction of the constraints imposed by the individual dependencies
di,da,....dy.

Note that, the constraints placed by the individual primitive dependencies might
conflict with each other. In this paper, we assume that the advanced transaction specifi-
cation does not have such conflicts.
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2.1 Execution Model

Having presented the structural model of the advanced transaction, we now present
our execution model. A subtransaction can be at different states during its lifetime.
Rusinkiewicz and Sheth have discussed the states of workflow tasks in a similar manner
[17]. In this paper, our approach will extend the their work. We will have the unsched-
uled state to identify that a subtransaction has not been submitted, and, we will require
the subtransactions being hold in prepare state and cannot transit to final (commit or
abort) state until the dependencies have been satisfied.

Definition 5

[State of a subtransaction] A subtransaction 7; can be in any of the following states:
unscheduled (un;), initiation (in;), execution (ex;), prepare ( pr;) (means prepare to com-
mit), committed (cm;) and aborted (ab;). Execution of subtransaction primitives causes
a subtransaction to change its state. Detailed state transition diagrams are shown in
figure 2.

delay
user
qubimt/ execute
un ; in
gAY
reject
abort

commit

Fig. 2. States of subtransaction 7;

Below we formally define each state, and describe how and when state transitions
take place.

— unscheduled (un;), means a subtransaction (7;) is not sent to a scheduler. At this
point, a scheduler can do nothing about it.

— initiation (in;), After subtransaction (7;) is sent to the scheduler, its state changes to
initiation. Now it is waiting to be executed. Later the scheduler can execute, delay
or reject this subtransaction.

— execution (ex;), a subtransaction (7;) moves from initiation state to execution state
by executing the begin primitive. When a subtransaction is in the execution state,
the only way a scheduler can control it is by aborting the subtransaction.

— prepare (pr;), After a subtransaction (7;) finishes its execution and ready to com-
mit, it is in the prepare state. At this point, a scheduler can determine whether the
subtransaction should commit or abort.
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— committed (cm;), means a subtransaction (7;) has committed.

— aborted (ab;), means a subtransaction (7;) has aborted. There are two ways to enter
the aborted state. When a subtransaction is in the execution state, it may be aborted.
Also when it is in the prepare state, the scheduler can abort it.

The aborted state and the committed states are called the final states. When a sub-
transaction has reached the final state, the scheduler can no longer change its state.

A reliable scheduler of an advanced transaction must be able to complete all the
necessary subtransactions in an advanced transaction and not cause any dependency
violation. A subtransaction that is never terminated but remains active even after the
transaction has terminated is called an orphan subtransaction.

Definition 6
[Reliable Scheduling] The scheduling of an advanced transaction is reliable if it satis-
fies the following constraints.

1. all dependency constraints of the advanced transaction must be satisfied;

2. when execution completes, each subtransaction must be in final state (a commit-
ted/aborted state) or unscheduled state. In other words, when execution of an ad-
vanced transaction completes, there should be no orphan subtransaction. Notice
that an orphan subtransaction will hold resources and possibly cause availability
problems.

The above conditions are necessary to avoid availability and integrity problems
caused by the advanced transaction.

3 Data Structures Required by the Scheduler

Before giving the details of the algorithm, we describe the data structures needed by
our algorithm.

3.1 Scheduling Action Table for Primitive Dependencies

The actions to be taken by the scheduler in order to correctly enforce a dependency
of the form 7; —, T; depends on the type of dependency existing between T; and 7T}
and the states of 7; and 7;. This information is stored in the scheduling action table.
For each dependency of the form 7; —, T}, we construct a scheduling action table T By.
This table has six rows and six columns corresponding to the different states of 7; and
T respectively. An entry in this table is denoted as EN(i, j) where i represents a state
of the subtransaction (7;), and j represents a state of the subtransaction (7}). The entry
EN,(i, j) can have the following values:

1. no restriction, shown as -’ in the table, means that the scheduler need not impose
any restriction for the state transitions of the two subtransactions 7; and T;. The
subtransactions 7; or T; can go into the next state without any restriction.

2. delay T(T;) means that the subtransaction 7;(7;) cannot make a state transition at
this stage. It must wait at the current state until the other subtransaction 7;(7;) has
entered another state.
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. execute T;(T;) means that the subtransaction 7;(7;) must be executed.

. abort Ty(T;) means that the subtransaction 7;(7;) must be aborted.

5. reject T;(T;) means that the subtransaction 7;(T;) will be rejected instead of being
scheduled for execution. This entry is only possible when subtransaction T;(7}) is
in its initiation state.

6. prohibited, shown as ’/’ in the table, means it is not possible for the subtransactions
to be in the corresponding states simultaneously because of this dependency.

7. final states, shown as ‘final’ in the table, means both the subtransactions are in the

final state. No further state transitions are possible.

RENLON]

The dependency scheduling tables specify the necessary actions that must be taken
by the scheduler to ensure the satisfaction of all dependencies. For lack of space, we do
not give the tables for all the dependencies. Table 1 shows the scheduling action table
for the strong commit dependency.

Table 1. Scheduling action table for strong commit dependency

action  un; inj ex; prj cmj; abj
un; - - - - - -
in[ - - - - - -
ex; - - - - — abort T;
pri delay T; delay 7; delay T; delay 7; — abort T;
cm; / / / / final /
ab; - - - —  final final

The first row of the table specifies the actions to be taken when 7; is in the unsched-
uled state. In this row all the entries are marked with ‘-’ indicating that the scheduler
does not impose any constraint on 7; or 7; changing states. The entry in the third row,
last column (that is, EN(exi,abj)) is an ‘abort 7;’. This means that when 7; is in the ex-
ecution state, and 7} is aborted, then 7; must be aborted as well. The entry in the fourth
row, first column (that is, EN(pr;,un;j)) is ‘delay 7;’. This means that when 7; is in the
prepare state and 7} is unscheduled, 7; must wait in the prepare stage. The entry in the
fifth row, first column (that is, EN(cm;,un;)) is */’. This means that the scheduler will
not allow this to happen. The entry in the fifth row, fifth column (that is, EN (cm;, cm;))
is ‘final’. This means that both the transactions have reached their final states, and the
scheduler need not do anything more.

The following ensures the correctness of our scheduling action table. For lack of
space, we omit the proof.

Lemma 1. The scheduler by taking the actions listed in the scheduling action tables
for the primitive dependencies can enforce the dependencies correctly.

3.2 Scheduling Action Table for Composite Dependencies

Based on the dependency scheduling action tables for all primitive dependencies, we
propose an algorithm to create scheduling table for composite dependencies. This ta-
ble is called the composite dependency scheduling table. The composite dependency
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scheduling table for the composite dependency consisting of primitive dependencies x,
v, and z is denoted by TBC, ;..

In determining the proper actions for a composite dependency, we need to combine
the entries from two or more scheduling action tables of the component primitive de-
pendencies. To obtain the correct action from these different entry items, we need to
define the priority for each type of scheduling actions in the primitive scheduling action
table. The different actions are prioritized in the following order: “prohibited”, “reject”,
“abort”, “delay”, “execute”, and “no restriction”, where “prohibited” signifies the high-
est priority and “no restriction” signifies the least priority. We use the notation > to de-
scribe the priority ordering. For instance, “prohibited > reject” means that “prohibited”
has a higher priority than “reject”. In combining the actions of two or more primitive de-
pendency tables, the scheduler will choose the table entry with the highest priority, and
set this entry as the action for the composite dependency. For example, when a sched-
uler finds “no restriction” in one execution table and a “delay” entry in other scheduling
table, it will take the “delay” entry as the action for the composite dependency.

We next give the algorithm to combine the scheduling tables and determine the cor-
rect actions for the composite dependency. To combine the scheduling tables of two (or
more) primitive dependencies, we compare the corresponding table entries and choose
the action that satisfies the constraints of all component dependencies.

Algorithm 1

Creating Composite Dependency Scheduling Table

Input: (i) 7; —4, 4,.....4, Tj — the composite dependency composed of the primitive de-
pendencies dy,d, ...,...d, and (ii) TB = {TBy,,TBy,,...,TBy,} — the scheduling ac-
tion tables for the primitive dependencies

Output: Scheduling action table TBC for this composite dependency.

begin
for each state (S;) of subtransaction (T;) € {un;, in;,ex;, pri,ab;,cm;}
for each state (S;) of subtransaction (7}) € {unj,in;,ex;,prj,abj,cm;}
begin
/* initialization */
ENTgc(Si,Sj) =“
set max, = “-"
/* get every component dependency’s scheduling table entry */
for every primitive dependency dy in this composite dependency
begin
access the scheduling action table 7' By, for this dependency dj
get the corresponding entry ENg(S;,S;)
/* finding the highest priority entry in these dependencies */
ifENk(S,',Sj) > maxp,
maxp, = EN(S;,S;)
end for
ENrpc(Si,S;) = max,
end for
end
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We next show that, with the priority assignment, the above algorithm could be able
to ensure the satisfaction of all primitive dependencies in a composite dependency.

Lemma 2. The scheduler can enforce composite dependencies correctly.

3.3 State Table and Job Queue

The scheduler during the execution of advanced transactions maintains some dynamic
data structures called state tables. A state table is created for each advanced transaction
that has been submitted by the user. The state table records the execution states of
the subtransactions in an advanced transaction while it is being executed. Whenever a
subtransaction of this advanced transaction changes state, the corresponding entry in
the state table is updated. When the advanced transaction terminates, the state table is
deleted.

The job queue is another dynamic data structure that is needed by the scheduler.
The job queue holds subtransactions that have been submitted by the user but which are
not being currently executed. The jobs submitted by a user is initially placed in the job
queue. Also, when a subtransaction needs to wait before being processed further, it is
placed in the job queue. In other words, subtransactions in the initiation state or prepare
state are placed in this job queue. When the subtransaction in the initiation (prepare)
state is ready to execute (commit), it is removed from this queue.

4 Execution of an Advanced Transaction

In this section we describe how an advanced transaction is executed. The advanced
transaction is executed in three stages: (i) Preparation Stage, (ii) Execution Stage, and
(iii) Termination Stage. These stages are described in the following subsections.

4.1 Preparation Stage

In this stage, the user submits the advanced transaction for execution. After receiving
the input from the user, a state table is created for this advanced transaction. The entries
for each subtransaction in this state table is initialized to initiation. The subtransactions
are placed in the job queue for later execution. When the user has completed submitting
subtransactions for the advanced transaction, the advanced transaction moves into the
execution stage. The following algorithm summarizes the work done in the preparation
stage.

Algorithm 2
InputAdvancedTransaction
Input: (i) AT, =< S,D,C > — the advanced transaction.

Procedure InputAdvancedTransaction(AT;)
begin
receive the input AT, =< §,D,C >
create StateTable,
foreach 7; € S
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begin
StateTable,[T;] = initiation /* set initial states for subtransactions */
enQueue(JobQueue, T;) /* insert in the job queue */

end for

end

4.2 Execution Stage

In this stage, the subtransactions submitted by the user get executed. When the sched-
uler gets a subtransaction, it first looks into the advanced transaction specification to find
out all dependencies associated with it. For each dependency, the scheduler identifies
the states of the two involved subtransactions. The scheduler then accesses the depen-
dency scheduling action table, and gets the required action for the subtransactions. The
action can be one of the following: allow the subtransaction to commit/abort, send the
subtransaction to execute, delay the subtransaction, or reject the subtransaction. If the
action causes the subtransaction to change state, the state table entry corresponding to
this subtransaction may need to be modified. The following algorithm formalizes the
actions taken in this stage.

Algorithm 3

Execution Stage

Input: (i) AT, =< §,D,C > — the advanced transaction that must be executed and (ii)
TB - the set of primitive and composite scheduling action tables associated with the
dependencies of the advanced transaction AT;.

Procedure ExecuteAdvancedTransaction(A7;, TB)
begin
while(TRUE)
begin
T; = deQueue(JobQueue) /* get the job from the job queue */
Action = getAction(7;, AT;, TB)
if Action = wait

enQueue(JobQueue, T) /* insert in queue */
else if Action = abort
abort T;

StateTable,[T;] = aborted
else if Action = reject
StateTable,[T;] = unscheduled
else if Action = — /* no restriction for T; */
begin
if StateTable,[T;| = initiation
send (7;) to execute /* execute the operations for 7; */
StateTable,[T;] = executing
else if SrateTable[T;] = executing
get execution results
if execution result is completed /* operations completed */
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StateTable,[T;] = prepare
enQueue(JobQueue, T;)
else if execution failed ~ /* operations failed */
StateTable,[T;] = aborted
else if StrateTable[T;| = prepare
commit 7;
StateTable,[T;] = committed
end
end while
end

The above algorithm makes a call getAction to get the action that must be taken by
the scheduler. We next describe the algorithm getAction that describes how the sched-
uler determines an action for scheduling a submitted subtransaction (7;), focusing on
ensuring the dependency constrains associated with 7;. We assume that the primitive
and composite dependency tables that will be needed by this advanced transaction have
already been created.

Algorithm 4

Get Action From ActionTables

Input: (i) 7; — the subtransaction for which the action must be determined, and (ii)
AT; =< §,D,C > — the advanced transaction whose subtransaction is 7;, and (iii) TB —
the set of primitive and composite scheduling action tables associated with the depen-
dencies of the advanced transaction A7;.

Output: The action the scheduler should take to for subtransaction 7;

Procedure getAction(7;, AT;, TB)
begin
ACTION ="-’ /* Initialize ACTION */
/* find out all the dependencies associated with 7; */
for every dependency 7,, —4 T, € D
begin
if (T; # T,) AND (T; # T,)
skip this round, and continue to next round
else /* this dependency is associated with 7; */
begin
if (T; = T,) /* d is a dependency pointed to T; */
/* get the state of the subtransactions */
let S, = StateTable,[T;]
let Sy = StateTable,[T,]
else if (7; = T,,,) /* d is a dependency that T; lead out */
/* get the state of the subtransactions */
let Sy = StateTable,[T;]
let S, = StateTable,[T,)
access the corresponding dependency scheduling table 7B,
locate the corresponding entry EN,;(x,y) according to the states
if EN4(x,y) > ACTION /* check the priority */
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ACTION = ENy(x,y);
end
end
return ACTION;,
end

4.3 Termination Stage

When all the subtransactions of an advanced transaction have completed execution, the
advanced transaction must be terminated. From the state tables, we find out the set of
executing, committed and prepared subtransactions. If the set of prepared or executing
subtransactions is not empty, then we return the message not terminated. Otherwise, we
check whether the set of committed transactions correspond to one of the completion
sets specified in the advanced transaction. If so, we return a successful termination
message, otherwise we return an unsuccessful termination message. Once the advanced
transaction is terminated, the state table corresponding to the advanced transaction is
deleted.

Algorithm 5

Termination Stage

Input: (i) AT; =< S,D,C > — the advanced transaction whose termination is being
determined.

Output: (i) result indicating whether the advanced transaction terminated successfully
or not.

Procedure Terminate AdvancedTransaction(AT;)
begin
executing = prepared = committed = { }
for each subtransaction 7; € S
begin
if StateTable,[T;| = committed
committed = committed UT;
else if SrateTable,[T;| = executing
executing = executing UT;
else if StateTable,[T;) = prepared
prepared = prepared U T;
end
/* check whether there are active subtransactions for AT; */
if prepared # {} OR committed # {}
return ‘not terminated’
else /* all subtransactions are finished */
begin
Delete StateTable;
/* check whether it matches some completion set */
for each C; € C
begin
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if (C; = committed)
return ‘terminated successfully’
end
/* none of the termination states are satisfied */
return ‘terminated unsuccessfully’
end
end

The following theorem ensures the correctness of the mechanisms.

Theorem 1
The mechanism described above ensures reliable scheduling as per Definition 6.

5 Related Work

In the past two decades, a variety of transaction models and technologies supporting
advanced transaction have been proposed. Examples are ACTA [8], ConTracts [16],
nested transactions [12], ASSET [6], EJB and CORBA object transaction services [13],
workflow management systems [1], concurrency control in advanced databases [5] etc.
Chrysanthis and Ramamrithan introduce ACTA [8], as a formal framework for speci-
fying extended transaction models. ACTA allows intuitive and precise specification of
extended transaction models by characterizing the semantics of interactions between
transactions in terms of different dependencies between transactions, and in terms of
transaction’s effects on data objects. However, impacts of dependencies on reliable ex-
ecution of advanced transactions are not discussed in ACTA.

Mancini, Ray, Jajodia and Bertino have proposed the notion of multiform transac-
tions [11]. A multiform transaction consists of a set of transactions and includes the
definition of a set of termination dependencies among these transactions. The set of de-
pendencies specifies the commit, abort relationship among the component transactions.
The multiform transaction is organized as a set of coordinate blocks. The coordinate
block, along with the corresponding coordinator module (CM) can manage the execu-
tion of the transactions.

A workflow involves different computational and business activities which are coor-
dinated through dependencies. Thus, we can consider a workflow as a type of advanced
transaction. The importance of workflow models is increasing rapidly due to its suitabil-
ity in the business application. For these reasons, a lot of research appears in workflow
management systems [1,3,10,15].

Singh has discussed the semantical inter-task dependencies on workflows [18]. The
author used algebra format to express the dependencies and analyze their properties and
semantics in workflow systems. Attie at el. [4] discussed means to specify and enforce
intertask dependencies. They illustrate each task as a set of significant events (start,
commit, rollback, abort). Intertask dependencies limit the occurrence of such events
and specify a temporal order among them. In an earlier work, Rusinkiewicz and Sheth
[17] have discussed the specification and execution issues of transactional workflows.
They have described the different states of tasks in execution for a workflow system.
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They also discussed different scheduling approaches, like: scheduler based on predi-
cate Petri Nets models, scheduling using logically parallel language, or using temporal
propositional logic. Another contribution of their paper is that they discussed the issues
of concurrent execution of workflows - global serializability and global commitment
of workflow systems. However, none of these papers address the scheduling actions
needed to satisfy the dependency constraints.

6 Conclusion and Future Work

An advanced transaction is composed of a number of cooperating subtransactions that
are coordinated by dependencies. The dependencies make the advanced transaction
more flexible and powerful. However, incorrect enforcement of dependencies can lead
to integrity and availability problems. In this paper, we looked at how the subtransac-
tions of an advanced transaction can be scheduled, such that the dependencies are not
violated.

The constraints between the subtransactions of an advanced transaction must be
maintained during recovery as well. In future, we would like to investigate how the
dependencies impact the recovery algorithms and design a mechanism that is suitable
for the recovery of advanced transactions. In future, we also plan to design mechanisms
that will allow advanced transactions to recover from malicious attacks.
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Abstract. Privacy and security concerns can prevent sharing of data,
derailing data mining projects. Distributed knowledge discovery, if done
correctly, can alleviate this problem. In this paper, we tackle the problem
of classification. We introduce a generalized privacy preserving variant
of the ID3 algorithm for vertically partitioned data distributed over two
or more parties. Along with the algorithm, we give a complete proof of
security that gives a tight bound on the information revealed.

1 Introduction

There has been growing interest in privacy-preserving data mining since the sem-
inal papers in 2000 [1,2]. Classification is one of the most ubiquitous data mining
problems found in real life. Decision tree classification is one of the best known
solution approaches. ID3, first proposed by Quinlan[3] is a particularly elegant
and intuitive solution. This paper presents an algorithm for privately building
an ID3 decision tree. While this has been done for horizontally partitioned data
[4], we present an algorithm for wvertically partitioned data: a portion of each
instance is present at each site, but no site contains complete information for
any instance. This problem has been addressed[5], but the solution is limited
to the case where both parties have the class attribute. In addition, both the
previous methods are limited to two parties. The method presented here works
for any number of parties, and the class attribute (or other attributes) need be
known only to one party. Our method is trivially extendible to the simplified
case where all parties know the class attribute.

There has been other work in privacy-preserving data mining. One approach
is to add “noise” to the data before the data mining process, and using tech-
niques that mitigate the impact of the noise from the data mining results[1,6,7,8].
However, recently there has been debate about the security properties of such
algorithms [9].

* This material is based upon work supported by the National Science Foundation
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Other work follows the secure multiparty computation approach found in
cryptography, achieving “perfect” privacy, i.e., nothing is learned that could not
be deduced from one’s own data and the results. This includes Lindell’s work
[2], as well as work on association rule mining [10,11,12,13], clustering [14,15],
and some work on classification [16,5]. While some of this work makes trade-offs
between efficiency and information disclosure, all maintain provable privacy of
individual information and bounds on disclosure, and disclosure is limited to
information that is unlikely to be of practical concern.

Privacy preservation can mean many things: Protecting specific individual
values, breaking the link between values and the individual they apply to, pro-
tecting source, etc. This paper aims for a high standard of privacy: Not only
individual entities are protected, but to the extent feasible even the schema (at-
tributes and possible attribute values) are protected from disclosure. Our goal is
for each site to disclose as little as possible, while still constructing a valid tree
in a time suitable for practical application.

To this end, all that is revealed is the basic structure of the tree (e.g., the
number of branches at each node, corresponding to the number of distinct values
for an attribute; the depth of each subtree) and which site is responsible for the
decision made at each node (i.e., which site possesses the attribute used to make
the decision, but not what attribute is used, or even what attributes the site
possesses.) This allows for efficient use of the tree to classify an object; otherwise
using the tree would require a complex cryptographic protocol involving every
party at every possible level to evaluate the class of an object without revealing
who holds the attribute used at that level. Each site also learns the count of
classes at some interior nodes (although only the class site knows the mapping
to actual classes — other sites don’t even know if a class with 30% distribution at
one node is the same class as one with a 60% distribution at a lower node, except
to the extent that this can be deduced from the tree and it’s own attributes.)
At the leaf nodes, this is desirable: one often wants probability estimates, not
simply a predicted class. As knowing the count of transactions at each leaf node
would enable computing distributions throughout the tree anyway, this really
doesn’t disclose much new information.

We now go directly into the algorithm for creating a tree. In Section 3 we
describe how the tree (distributed between sites) is used to classify an instance,
even though the attribute values of the instance to be classified are also private
and distributed between sites. Section 4 formalizes what it means to be secure,
and gives a proof that the algorithms presented are secure. Section 5 presents
the computation and communication complexity of the algorithm. Section 6
discusses future work and concludes the paper.

2  Privacy-Preserving ID3: Creating the Tree

The basic ID3 algorithm|[3] is given in Algorithm 1. We will introduce our dis-
tributed privacy-preserving version by running through this algorithm, describ-
ing pieces as appropriate. We then give the full algorithm in Algorithm 7. Note
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Algorithm 1. ID3(R,C,T) tree learning algorithm

Require: R, the set of attributes
Require: C, the class attribute
Require: T, the set of transactions
1: if R is empty then
2:  return a leaf node, with class value assigned to most transactions in T’

3: else if all transactions in 7" have the same class ¢ then

4 return a leaf node with the class ¢

5: else

6:  Determine the attribute A that best classifies the transactions in T’

7 Let a1,...,am be the values of attribute A. Partition T' into the m partitions
T(a1),...,T(am) such that every transaction in T'(a;) has the attribute value a;.

8: Return a tree whose root is labeled A (this is the test attribute) and has m
edges labeled ai,...,a, such that for every i, the edge a; goes to the tree
ID3(R— A,C,T(a;)).

9: end if

that for our distributed algorithm, no site knows R, instead each site ¢ knows its
own attributes R;. Only one site knows the class attribute C. In vertical parti-
tioning, every site knows a projection of the transactions IIr,T. Each projection
includes a transaction identifier that serves as a join key.

We first check if R is empty. This is based on Secure Sum[17,10], and is
given in Algorithm 2. Basically, the first party adds a random r to its count
of remaining items. This is passed to all sites, each adding its count. The last

Algorithm 2. IsSREmpty(): Are any attributes left?

Require: k sites P; (the site calling the function is Pp; any other site can be Pj),
each with a flag AR; = 0 if no remaining attributes, AR; = 1 if P; has attributes
remaining.

Require: a commutative encryption function F with domain size m > k.

1: P; chooses a random integer r uniformly from 0...m — 1.
2: Py sendsr+ AR to P»

3: for i =2..k—1do

4:  Site P; receives v’ from P;_.

5: P, sends ' + AR; mod m to Piy1

6: end for

7: Site Py receives r’ from Pj_1.

8 v — 1"+ ARy mod m

9: P1 and P create secure keyed commutative hash keys E1 and Ej

10: Py sends Eq(r) to Py

11: Py receives E1(r) and sends Ex(E1(r)) and Ex(r') to Py

12: Py returns E1(Ex(r')) = Ex(Ei(r)) {& 1 =r & Z?:l AR; = 0 & 0 attributes
remain }
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site and first then use commutative encryption to compare the final value to r
(without revealing either) — if they are the same, R is empty.

Line 2 requires determining the majority class for a node, when only one
site knows the class. This is accomplished with a protocol for securely determin-
ing the cardinality of set intersection. Many protocols for doing so are known
[13,18,19]. We assume that one of these protocols is used. Each site determines
which of its transactions might reach that node of the tree. The intersection of
these sets with the transactions in a particular class gives the number of trans-
actions that reach that point in the tree, enabling the class site to determine the
distribution and majority class; it returns a (leaf) node identifier that allows it
to map back to this distribution.

To formalize this, we introduce the notion of a Constraint Set. As the tree
is being built, each party i keeps track of the values of its attributes used to
reach that point in the tree in a filter Constraints;. Initially, this is all don’t
care values (‘7). However, when an attribute A;; at site ¢ is used (lines 6-7 of
id3), entry j in Constraints; is set to the appropriate value before recursing to
build the subtree. An example is given in Figure 1. The site has 6 attributes
Ay, ..., Ag. The constraint tuple shows that the only transactions valid for this
transaction are those with a value of 5 for Ay, high for As, and warm for As.
The other attributes have a value of ? since they do not factor into the selection
of an instance. Formally, we define the following functions:

Ay Ay, Ay Ay As  Ag

5 high| ? ? |warm| ?

Fig. 1. A constraint tuple for a single site

Constraints.set(attr, val): Set the value of attribute attr to val in the local
constraints set. The special value ‘?’ signifies a don’t-care condition.
satisfies: x satisfies Constraints; if and only if the attribute values of the in-
stance are compatible with the constraint tuple: Vi, (4;(x) = v <
Constraints(A;) = v) V Constraints(A;) = ‘7.
FormTransSet: Function FormTransSet(Constraints): Return local transac-
tions meeting constraints
1: Y =0
2: for all transaction id z € T do
3 if ¢; satisfies Constraints then
4: Y — Y Uu{i}
5 end if
6: end for
7: return Y
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Now, we determine the majority class (and class distributions) by computing for
each class ﬂi:l..  Yi, where Y} includes a constraint on the class value. This is
given in Algorithm 3.

Algorithm 3. DistributionCounts(): Compute class distribution given current
constraints
Require: k sites P; with local constraint sets Constraints;

1: for all sites P; except P do

2 at P;: Y; < FormTransSet(Constraints;)

3: end for

4: for each class ci,...,¢c, do

5:  at Py: Constraintsy.set(C,c;) {To include the class restriction}

6 at Pg: Yy < FormTransSet(Constraintsy)
T7: ent; «— |YiN...NY}| using the cardinality of set intersection protocol ([13,18,19])
8: end for
9: return (enti,...,cntp)

The next issue is determining if all transactions have the same class (Algo-
rithm 1 line 3). If all are not the same class, as little information as possible
should be disclosed. For efficiency, we do allow the class site to learn the count
of classes even if this is an interior node; since it could compute this from the
counts at the leaves of the subtree below the node, this discloses no additional
information. Algorithm 4 gives the details, it uses constraint sets and secure
cardinality of set intersection in basically the manner described above for com-
puting the majority class at a leaf node. If all transactions are in the same class,

Algorithm 4. IsSameClass(): Are all transactions of the same class?

Require: k sites P; with local constraint sets Constraints;

1: (enty,...,cntp) < DistributionCounts()

2: if 35 s.t. ent; # 0 AVi # 7, ent; = 0 {only one of the counts is non-zero} then
3:  Build a leaf node with distribution (cnt1,...,cntp) {Actually, 100% class j}
4:  return ID of the constructed node

5: else

6:  return false

7: end if

we construct a leaf node. The class site maintains a mapping from the ID of that
node to the resulting class distribution.

The next problem is to compute the best attribute: that with the maximum
information gain. The information gain when an attribute A is used to partition
the data set S is:

Gain(S, A) = Entropy(S) — Z (|éj|| * Entropy(Sv)>

vEA
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Algorithm 5. AttribMaxInfoGain(): return the site with the attribute having
maximum information gain
: for all sites P; do
bestgain; <+ —1
for each attribute A;; at site P; do
gain «— Computeln foGain(A;j;)
if gain > bestgain; then
bestgain; < gain
BeStAtti — Aij
end if
end for
10: end for
11: return argmaz; bestgain; {Could implement using a set of secure comparisons}

©

Algorithm 6. ComputeInfoGain(A): Compute the Information Gain for at-
tribute A
1: S «— DistributionCounts() {Total number of transactions at this node}
InfoGain «— Entropy(S)
for each attribute value a; do
Constraints.set(A, a;) {Update local constraints tuple}
Sa, < DistributionCounts()
Infogain — Infogain — Entropy(Sa;) * |Sa,;|/|S| {IS] is 3_5_, ents}
end for
Constraints.set(A,‘?’) {Update local constraints tuple}
return InfoGain

The entropy of a dataset S is given by:

P
N; N;
Entropy(S) = — Z ]\; log ]\;

Jj=1

where N; is the number of transactions having class ¢; in S and N is the number
of transactions in S. As we see, this again becomes a problem of counting trans-
actions: the number of transactions that reach the node N, the number in each
class N;, and the same two after partitioning with each possible attribute value
v € A. Algorithm 6 details the process of computing these counts; Algorithm 5
captures the overall process.

Once the best attribute has been determined, execution proceeds at that site.
It creates an interior node for the split, then recurses.

3 Using the Tree

Instance classification proceeds as in the original ID3 algorithm, except that
the nodes (and attributes of the database) are distributed. The site requesting
classification (e.g., a master site) knows the root node of the classification tree.
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Algorithm 7. PPID3(): Privacy-Preserving Distributed ID3

Require: Transaction set T' partitioned between sites Pi, ..., Pk
Require: p class values, c1, ..., cp, with Py holding the class attribute
1: if IsREmpty() then

2:  Continue at site P, up to the return:

3: (enty,...,centp) «— DistributionCounts()

4:  Build a leaf node with distribution (cnt1, ..., cntp)

5:  {class « argmax;,_; ,cnt;}

6:  return ID of the constructed node

7: else if clsNode «— (at Py :) IsSameClass() then

8:  return leaf nodeld clsNode

9: else
10:  BestSite « AttribMazxzInfoGain()

11:  Continue execution at BestSite:

12: Create Interior Node Nd with attribute Nd.A « BestAttpestsite {This is best
locally (from AttribMazInfoGain()), and globally from line 8}
13: for each attribute value a; € Nd.A do

14: Constraints.set(Nd.A, a;) {Update local constraints tuple}

15: nodeld «— PPID3() {Recurse}

16: Nd.a; «— nodeld {Add appropriate branch to interior node}

17:  end for

18:  Constraints.set(A,‘?’) {Returning to parent: should no longer filter transactions
with A}

19:  Store Nd locally keyed by Node ID

20:  return Node ID of interior node Nd {Execution continues at site owning parent
node}

21: end if

The basic idea is that control passes from site to site, based on the decision
made. Each site knows the transaction’s attribute values for the nodes at its site
(and can thus evaluate the branch), but knows nothing of the other attribute
values. The complete algorithm is given in Algorithm 8, and is reasonably self-
explanatory if viewed in conjunction with Algorithm 7.

We now give a demonstration of how instance classification would actually
happen in this instance for the tree built with the UCI “weather” dataset[20].
Assume two sites: The weather observatory collects information about relative
humidity and wind, a second collects temperature and cloud cover forecast as
well as the class (“Yes” or “No”). Suppose we wish to know if it is a good day
to play tennis. Neither sites wants to share their forecasts, but are willing to
collaborate to offer a “good tennis day” service. The classification tree is shown
in Figure 2, with S1 and S2 corresponding to the site having information on that
node. The private information for each site is shown within italics. If today is
sunny with normal humidity, high temperature, and weak wind; classification
would proceed as follows: We know that Site 1 has the root node (we don’t need
to know anything else). Site 1 retrieves the attribute for from S1L1: Outlook.
Since the classifying attribute is outlook, and Site 1 knows the forecast is sunny,
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S1L1:Outlook

Vall:iSuriny 4124

S2L.2 Humidity SILS: Yes S2L.6: Wind

Vall Hi : Normal Vall:Sprong  ValR:Weak

S21.3: No S2L4: Yes S2L7: No S21.8: Yes

Fig. 2. The privacy preserving ID3 decision tree on the weather dataset (Mapping from
identifiers to attributes and values is known only at the site holding attributes)

the token S2L2 is retrieved. This indicates that the next step is at Site 2. Site
2 is called with the token S2L2, and retrieves the attribute for S2L2: Humidity.
The humidity forecast is normal, so the token S2L4 is retrieved. Since this token
is also present at Site 2, it retrieves the class value for nodeld S2L4 and returns
it: we receive our answer of “Yes”.

4 Security Discussion

We evaluate the security of our algorithm under the basic framework of Secure
Multiparty Computation [21]. As such, we assume the security of the underlying

Algorithm 8. classifyInstance(instld, nodeld): returns the class/distribution
for the instance represented by instld
1: {The start site and ID of the root node is known}
if nodeld is a LeafNode then
return class/distribution saved in nodeld
else {nodeld is an interior node}
Nd < local node with id nodeld
value < the value of attribute Nd.A for transaction instId
childId < Nd.value
return childId.Site.classifyInstance(instld, childId) {Actually tail recursion:
this site need never learn the class}
9: end if
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set intersection algorithm, and then prove the security of our privacy-preserving
ID3 algorithm.

The proof of security is given assuming semi-honest adversaries. A semi-
honest party follows the rules of the protocol using its correct input, but is
free to later use what it sees during execution of the protocol to compromise
security. While this protocol provides somewhat strong guarantees in the absence
of collusion, due to space constraints we will only prove security for the semi-
honest case.

Privacy by Simulation. The basic proof style is to show that the view of each
party during the execution of the protocol can be effectively simulated given the
input and the output of that party. This is sufficient to prove that the protocol is
secure [21]. Thus, in all of the following proofs of security, we show that we can
simulate each message received. Once the received messages are simulated, the
algorithm itself can be used to simulate the rest of the view. This does not quite
guarantee that private information is protected. Whatever information can be
deduced from the final result is not kept private. However, nothing beyond the
results is learned.

4.1 Secure ID3

We first analyze the security of the constituent algorithms, then the security of
the complete algorithm. Although it may seem that some of the constituent al-
gorithms leak a large quantity of information, in the context of the full algorithm
the leaked information can be simulated by knowing the distribution counts at
each node, so overall privacy is maintained.

Lemma 1. Algorithm 2 reveals nothing to any site except whether the total num-
ber of attributes left is 0.

Proof. The algorithm has two basic phases: The sum (through Pj), and the
comparison between Py, and P;. First, the sum: simulating the messages received
at lines 2 and 7. The value received by P; at these steps is 7”"‘2;;11 AR; mod m.
We will simulate by choosing a random integer uniformly from 0...m —1 for r'.
We now show that the probability that the simulated ' = z is the same as the
probability that the messages received in the view = .

i—1
Pr{VIEW; =z} = Pr{z =r + ZARj mod m}
j=1
i—1
=Pr{ir=xz— ZARj mod m}
j=1
1
T m

= Pr{Simulator;r’ = x}
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The key to the derivation is that arithmetic is mod m. r and ' are chosen
uniformly from 0...m — 1, so the probability of hitting any particular value in
that range is 1/m.

Simulating the message received by Py at line 11 is simple: Secure encryption
gives messages where the distribution is independent of the key/message, so a
selection from this distribution of possible encrypted messages simulates what
Py, receives.

The messages received by P; are more difficult. The problem is that if r = 7/,
Ei(r") must be such that when encrypted with E; it is equal to Ejy(F1(r)).
For this, the simulator requires the ability to decrypt. The simulator computes
m = Dy(Eg(E1(r)) = Eg(r). If » = r/, this is the message used to simulate
Ei(r"). If not, a random message # m is chosen, as in the simulator for P,. O

Lemma 2. Algorithm 3 reveals only the count of instances corresponding to all
combinations of constraint sets for each class.

Proof. The only communication occurs at line 7 which consists of a call to the
Cardinality of Set Intersection algorithm. This reveals only the size of the inter-
section set for all subsets of Y;, which are the counts revealed. Algorithm 3 is
secure except for revealing this information. a

Lemma 3. Algorithm 4 finds if all transactions have the same class, revealing
only the class distributions described in Lemma 2.

Proof. Line 1 is an invocation of Algorithm 3; Everything else is computed lo-
cally, and can be simulated from the knowledge from Lemma 2. a

Lemma 4. Algorithm 6 reveals nothing except the counts S, S,,, and the con-
stituent subcounts described in Lemma 2 for each attribute value a; and class j,
assuming the number of distinct class values is known.

Proof. The only messages received are at lines 1 and 5, invocations of the
DistributionCounts() function. Since the underlying function is secure, Algo-
rithm 6 is secure. a

Lemma 5. Algorithm 5 finds the site with the attribute having the mazimum
information gain while revealing only the best information gain at each site and
the information discussed in Lemma 4.

Proof. Communication occurs at lines 4 and 11. Line 4 consists of an invocation
of Algorithm 6. Line 11 is implemented by letting the site compare all the values;
revealing the value of the best information gain at each site. Assuming this is
revealed (part of the input to the simulator), it is trivially simulated. a

Further reduction of the information revealed is possible by using a secure pro-
tocol for finding the maximum among a set of numbers. This would reveal only
the site having the attribute with the maximum information gain and nothing
else.



Privacy-Preserving Decision Trees over Vertically Partitioned Data 149

Theorem 1. Algorithm 7 computes the decision tree while revealing only:

— The distribution subcounts of each node, as described in Lemma 2. (The full
counts, and some of the subcounts, can be computed knowing the distribution
counts at the leaves.)

— The best information gain from each site at each interior node (as discussed
above, this leak can be reduced.)

Proof. Knowing the final tree, the simulator at each site can uniquely determine
the sequence of node computations at a site and list the function calls occurring
due to this. Given this function call list, if the messages received in each function
call can be simulated, the entire algorithm can be proven to be secure.

Line 1 is an invocation of Algorithm 2. The result is simulated as either true
or false depending on whether the node in question is a leaf node in the final
tree or not.

Line 3 is an invocation of Algorithm 3. The actual counts are given by the
counts in the leaf node, which are known to the site P, that invoked the algo-
rithm. The subcounts revealed by Algorithm 3 are presumed known.

Line 7 is an invocation of Algorithm 4. If the node in question is not a leaf
node in the final tree, the result is false. Otherwise the result is the nodeld of
the leaf node.

Line 10 consists of an invocation of Algorithm 5. The result is actually equal
to the Site which will own the child node. This information is known from the
tree structure. The subcounts and information gain values revealed during this
step are presumed known.

Line 15 is a recursive invocation that returns a node identifier; a part of the
tree structure.

Since all of the algorithms mentioned above have been proven secure, apply-
ing the composition theorem, Algorithm 7 is secure. The repeated invocations of
the cardinality of set intersection protocol are valid because in each invocation,
a new set of keys are chosen. This ensures that messages cannot be correlated
across calls. a

Theorem 2. Algorithm 8 reveals nothing other than the leaf node classifying
the instance.

Proof. All the computations are local. The only information passed between var-
ious sites are node identifiers. This list of node identifiers can be easily simulated
from the classification tree once the final leaf is known. a

5 Computation and Communication Analysis

The communication/computation analysis depends on the number of transac-
tions, number of parties, number of attributes, number of attribute values per
attribute, number of classes and complexity of the tree. Assume that there are:
n transactions, k parties, ¢ classes, r attributes, p values per attribute (on aver-
age), and ¢ nodes in final classification tree. We now give a rough analysis of the
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cost involved in terms of the number of set intersections required for building
the tree (erring on the conservative side).

At each node in the tree the best classifying attribute needs to be deter-
mined. To do this, the entropy of the node needs to be computed as well as the
information gain per attribute. Computing the entropy of the node requires c set
intersections (1 per class). Computing the gain of one attribute requires cp set
intersections (1 per attribute value and class). Thus, finding the best attribute
requires cpr set intersections. Note that this analysis is rough and assumes that
the number of attributes available at each node remains constant. In actuality,
this number linearly decreases with the depth of the node in the tree (this has lit-
tle effect on our analysis). In total, every node requires ¢(1+pr) set intersections.
Therefore, the total tree requires cq(1 + pr) set intersections.

The intersection protocol of [13] requires that the set of each party be en-
crypted by every other party. Since there are k parties, k? encryptions are re-
quired and k2 sets are transferred. Since each set can have at most n transactions,
the upper bound on computation is O(nk?) and the upper bound on communi-
cation cost is also O(nk? x bitsize) bits.

Therefore, in total the entire classification process will require O(cqnk?(1 +
pr)) encryptions and cqnk?(1 + pr) * bitsize bits communication. Note that the
encryption process can be completely parallelized reducing the required time by
an order of k.

Once the tree is built, classifying an instance requires no extra overhead, and
is comparable to the original D3 algorithm.

6 Conclusions

It is possible to extend the protocols developed such that the class of each
instance is learned only by the party holding the class attribute (nothing is
learned by the remaining parties). In some cases, this might be preferable.

The major contributions of this paper are the following:

— It proposes a new protocol to construct a decision tree on vertically parti-
tioned data with an arbitrary number of parties where only one party has
the class attribute (The method is trivially extendible to the case where all
parties have the class attribute, and in fact causes a significant increase in
the efficiency of the protocol).

— The paper presents a general framework in which distributed classification
would work and how such a system should be constructed.

As part of future work, we are actually implementing the entire protocol
in JAVA, which should form the first working code in the area of PPDM. Our
work provides an upper bound on the complexity of building privacy preserving
decision trees. Significant work is required to propose more efficient solutions
and/or to find a tight upper bound on the complexity. We leave this for the
future.
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Abstract. This paper introduces a new approach to a problem of data
sharing among multiple parties, without disclosing the data between the
parties. Our focus is data sharing among parties involved in a data mining
task. We study how to share private or confidential data in the follow-
ing scenario: multiple parties, each having a private data set, want to
collaboratively conduct association rule mining without disclosing their
private data to each other or any other parties. To tackle this demanding
problem, we develop a secure protocol for multiple parties to conduct the
desired computation. The solution is distributed, i.e., there is no central,
trusted party having access to all the data. Instead, we define a protocol
using homomorphic encryption techniques to exchange the data while
keeping it private.

Keywords: Privacy, security, association rule mining.

1 Introduction

In this paper, we address the following problem: multiple parties are cooperating
on a data-rich task. Each of the parties owns data pertinent to the aspect of the
task addressed by this party. More specifically, the data consists of instances, all
parties have data about all the instances involved, but each party has its own
view of the instances - each party works with its own attribute set. The overall
performance, or even solvability, of this task depends on the ability of performing
data mining using all the attributes of all the parties. The parties, however,
may be unwilling to release their attribute to other parties, due to privacy or
confidentiality of the data. How can we structure information sharing between
the parties so that the data will be shared for the purpose of data mining,
while at the same time specific attribute values will be kept confidential by the
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parties to whom they belong? This is the task addressed in this paper. In the
privacy-oriented data mining this task is known as data mining with vertically
partitioned data (also known as heterogeneous collaboration [6].) Examples of
such tasks abound in business, homeland security, coalition building, medical
research, etc.

The following scenarios illustrate situations in which this type of collabora-
tion is interesting: (1) Multiple competing supermarkets, each having an extra
large set of data records of its customers’ buying behaviors, want to conduct
data mining on their joint data set for mutual benefit. Since these companies
are competitors in the market, they do not want to disclose too much about their
customers’ information to each other, but they know the results obtained from
this collaboration could bring them an advantage over other competitors. (2)
Success of homeland security aiming to counter terrorism depends on combina-
tion of strength across different mission areas, effective international collabora-
tion and information sharing to support coalition in which different organizations
and nations must share some, but not all, information. Information privacy thus
becomes extremely important: all the parties of the collaboration promise to
provide their private data to the collaboration, but neither of them wants each
other or any other party to learn much about their private data. (3) Vidya and
Clifton [6] provide the following convincing example in the area of automotive
safety: Ford Explorers with Firestone tires from a specific factory had tread sep-
aration problems in certain situations. Early identification of the real problem
could have avoided at least some of the 800 injuries that occurred in accidents
attributed to the faulty tires. Since the tires did not have problems on other
vehicles, and other tires on Ford Explorers did not pose a problem, neither side
felt responsible. Both manufacturers had their own data, but only early gener-
ation of association rules based on all of the data may have enabled Ford and
Firestone to collaborate in resolving this safety problem.

Without privacy concerns, all parties can send their data to a trusted central
place to conduct the mining. However, in situations with privacy concerns, the
parties may not trust anyone. We call this type of problem the Privacy-preserving
Collaborative Data Mining problem. Homogeneous collaboration means that each
party has the same sets of attributes [7]. As stated above, in this paper we are
interested in heterogeneous collaboration where each party has different sets of
attributes [6].

Data mining includes a number of different tasks, such as association rule
mining, classification, and clustering. This paper studies the association rule
mining problem. The goal of association rule mining is to discover meaningful
association rules among the attributes of a large quantity of data. For example,
let us consider the database of a medical study, with each attribute represent-
ing a characteristic of a patient. A discovered association rule pattern could be
“70% of patients who suffer from medical condition C have a gene G”. This
information can be useful for the development of a diagnostic test, for pharma-
ceutical research, etc. Based on the existing association rule mining technologies,
we study the Privacy-preserving Collaborative Association Rule Mining problem
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defined as follows: multiple parties want to conduct association rule mining on a
data set that consists of all the parties’ private data, but neither party is willing
to disclose her raw data to each other or any other parties. In this paper, we
develop a protocol, based on homomorphic cryptography, to tackle the problem.

The paper is organized as follows: The related work is discussed in Section 2.
We describe the association rule mining procedure in Section 3. We then present
our proposed secure protocols in Section 4. We give our conclusion in Section 5.

2 Related Work

2.1 Secure Multi-party Computation

A Secure Multi-party Computation (SMC) problem deals with computing any
function on any input, in a distributed network where each participant holds
one of the inputs, while ensuring that no more information is revealed to a
participant in the computation than can be inferred from that participant’s
input and output. The SMC problem literature was introduced by Yao [13].
It has been proved that for any polynomial function, there is a secure multi-
party computation solution [5]. The approach used is as follows: the function F
to be computed is firstly represented as a combinatorial circuit, and then the
parties run a short protocol for every gate in the circuit. Every participant gets
corresponding shares of the input wires and the output wires for every gate. This
approach, though appealing in its generality and simplicity, is highly impractical
for large datasets.

2.2 Privacy-Preserving Data Mining

In early work on privacy-preserving data mining, Lindell and Pinkas [8] propose
a solution to privacy-preserving classification problem using oblivious transfer
protocol, a powerful tool developed by secure multi-party computation (SMC)
research. The techniques based on SMC for efficiently dealing with large data
sets have been addressed in [6], where a solution to the association rule mining
problem for the case of two parties was proposed.

Randomization approaches were firstly proposed by Agrawal and Srikant in
[3] to solve privacy-preserving data mining problem. In addition to perturbation,
aggregation of data values [11] provides another alternative to mask the actual
data values. In [1], authors studied the problem of computing the kth-ranked
element. Dwork and Nissim [4] showed how to learn certain types of boolean
functions from statistical databases in terms of a measure of probability differ-
ence with respect to probabilistic implication, where data are perturbed with
noise for the release of statistics. In this paper, we focus on privacy-preserving
among the intra-party computation.

The work most related to ours is [12], where Wright and Yang applied homo-
morphic encryption [10] to the Bayesian networks induction for the case of two
parties. However, the core protocol which is called Scalar Product Protocol can
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be easily attacked. In their protocol, since Bob knows the encryption key e, when
Alice sends her encrypted vector (e(a1),---,e(a,)) where a;s are Alice’s vector
elements, Bob can easily figure out whether a; is 1 or 0 through the following
attack: Bob computes e(1), and then compares it with e(a;). If (1) = e(a;),
then a; = 1, otherwise a; = 0. In this paper, we develop a secure two-party
protocol and a secure multi-party protocol based on homomorphic encryption.
Our contribution not only overcomes the attacks which exist in [12], but more
importantly, a general secure protocol involving multiple parties is provided.

3 Mining Association Rules on Private Data

Since its introduction in 1993 [2], the association rule mining has received a great
deal of attention. It is still one of most popular pattern-discovery methods in the
field of knowledge discovery. Briefly, an association rule is an expression X = Y,
where X and Y are sets of items. The meaning of such rules is as follows: Given
a database D of records, X = Y means that whenever a record R contains X
then R also contains Y with certain confidence. The rule confidence is defined
as the percentage of records containing both X and Y with regard to the overall
number of records containing X. The fraction of records R supporting an item
X with respect to database D is called the support of X.

3.1 Problem Definition

We consider the scenario where multiple parties, each having a private data set
(denoted by Dy, Do, --- and D,, respectively), want to collaboratively conduct
association rule mining on the concatenation of their data sets. Because they are
concerned about their data privacy, neither party is willing to disclose its raw
data set to others. Without loss of generality, we make the following assumptions
about the data sets (the assumptions can be achieved by pre-processing the data
sets D1, Do, --- and D,,, and such a pre-processing does not require one party
to send her data set to other parties): (1) all the data sets contain the same
number of transactions. Let N denote the total number of transactions for each
data set. (2) The identities of the ith (for ¢ € [1, N]) transaction in all the data
sets are the same.

Privacy-Preserving Collaborative Association Rule Mining problem: Party 1 has
a private data set Di, party 2 has a private data set Do, --- and party n has a
private data set D,,. The data set [D; UDsU---UD,] forms a database, which is
actually the concatenation of Dy, Ds, --- and D,, (by putting Dy, Da, --- and D,
together so that the concatenation of the ith row in Dy, D3, --- and D,, becomes
the ith row in [D;UDyU- - -UD,,]). The n parties want to conduct association rule
mining on [D; U Dy U -+ U D,] and to find the association rules with support
and confidence being greater than the given thresholds. We say an association
rule (e.g., z; = y;) has confidence ¢% in the data set [D; U Dy U --- U D,)]
ifin [D; U Dy U---UD,] ¢% of the records which contain z; also contain y;
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(namely, ¢% = P(y; | x;)). We say that the association rule has support s% in
[D1UDyU---UD,] if s% of the records in [D1 U D5 ---U D,,] contain both x;
and y; (namely, s% = P(z; Ny;)). Consequently, in order to learn association
rules, one must compute the candidate itemsets, and then prune those that do
not meet the preset confidence and support thresholds. In order to compute
confidence and support of a given candidate itemset, we must compute, for a
given itemset C, the frequency of attributes (items) belonging to C' in the entire
database (i.e., we must count how many attributes in C are present in all records
of the database, and divide the final count by the size of the database which
is N.) Note that association rule mining works on binary data, representing
presence or absence of items in transactions. However, the proposed approach
is not limited to the assumption about the binary character of the data in the
content of association rule mining since non-binary data can be transformed to
binary data via discreterization.

3.2 Association Rule Mining Procedure
The following is the procedure for mining association rules on [DqUDs - --UD,,].

. L1 = large 1-itemsets
. for (k = 2; Lix—1 # ¢; k++) do begin
Cy = apriori-gen(Lj_1)
for all candidates ¢ € C}, do begin
Compute c.count (c.count divided by the total number of records
is the support of a given item set. We will show how to compute it in Sec-

tion 3.5.)

ol o

end

. end

6
7. Ly = {c € Ck|c.count > min-sup}
8
9. Return L = Ui Ly

The procedure apriori-gen is described in the following (please also see [2]
for details).
apriori-gen(Lj_1: large (k-1)-itemsets)
1. insert into Cj
2. select p.itemy, p.itema, - - -, p.itemg_1,q.itemg_1
3. from Lx_1 p, Lr_1 q
4. where p.itemi=gq.itemy, - - -, p.itemg_o =q.itemyp_o, patemy_1 < q.itemy_1;
Next, in the prune step, we delete all itemsets ¢ € Cy,
such that some (k-1)-subset of ¢ is not in Ly_1:

1. for all itemsets ¢ € C}, do

2. for all (k-1)-subsets s of ¢ do
3. if(s ¢ L—1) then

4. delete ¢ from Cf;
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3.3 How to Compute c.count

In the procedure of association rule mining, the only steps accessing the ac-
tual data values are: (1) the initial step which computes large 1-itemsets, and
(2) the computation of c.count. Other steps, particularly computing candidate
itemsets, use merely attribute names. To compute large 1-itemsets, each party
selects her own attributes that contribute to large 1-itemsets. As only a single
attribute forms a large 1-itemset, there is no computation involving attributes of
other parties. Therefore, no data disclosure across parties is necessary. However,
to compute c.count, a computation accessing attributes belonging to different
parties is necessary. How to conduct this computations across parties without
compromising each party’s data privacy is the challenge we address.

If all the attributes belong to the same party, then c.count, which refers to the
frequency counts for candidates, can be computed by this party. If the attributes
belong to different parties, they then construct vectors for their own attributes
and apply our secure protocols, which will be discussed in Section 4, to obtain
c.count. We use an example to illustrate how to compute c.count among two
parties. Alice and Bob construct vectors Ci; and Cge for their own attributes
respectively. To obtain c.count, they need to compute Efil(C’kl [i]- Cr2li]) where
N is the total number of values in each vector. For instance, if the vectors are
as depicted in Fig.1, then Zi]\il((}'kl[i] - Ciali]) = Z?Zl(Ckl[i] - Ciz2li]) = 3. We
provide a secure protocol in Section 4 for the two parties to compute this value
without revealing their private data to each other.

[

Alice Bob

Fig. 1. Raw Data For Alice and Bob

4 Collaborative Association Rule Mining Protocol

How the collaborative parties jointly compute c.count without revealing their
raw data to each other presents a great challenge. In this section, we develop
two secure protocols to compute c.count for the case of two parties as well as
the case of multiple parties, respectively.

4.1 Introducing Homomorphic Encryption

In our secure protocols, we use homomorphic encryption [10] keys to encrypt
the parties’ private data. In particular, we utilize the following characterizer of
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the homomorphic encryption functions: e(a;) X e(az) = e(a; + a2) where e is
an encryption function; a; and as are the data to be encrypted. Because of the
property of associativity, e(a1 +as + .. + a,,) can be computed as e(a1) X e(az) x
-+ x e(a,) where e(a;) # 0. That is

e(ar +ags+ -+ an) =e(ar) x e(az) x -+ X e(ay) (1)

4.2 Secure Two-Party Protocol

Let us firstly consider the case of two parties (n = 2). Alice has a vector A
and Bob has a vector As. Both vectors have N elements. We use Aq; to denote
the ith element in vector A, and As; to denote the ith element in vector As.
In order to compute the c.count of an itemset containing A; and As, Alice and
Bob need to compute the scalar product between A; and As.

Firstly, one of parties is randomly chosen as a key generator. For simplicity,
let’s assume Alice is selected as the key generator. Alice generates an encryption
key (e) and a decryption key (d). She applies the encryption key to the addition
of each value of A; and R; x X (e.g., e(41; + R; * X)), where R; is a random
integer and X is an integer which is greater than N. She then sends e(A; +
R; * X)s to Bob. Bob computes the multiplication H?Zl[e(Alj + R xX) x
Ay;] when As; = 1 (since when Ay; = 0, the result of multiplication doesn’t
contribute to the c.count). He sends the multiplication results to Alice who
computes [d(e(A11 + A1z + -+ A1j + (R1 + R2 + - + Rj) * X)])modX =
(Ann+Ai+-- -+ A+ (Ri+Reo+-- -+ Rj) * X)modX and obtains the c.count.
In more detail, Alice and Bob apply the following protocol:

Protocol 1. (Secure Two-Party Protocol)

1. Alice performs the following;:

(a) Alice generates a cryptographic key pair (d, €) of a homomorphic encryp-
tion scheme. Let’s use e(.) denote encryption and d(.) denote decryption.
Let X be an integer number which is chosen by Alice and greater than
N (i.e., the number of transactions).

(b) Alice randomly generates a set of integer numbers Ry, Ra, ---, Ry and
sends e(A1; + Ry * X), e(A12 + Ry x X), --+, and e(A;ny + Ry * X) to
Bob.

2. Bob performs the following;:

(a) Bob computes Ey = e(A11 + Ry X) * Aoy, B = e(A12+ Ro x X ) * Aga,
-and Ey = e(Ain + Ry * X) % Agy. Since Ay, is either 1 or 0,
e(A1; + R; * X) % Ag; is either e(Ay; + R; * X) or 0. Note that Ry,

Ry, ---, and Ry are unrelated random numbers.
(b) Bob multiplies all the F;s for those Ag;s that are not equal to 0. In other
words, Bob computes the multiplication of all non-zero F;s, e.g., E =
[1 E; where E; # 0. Without loss of generality, let’s assume only the first
j elements are not equal to 0s. Bob then computes E = Ey xEox- - -xE; =
[e(A11+R1%X )X Ag1] X [e(A124+ Rox X ) X Aga] X - - X [e(A1;+ R X ) x Agj]
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= [6(A11+R1*X) X 1] X [6(A12+R2*X) X 1] X oo X [€(A1j+Rj>k
X) X 1] = 6(A11+R1 *X) X 6(A12+R2*X) X X €(A1j+Rj *X) =
6(A11 —+ A12 —+ .-+ Alj —+ (Rl —+ RQ —+ -+ RJ) * X) according to Eq 1
(¢) Bob sends E to Alice.
3. Alice computes d(E)modX which is equal to c.count.

4.3 Analysis of Two-Party Protocol

Correctness Analysis. Let us assume that both parties follow the protocol.
When Bob receives each encrypted element e(Ay; + R; * X ), he computes e(Ay; +
R;) * Ag;. If Ay; = 0, then c.count does not change. Hence, Bob computes
the product of those elements whose Ay;s are 1s and obtains [[e(A1; + R;) =
e(Ann+ A2+ -+ A1+ (Ri+Re+-- -+ R;j)* X) (note that the first j terms are
used for simplicity in explanation), then sends it to Alice. After Alice decrypts
it, she obtains [d(e(A11 + A1z + -+ A1 + (R1 + R2 + - -- + R;) * X))|modX
= (A +A2+--+ A+ (Ri+Ra+ -+ Rj) * X)modX which is equal to
the desired c.count. The reasons are as follows: when As; = 1 and Ay; = 0,
c.count does not change; only if both Ay; and As; are 1s, c.count changes. Since
(A11 + Az + - +A1j) < N < X, (Ain + Ag + -+ + Ay + (R1 + Ra +
cee RJ) * X)modX = (All + A12 =+ o 4 Alj)~ In addition, when AQZ' = 1,
(A1 + Aia + - - + Ayj) gives the total number of times that both A;; and As;
are 1s. Therefore, c.count is computed correctly.

Complexity Analysis. The bit-wise communication cost of this protocol is
a(N + 1) where « is the number of bits for each encrypted element. The cost
is approximately « times of the optimal cost of a two-party scalar product. The
optimal cost of a scalar product is defined as the cost of conducting the product
of A; and A, without privacy constraints, namely one party simply sends its
data in plaintext to the other party.

The computational cost is caused by the following: (1) the generation of a
cryptographic key pair; (2) the total number of N encryptions, e.g., e(A1;,+R;*X)
where ¢ € [1, N]; (3)at most 3N-1 multiplications; (4) one decryption; (5) one
modulo operation; (6) N additions.

Privacy Analysis. All the information that Bob obtains from Alice is e(A411 +
Ry x X), e(A12+ Re x X), --- and e(A1n + Rn * X). Bob does not know the
encryption key e, R;s, and X. Assuming the homomorphic encryption is secure,
he cannot know Alice’s original element values. The information that Alice ob-
tains from Bob is [][e(A1; + R; x X) * Ag;] for those is that Ay; = 1. After
Alice computes [d([]e(A1; + R; * X) * Ag;)JmodX for those is that Ay = 1,
she only obtains c.count, and can’t exactly know Bob’s original element values.
Note that the trouble with binary data presented in [6] does not exist for our
protocol. More importantly, [6] only deals with the case of two parties; however,
our protocol can cope with the case of two parties as well as the case of multiple
parties.
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4.4 Secure Multi-party Protocol

We have discussed our secure protocol for two parties. In this section, we develop
a protocol to deal with the case where more than two parties are involved.
Without loss of generality, assuming Party 1 has a private vector Aj, Party 2
has a private vector As, - - - and Party n has a private vector A,,. For simplicity,
we use P; to denote Party 1.

In our protocol, Py, Pa, - -- and P,,_; share a cryptographic key pair (d, e) of
a homomorphic encryption scheme and a large integer X which is greater than
N. P; modifies every element of its private vectors with Ry; * X, where Ry; is a
random integer number, then encypts and sends them to P,. Like P;, all other
parties send their encrypted values to P, too. P, will multiply received values
with her own element, e.g., F; = e(Ay; + Ry; % X) x (Ao + Ro; x X) * -+ %
e(Am-1)i + Rn—1)i * X) * Ani. P, randomly permutes E;s and divides those
non-zero F;s into n-1 parts with each part having approximately equal number
of elements, and sends them to n-1 other parties who compute [d(E;)]modX =
[d(e(A1i + R1i % X) * e(Agi + Roi % X) % -+ x e(App_1); + Rn_1); * X))JmodX
= (A1 + Ao+ + A(nfl)i + (Rii+Roi+---+ R(n,l)i) * X)modX = (A1 +
Agi+ -+ An—1);). Suppose P; gets the above [d(E;)mod]X. Py then compares
whether (Ay; + Agi +- -+ An_1);) = n— 1. If it is true, then c.count; increases
by 1. Consequently, P, gets c.count;. Similarly, P, gets c.counts, --- and P,
gets c.county,_1.

To avoid P; knowing c.count;, where ¢ # j, we perform the following steps:
P, generates another cryptographic key pair (e1,d;) of a homomorphic encryp-
tion scheme and sends the encryption key e; to Py, P, --- and P,,_; who com-
pute e (c.county), e1(c.counts), - - - and eq (c.count,,—1 ) respectively. One of those
n-1 parties (e.g., P;) is randomly chosen. All other parties Pys where k # j
send e (c.county)s to P;. P; multiplies all the encrypted counts and obtains the
encrypted c.count. That is eq(c.county) * e1(c.counts) * - - - * er(c.count,_1) =
e1(c.count1 + c.counta + - - - + c.count,_1) = ei(c.count). P; sends e;(c.count)
to P, who computes d;(e1(c.count)) and gets c.count.

Protocol 2. (Secure Multi-Party Protocol)

1. P, Py, -+, and P, perform the following:

(a) Py, P, --- and P,_; jointly generate a cryptographic key pair (d, e) of
a homomorphic encryption scheme. Let’s use e(.) denote encryption and
d(.) denote decryption. They also generate the number, X, where X is
an integer which is greater than N.

(b) P, generates a set of random integers Rii, Rio2, ---, Riy and sends
e(A11 + Ry * X), e(A12 + Ria * X), ---, and e(A1n + Riny * X) to
P,; P, generates a set of random integers Ro1, Rao, - -+, Ren and sends
6(A21 + Rgl * X), 6(1422 + RQQ * X), Ty and e(AQN + RQN * X) to
Py, -+, Py generates a set of random integers R, 1)1, R—1)2, **
R(n—1yn and sends e(A,—1)1 + Rn—1)1 * X), e(A@—1)2 + Rn—1)2 * X),

(AN + Rin—1y)n * X) to Py.
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2. P, performs the following:

(a)

(d)

P, computes By = e(A11+Ri1%X) * e(Aa1+Ro1 X)) % -+ - x e(Ag_1)1 +
Rin—1y1) * Ap1 = e(An1+ Ao+ -+ A1 H(Rin+Ror+ -+ Rp—1)1) *
X) * Anlv

EQ = 6(A12+R12 *X) * 6(A22+R22 *X) koo ok €(A(n_1)2+R(n_1)2*X)
* Apz = e(Arp+Asa 4+ -+ Ap_1)2+ (Ria+Roa+- - -+ R(p—1)2) ¥ X ) ¥ Apa,
Es = e(A13+Ri3xX) * e(Az+ Roz* X) * - -+ x e(A_1)3+ Rn_1)3 ¥ X)
* Aps = e(Ars+ Aoz +-- '+A(n_1)3+(R13+R23+' : '+R(n_1)3)*X)>kAn3,
.-, and

Eny = G(AlN + Rin * X) * e(AQN + Ron * X) koo ok e(A(n—l)N +
R(nfl)N * X) x Aoy = e(Aiy + Aoy + - + A(nfl)]v + (R]N + Ron +
Since A,; is either 1 or 0, E; is either e(A1; + Agy + -+ + Ap—1y1 +
(Rll + Ror +---+ R(n—l)l) * X) or 0; Fs is either 6(1412 + Aoy + -+
A(n—1)2 + (Ri2+ Roa + -+ R(n—1)2) * X) or 0; --+; and Ey is either
e(Ain +Aon + -+ A1)y + (Rin + Ron + - -+ Rp—1yn) * X) or 0.
P, randomly permutes [9] the E, Fa, --- and Ey, then obtains the
permuted sequence D1, Do, --- and Dy.

From computational balance point of view, we want each party among
Py, P, --- and P,_; to decrypt some of non-zero D;s. ! Consequently,
in our protocol P, divides those non-zero elements from D1, Ds, --- and
Dy into n — 1 parts with each part having approximately equal number
of elements.

P, sends the n — 1 parts to P;, P», --- and P,_1 respectively, so that
Py gets the first part, P, gets the second part, --- and P,_; gets the
(n — 1)th part.

3. Compute c.count

(a)

(b)

Py, Py, --- and P,_; decrypt the encrypted terms received from P,,, then
modulo X. Due to the properties of homomorphic encryption, this gives
them the correct value of c.count for a candidate itemset consisting of
attributes A;, As, --- and A,,. Note that if a decrypted term is equal
to n-1 mod X, it means the values of Py, P, ---, P,_1 and P, are all
1s2. For example, if P; obtains F;, she then computes d(E;) mod X
= (Ayi + Ao + -+ App—1yi + (R + Roi + -+ + Rip—1yi) * X) mod X
= Ayi+Agi+- -+ A@—1);- Consequently, P, Py, --- and P,,_1 compare
whether each decrypted term is equal to n — 1 modX. If yes, then each
P, (i=1,2, - and n-1) increases her c.count; by 1.

What remains is the computation of c.count by adding the c.count;s.
Since we do not want a party P; to know the count; for j # i, we use the
following cryptographic scheme avoiding this disclosure: P, generates

1 We assume that the number of non-zero elements of D;s (Let’s denote the number
by ND) is > n-1. If not, we randomly select the number of ND parties from P,

Py, -

and P,_1, and send each non-zero element to each of the selected parties.

Moreover, in practice N > n.
2 The value of P, must be 1 because P, doesn’t send the D;s to those n — 1 parties
if D; =0.
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another cryptographic key pair (di,e1) of a homomorphic encryption
scheme®. She then sends e1 to Py, P, ---and P, 1. P; (i = 1,2,---,n—1)
encrypts c.count; by using e;. In other words, P; computes e (c.county),
P, computes ej (c.counts), --- and P,,_; computes ej(c.count,_1).

(c) Onme of parties among Py, P, --- and P,_; (e.g., P;) is randomly se-
lected. Other parties Pis among Pj, Py, --- and P,_1 (k # j) send
their encrypted c.count;, to Pj, who then multiplies all the encrypted
counts including her own e (c.count;) and obtains the encrypted c.count.
That is, ej(c.count) = ej(c.county) x e1(c.counts) * e1(c.counts) * - - -
e1(e.count,_1) = ey (c.count; + c.counts + - - - + c.count,,_1).

(d) P; sends ej(c.count) to P,.

(e) P, computes di(e1(c.count)) = c.count. Finally, P, obtains c.count and
shares with Py, P, --- and P,,_;.

4.5 Analysis of Multi-party Protocol

Correctness Analysis. Assuming all of the parties follow the protocol, to show
the c.count is correct, we need to consider:

— If the element of P, is 1 (e.g., An; = 1), and Ay + Agi+- -+ Ap_1); = n—1,
then c.count increases by 1. Since [d(e(A1; + R+ X ) xe(Ag;+ Ro;jx X) *- - - %
e(Ap-1)i + Rin—1)i * X))] mod X = [d(e(Ar; + A2i + -+ Ap—1)i + (R1i +
Ro; + -+ R(n—l)i) * X))] mod X = Aq; + Aoy +--- + A(n—l)i7 if Ay =1
and Aq; + Agi + -+ An—1)s = n— 1, that means Ay;, Ag;, -+, A(n_1); and
A,; are all 1s, then c.count should increase by 1. For other scenarios, either
Api =0o0r Ay + Agi+- -+ Ap—1); # n— 1 or both, c.count doesn’t change.

— In the protocol, P, permutes E;s before sending them to P, P, --- and
P,,_1. Permutation does not affect c.count. We evaluate whether each ele-
ment contributes to c.count, we then sum those that contribute. Summation
is not affected by a permutation. Therefore, the final c.count is correct.

Complexity Analysis. The bit-wise communication cost of this protocol is
at most 2anN where « is the number of bits for each encrypted element. The
following contributes to the computational cost: (1) the generation of two cryp-
tographic key pairs; (2) the total number of nN + (n-1) encryptions; (3) the
total number of n(XN + 1) — 1 multiplications; (4) the generation of permutation
function; (5) the total number of N permutations; (6) at most N decryptions;
(7) at most N modulo operations; (8) (n-1)N additions.

Privacy Analysis. P, obtains all the encrypted terms from other parties. Since
P, does not know the encryption key, Iz;;, and X, she cannot know the original
values of other parties’ elements. Each party of P;, P, --- and P,_; obtains
some of D;s. Since D;s are in permuted form and those n-1 parties don’t know
the permutation function, they cannot know the P,,’s original values either.

3 (d1,e1) is independent from (d, ¢).
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In our protocol, those n— 1 parties’ c.counts are also preserved because of the
encryption. What P; receives from other n — 2 parties is the encrypted counts.
Since P; doesn’t know the encryption key ey, P; cannot know other n—2 parties’
counts. What P, receives from P; is the multiplication of all c.count;s. Therefore,
she doesn’t know each individual P;’s count (i =1, 2, ---, n-1).

We also emphasis that Step (2b) are required, the goal is to prevent other
parties from knowing P,’s values. Step (2¢) is for the consideration of compu-
tational balance among Py, P, ---, and P,_;1. Step (3b) to (3e) is to further
prevent parties from knowing c.count;s each other. If the collaborative parties
allow sharing c.count;s each other, some of steps can be removed and communi-
cation cost is saved.

5 Concluding Remarks

In this paper, we consider the problem of privacy-preserving collaborative asso-
ciation rule mining. In particular, we study how multiple parties can collabora-
tively conduct association rule mining on their joint private data. We develop
a secure collaborative association rule mining protocol based on homomorphic
encryption scheme. In our protocol, the parties do not send all their data to a
central, trusted party. Instead, we use the homomorphic encryption techniques
to conduct the computations across the parties without compromising their data
privacy. Privacy analysis is provided. Correctness of our protocols is shown and
complexity of the protocols is addressed as well. As future work, we will develop
a privacy measure to quantitatively measure the privacy level achieved by our
proposed secure protocols. We will also apply our technique to other data mining
computations, such as secure collaborative clustering.
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Abstract. k-anonymity provides a measure of privacy protection by
preventing re-identification of data to fewer than a group of k data items.
While algorithms exist for producing k-anonymous data, the model has
been that of a single source wanting to publish data. This paper presents
a k-anonymity protocol when the data is vertically partitioned between
sites. A key contribution is a proof that the protocol preserves
k-anonymity between the sites: While one site may have individually
identifiable data, it learns nothing that violates k-anonymity with re-
spect to the data at the other site. This is a fundamentally different
distributed privacy definition than that of Secure Multiparty Computa-
tion, and it provides a better match with both ethical and legal views of
privacy.

Keywords: k-anonymity, privacy, security.

1 Introduction

Privacy is an important concept in our society, and has become very vulnera-
ble in these technologically advanced times. Legislation has been proposed to
protect individual privacy; a key component is the protection of individually
identifiable data. Many techniques have been proposed to protect privacy, such
as data perturbation [1], data swapping [2], query restriction [3], secure multi-
party computation (SMC) [4,5,6], etc. One challenge is relating such techniques
to a privacy definition that meets legal and societal norms. Anonymous data are
generally considered to be exempt from privacy rules — but what does it mean
for data to be anonymous? Census agencies, which have long dealt with private
data, have generally found that as long as data are aggregated over a group of
individuals, release does not violate privacy. k-anonymity provides a formal way
of generalizing this concept. As stated in [7,8], a data record is k-anonymous if
and only if it is indistinguishable in its identifying information from at least k
specific records or entities. The key step in making data anonymous is to gen-
eralize a specific value. For example, the ages 18 and 21 could be generalized to

* This material is based upon work supported by the National Science Foundation
under Grant No. 0428168.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 166-177, 2005.
© IFIP International Federation for Information Processing 2005
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an interval [16..25]. Details of the concept of k-anonymity and ways to generate
k-anonymous data are provided in Section 2.

Generalized data can be beneficial in many situations. For instance, a car
insurance company may want to build a model to estimate claims for use in
pricing policies for new customers. To build this model, the company may wish
to use state-wide driver’s license records. Such records, even with name and
ID numbers removed, are likely to contain sufficient information to link to an
individual. However, by generalizing data (e.g., replacing a birth date with an
age range [26..30]), it is possible to prevent linking a record to an individual. The
generalized age range is likely to be sufficient for building the claim estimation
model. Similar applications exist in many areas: medical research, education
studies, targeted marketing, etc.

Due to vast improvements in networking and rapid increase of storage ca-
pacity, the full data about an individual are typically partitioned into several
sub-data sets (credit history, medical records, earnings, ...), each stored at an
independent site.! The distributed setting is likely to remain, partially because
of performance and accessibility, but more importantly because of autonomy of
the independent sites. This autonomy provides a measure of protection for the
individual data. For instance, if two attributes in combination reveal private
information (e.g., airline and train travel records indicating likely attendance
at political rallies), but the attributes are stored at different sites, a lack of
cooperation between the sites ensures that neither is able to violate privacy.

In this paper, data are assumed to be vertically partitioned and stored at
two sites, and the original data could be reconstructed by a one-to-one join on a
common key. The goal is to build a k-anonymous join of the datasets, so that the
join key and any other candidate keys in the joined dataset are k-anonymized
to prevent re-identification.

1.1 What Is a Privacy-Preserving Distributed Protocol?

A key question in this problem is the definition of privacy preservation. Sim-
ply stating that the result is k-anonymous is not enough, as this does not en-
sure that the participating sites do not violate privacy. However, since the sites
already have individually identifiable information, we cannot fully extend the
k-anonymity measure to them. We now give an informal definition for privacy
preservation; the paper will then present an algorithm and show formally that
it does not violate k-anonymity in the sense of the following definition.

Definition 1. Let T; be the input of party i, [ [,(f) be the partyi’s execution im-
age of the protocol f, r be the result computed by f, and P be a set of privacy con-
straints. f is privacy-preserving if every inference induced from < T, [[,(f),r >
that violates any privacy constraint in P could also be induced from < T; >.

! In the context of this paper, assume data are represented by a relational table, where
each row indicates an individual data record and each column represents an attribute
of data records.
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This definition has much in common with that of Secure Multiparty Compu-
tation (SMC) [9]. Both talk about a party’s view during execution of a protocol,
and what can be inferred from that view. The key distinction is the concept of
privacy (and privacy constraints) versus security. An SMC protocol must reveal
nothing except the final result, and what can be inferred from one’s own input
and the result. Definition 1 is weaker (giving greater flexibility): It allows infer-
ences from the protocol that go beyond what can be inferred from the result,
provided that such inferences do not violate the privacy constraints.

A more subtle distinction is that Definition 1 is also stronger than SMC. The
above definition requires that the inferences from the result r and from one’s own
input combined with the result (and the protocol execution) do not violate the
privacy constraints. The SMC definitions do not account for this.

For example, a privacy-preserving classification scheme meeting SMC defi-
nitions [10,11,12,13] ensures that nothing is disclosed but the resulting model.
Assume that Party A holds input attributes, and B holds the (private) class
attribute: B has committed to ensuring that the class is not revealed for the
individuals that have given it data. An SMC protocol can generate a classifier
without revealing the class of the individuals to A. Moreover, the classifier need
not inherently violate privacy: A properly pruned decision tree, for example,
will only contain paths corresponding to several data values. A, however, can
use its input along with the classifier to learn (with high probability) the class
values held by B. This clearly violates the commitment B has made, even if the
protocol meets SMC definitions. More discussion of this specific problem can be
found in [14].

Generally speaking, if the set of privacy constraints P can be easily incor-
porated into the functionality computed by a SMC protocol, a SMC protocol
also preserves privacy. However, there is no obvious general framework that eas-
ily and correctly incorporates privacy constraints into part of the functionality
computed by a SMC protocol.

This paper presents a privacy-preserving two-party protocol that generates
k-anonymous data from two vertically partitioned sources such that the protocol
does not violate k-anonymity of either site’s data. While one site may already
hold individually identifiable data, we show that the protocol prevents either
site from linking its own individually identifiable data to specific values from the
other site, except as permitted under k-anonymity. (This privacy constraint will
be formally defined in Section 3.) Interestingly, one of distinctive characteristics
of the proposed protocol is that it is not secure by SMC definitions; parties may
learn more than they can infer from their own data and the final k-anonymous
datset. Nevertheless, it preserves the privacy constraint.

The rest of the paper is organized as the following: Section 2 introduces the
fundamental concepts of k-anonymity. Section 3 presents a generic two-party
protocol, with proof of its correctness and privacy-preservation property. The
paper concludes with some insights gained from the protocol and future research
directions on achieving k-anonymity in a distributed environment.
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2 Background

We now give key background on k-anonymity, including definitions, a single-site
algorithm, and a relevant theorem, from [7,15,16]. The following notations are
crucial for understanding the rest of the paper:

— Quasi-Identifier (QI): a set of attributes that can be used with certain ex-
ternal information to identify a specific individual.

— T, T[QI]: T is the original dataset represented in a relational form, T'[QI] is
the projection of T to the set of attributes contained in QI.

— Ti[QI]: k-anonymous data generated from T with respect to the attributes
in the Quasi-Identifier QI.

Definition 2. T} [QI] satisfies k-anonymity if and only if each record in it ap-
pears at least k times.

Let T be Table 1, Ty be Table 2 and QI = {AREA, POSITION, SALARY}.
According to Definition 2, T} [QI] satisfies 3-anonymity.

Several algorithms have been proposed to generate k-anonymous data
[17,8,18]. Datafly [8,18] is a simple and effective algorithm, so for demonstra-
tion of our protocol, Datafly is used to make local data k-anonymous. Algorithm
1 presents several key steps in Datafly (detailed explanations regarding this al-
gorithm can be found in [8]). The main step in most k-anonymity protocols

Algorithm 1. Key Steps in Datafly
Require: T, QI[A1,..., An], k, Hierarchies VGHs Assume k < |T'|
1: freq < a frequency list contains distinct sequences of values of T'[QI] along with
the number of occurrences of each sequence.
2: while (sequences € freq occurring less than k times that count for more than &
tuples) do
A; € QI having the most number of distinct values
freq < generalize the values of A; € freq
end while
freq < suppress sequences in freq occurring less than k times
freq < enforce k requirement on suppressed tuples in freq
Tr[QI] « construct table from freq
return Tx[QI]

is to substitute a specific value with a more general value. For instance, Fig-
ure 1(a) contains a value generalization hierarchy (VGH) for attribute AREA,
in which Database Systems is a more general value than Data Mining. Simi-
larly, Figure 1(b) and Figure 1(c) present VGHs of attributes POSITION and
SALARY contained in QI. Continuing from the previous example, T;[QI] satis-
fies 3-anonymity. According to the three VGHs and the original data represented
by T, it is easily verified that Datafly can generate Tj;[QI] by generalizing the
data on SALARY, then AREA, then SALARY again. Next, we present a useful
theorem about k-anonymity.
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Theorem 1. If T [QI] is k-anonymous, then Ty [QI] is also k-anonymous,

W. Jiang and C. Clifton

Table 1. Original Dataset Before Partitioning

ID AREA POSITION SALARY SSN
Data Mining Associate Professor $90,000 708-79-1698
Intrusion Detection Assistant Professor $91,000 606-67-6789
Data Warehousing Associate Professor $95,000 626-23-1459
Intrusion Detection Assistant Professor $78,000 373-55-7788
Digital Forensics Professor $150,000 626-87-6503
Distributed Systems Research Assistant $15,000 708-66-1552
Handhold Systems Research Assistant $17,000 810-74-1079
8 Handhold Systems Research Assistant $15,500 606-37-7706
9 Query Processing Associate Professor $100,000 373-79-1698
10 Digital Forensics Assistant Professor $78,000 999-03-7892
11 Digital Forensics Professor $135,000 708-90-1976
12 Intrusion Detection Professor $145,000 606-17-6512

DU W N

N

Table 2. Generalized Data with k = 3

1D AREA POSITION SALARY SSN

1 Database Systems Associate Professor [61k, 120k] 708-79-1698
2 Information Security Assistant Professor [61k, 120k] 606-67-6789
3 Database Systems Associate Professor [61k, 120k] 626-23-1459
4 Information Security Assistant Professor [61k, 120k] 373-55-7788
5 Information Security Professor [121k, 180k] 626-87-6503
6 Operating Systems Research Assistant [11k, 30k] 708-66-1552
7 Operating Systems Research Assistant [11k, 30k] 810-74-1079
8 Operation Systems Research Assistant [11k, 30k] 606-37-7706
9 Database Systems Associate Professor [61k, 120k] 373-79-1698
10 Information Security Assistant Professor [61k, 120k] 999-03-7892
11 Information Security Professor [121k, 180k] 708-90-1976
12 Information Security Professor [121k, 180k] 606-17-6512

where QI C QI [8].

Proof. Assume T;[QI] is being k-anonymous and Tx[QI’] does not satisfy k-
anonymity. Then there exists a record ¢(QI’) that appears in Tj[QI’] less than k
times. It is trivial to observe that ¢(QI) also appears less than k times in T} [QI].
That contradicts the assumption. Therefore, if T;[QI] satisfies k-anonymity, so

does Ti[QT].

3 The Protocol: DPP,GA

Before presenting the protocol, we present an alternative view of k-anonymity.
Define T} to be the k-anonymous data computed from T'. Let x >y denote that
x is directly generalized from y. E.g., in Table 2 the Salary for ID 1: [61k, 120k]

> $90,000.
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Computer Science Faculty
Professors Assistants
Database Systems (DS) Information Security (IS) Operating Systems (OS) % %

Assistant Professor (AsP) Teaching Assistant
Data Mining (DM) Intrusion Detection (ID) Distributed Systems (DS) . N .
Data Warehousing (DW) Digital Forensics (DF) Handhold Systems (HS) Associate Professor (AoF) Research Assistant
Query Processing (QP) Professor (Prof)

(a) VGH of AREA (b) VGH of POSITION
[11k, 180k]
[11k, 60k] [61Kk, 120k] [121k, 180]

[11k, 30k] [31k, 60k] [61k, 90K] [91k, 120k] [121k, 150k] [151k, 180k]

}

$15,000 $78,000 $91,000 $135,000
$17,000 $78,000 $95,000 $145,000
$15,500 $90,000 $100,000 $150,000

(c) VGH of SALARY

Fig. 1. Value Generalization Hierarchies

Theorem 2. T} achieved through generalization satisfies k-anonymity if and
only if Vt' € Ty, Prob[t' >t € T] < .

Proof. =: Given generalized values t', if ¢’ € T}, then there is a set S of identical
t, € Ty s.t. |S] > k and ¢ = ¢, (by the definition of k-anonymity). Each ¢ €
St e T. Since we cannot distinguish between the ts, the probability that we
have a particular ¢, = é < ,i Thus the probability that ¢’ is generalized from a
particular t; is Prob[t' >t;] = Prob[t’ =t]] < .

<: Let Prob[t' >t € T] < ;, and ¢’ be the record with the highest such
probability for a generalization from ¢. Since the generalization is done according
to a hierarchy, ¢ must generalize to a (uniquely determined) single node in each
hierarchy. This defines the only allowed values for ¢. Thus all ¢, € T} have
Problt;>t] = 0 or Prob[t;>t] = Prob[t'>t] < ;. Since t must uniquely generalize
to one of the ¢, the sum of probabilities must be 1. Thus there must be at least
k t; € T, that are identical to ¢/, so k-anonymity holds for ¢'. O

From Theorem 2, the privacy constraint P in our application domain can
be formally defined as: inferences from < Tj,[[,(f),Tx > do not enable party
i to conclude 3¢’ € T}, (or a ¢’ seen in [],(f)) such that Prob[t' >t € T] > ;.
Informally, < T;, [[,(f),Tx > does not make T}, less k-anonymous. We will re-
visit this privacy constraint when proving that the proposed protocol is privacy-
preserving.

Since the protocol can utilize any k-anonymity algorithm to compute locally
anonymous data, we call the proposed approach Distributed Privacy-Preserving
two-Party Generic Anonymizer (DPP3GA). The protocol is presented in Section
3.1, Section 3.2 proves the correctness of the protocol and Section 3.3 proves the
protocol satisfies the k-anonymity privacy constraint.



172 W. Jiang and C. Clifton

3.1 DPP>GA

The protocol is executed between two parties: P1 and P2. Let T refer to Table
1 and QI = {AREA, POSITION, SALARY}. T is vertically partitioned into
T1 = T[ID, AREA, POSITION] and T2 = T[ID, SALARY, SSN] stored at P1
and P2 respectively. Also, assume P1 and P2 are semi-honest in that they follow
the execution of the protocol but may later use the information seen to try to
violate privacy. (Discussion of the privacy properties under stronger adversarial
models omitted due to space constraints.)

The key idea of the protocol is based on Theorem 1. Initially, each party Pi
(i =1 or 2) makes his data k-anonymous locally (for simplicity, Datafly is used
for illustration). Based on this locally k-anonymous data, a set v¢ is produced
containing IDs partitioned into subsets. Let v¢[p] indicates the p!* subset in ¢,
then all records Pi whose keys are contained in +*[p] have the same value with
respect to QI. For any +*, the following properties hold:

— [p]N~'[g] = 0, for any 1 < p,q < |[*] and p # ¢
— U, 7'[p] is the same across all v's

Note that although each element ~'[p] in v* contains record keys, it does make
sense to say that v'[p] contains a subset of records or data tuples because each
key is related to a single tuple. Define T'.,: be the generalized data at Pi based
on which v* is computed. For example, refer to Table 3, the columns [AREAP,
POSITIONY] indicate the generalized data of TI[AREA, POSITION], where p+q
indicates the number of times T1[AREA, POSITION] has been generalized (by
Datafly). Also, the last generalization of T1[AREA, POSITION] was performed
on the attribute whose superscript was incremented comparing to its previous
value. T2[SALARY] can be interpreted similarly. According to Table 3, we have:

7 = {{1,3,9},{2,4,10}, {5,11,12},{6,7,8}}
v ={{1,4,10},{2,3,9},{5,11,12},{6,7,8}}

Table 3. P1 and P2 ’s Generalized Data (left and right respectively)

ID AREA' POSITION? AREA" POSITION' ID SALARY' SALARY?
1 DB AoP DB  Professors 1 [61k, 90k] [61k, 120K]
2 IS AsP IS Professors 2 [91k, 120k] [61k, 120K]
3 DB AoP DB  Professors 3 [91k, 120k] [61k, 120K]
4 IS AsP IS Professors 4 [61k, 90k] [61k, 120K]
5 IS Prof IS Professors 5 [121k, 150k] [121k, 180K]
6 OS RA (O] Assistant 6 [11k, 30k] [11k, 30K]

7 OS RA (O Assistant 7 [11k, 30k] [11k, 30K]

8 OS RA (O] Assistant 8 [11k, 30k] [11k, 30K]

9 DB AoP DB  Professors 9 [91k, 120k] [61k, 120K]
10 IS AsP IS Professors 10 [61k, 90k] [61k, 120K]
11 IS Prof IS Professors 11 [121k, 150k] [121k, 180K]

12 IS Prof IS Professors 12 [121k, 150k] [121k, 180K]
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The two parties then compare v{ and 2. If they are equal (this notion of equality
will be defined shortly), joining data T'1,1 and T2,z creates globally k-anonymous
data. If 4 and ~ are not equal, each party generalizes his local data one step
further and creates a new *. Repeat the above steps until the two parties find a
pair of equal v's. Let’s define the notion of equality between any two ’s.

Definition 3. Ify! = Wj, then there are no p, q such that 0 < |, mj ql| < k.
@ B o B

According to the above definition, v; # ~vf because |{1,3,9} € v N1 {2,3,9} €
2| = 2 < k (where k = 3). Thus, P1 and P2 generalize their data one step
further and compute two new 7’s:

va =1{{1,3,9},{2,4,5,10,11,12},{6,7,8} }
ve ={{1,2,3,4,9,10}, {5,11,12},{6,7,8}}

Since 73 = 73, the join of 1,1 (columns [AREA', POSITION'] in Table 3) and
T2,z (column [SALARY?] in Table 3) satisfies 3-anonymity.

Due to privacy issues, the comparison between ~'s are not performed directly.
Instead, P1 encrypts ! and sends Ex,, (v') to P2. P2 then encrypts Eg,, (7!)
and sends a copy of Ex,,(Ex,, (v')) back to P1. 42 is treated similarly. After
this exchange, both parties have copies of [Ek p, (Exp, (71)), Expy (Brps (72))].
Note that the encryption is applied to individual value, and we also adopt the
commutative encryption scheme described in [19], but any other commutative
encryption scheme can also be used. The key property of this scheme is that
Expy(Ekp,(0)) = Expy (Exp,(v)): encryption order does not matter.

Algorithm 2. DPP>,GA

Require: Private Data T1, QI = (Ai,...,An), Constraint k, Hierarchies VGHa,,
where i = 1,...,n, assume k < |T'1]
P1 generalizes his data to be locally k-anonymous;
int ¢ < 0;
repeat
c=c+1;
P1 computes v.;
P1 computes Exp, (7¢) and sends it to P2;
P1 receives Exp,(72) and computes I'pz = Exp, (Exp,(72));
P1 receives I'p1 = Expy (Fxp, (7&)),
until Fp1 = FPQ
s return Tp[QI] « T1,1 X T2,2;

—_

Key steps in our approach are highlighted in Algorithm 2. The algorithm is
written as executed by P1. Note that synchronization is needed for the counter c,
and the encryption keys are different for each round. When the loop is executed
more than once, the algorithm requires local data to be generalized one step
further before computing the next 4! at Step 5. At step 10, the symbol
represents the one-to-one join operator on the ID attribute to create globally
k-anonymous dataset from the two locally k-anonymous datasets.
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3.2 Proof of Correctness

In this section, we prove Algorithm 2 achieves global k-anonymity. Refer to
notations adopted in Section 3.1, let v}, 42 synchronously computed from P1
and P2’s locally k-anonymous data and use the equality operator = defined in
Definition 3. Define T'1,: and 72,2 as the locally k-anonymous data related to
vL and ~?2 respectively.

Theorem 3. If 7} = 72, then Tp[QI] «— T1, v T2, satisfies global
k-anonymity.

Proof. Let’s prove the above theorem by contrapositive. In other words, prove
the following statement: If T} [QI] does not satisfy global k-anonymity, then v} #
v2. Suppose Ty[QI] is not k-anonymous, then there exists a subset of records
S = {t1,...,t;} C Tx[QI] such that |S| < k or j < k. Let ¢;[!] denote the
portion of the record t; related to v} stored at P1 and ¢;[v2] denote the portion of
the record related to 72 stored at P2. Then {t1[v}],...,t;[y}]} must be contained
in some subset v}[p], and {t1[v2],...,¢;[y2]} must be contained in some subset
v2[q); as a result, |yi[p] N v2[q]| < k. According to Definition 3, the equality
between ! and 72 does not hold. Thus, the contrapositive statement is true, so
Theorem 3 holds. ad

3.3 Proof of Privacy Preservation

Referring to Step 9 in Algorithm 2, although equality is tested on the encrypted
version of v} and 2, inference problems do exist.

For simplicity and consistency, let’s use v} and 42 instead of I'p1 and I'py for
the following analysis. The inference problem exists only when ! # 2. More
specifically, we analyze the inference problem when 0 < |vl[p] N +v2[q]| < k (for
some p and ¢) because this inference seemingly violates global k-anonymity.

We classify inference problems into two types: final inference problem (FIP)
and intermediate inference problem (IIP). FIP refers to the implication when the
inequality occurs at Step 9 of Algorithm 2 only once. ITP refers to the implication
when the inequality occurs multiple times. Let T;[QI] be the k-anonymous data
computed by Algorithm 2.

Theorem 4. FIP does not violate the privacy constraint P (previously stated
in this section); in other words, FIP does not make Ty [QI] less k-anonymous.

Proof. Tf v} # ~2, then according to Definition 3, there must exist an intersection
set I. = v2[p] N y2[q] such that 0 < |I.| < k. Since the equality test at Step 9 of
Algorithm 2 is performed on the encrypted versions of v} and 72, we are not able
to know the exact records in I.. Because of the definition of FIP, 7}, ; = ~2,,
holds. Since 7;,; computed from more generalized data than ~;, the following
conditions hold:

— 7[p] C L [p'], where 1 < p' < |yt
— 72lq) € 21(¢), where 1 < ¢ < |v24]
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When the final generalized data released, for the worst case scenario, we may
be able to identify unencrypted records related to 1, [p'] and 2, ,[¢']. Define
Iei1 = 2P 1N 211 1d'). According to the above conditions and v}, = 72,4,
Ic C Ic+1 and |Ic+1| Z k.

Since the equality test was performed on encrypted data, Problx>y] = | I‘Iill‘ ,
where € I.41 and y € I.. If z is not directly generalized from y of any I., then

Problz >t € T] < | because z is k-anonymous. If z >y, then Problz >t € T| =

Problx>y] - Probly>t]. y is |I.|-anonymous, so Prob[y>t] = \Ilcl' Then we have
Prob[thET]:”lclil-ulc‘ <, O

Next, we show a concrete example that illustrates why FIP does not violate k-
anonymity. Refer to {,+7,73,73 in Section 3.1. Let 72 = ~{ and 4, = 74 where
i € {1,2}. As stated previously, we have y{ # ~, so let yl[p] = {1,3,9} and
'7c2[q] = {2,3,9}. Then we have I, = %1[]7] n '7c2[q] = {3,9}, '7c1+1[p/] ={1,3,9},
V2 0q] = {1,2,3,4,9,10} and Iy = 71, [p'1Ny2,1[¢'] = {1,3,9}. Note that in
this example, we can directly observe record IDs. However, in the real execution
of the protocol, each party can only see the encrypted ID values. Now let’s see if
the data records contained in I, violate the property stated in Theorem 2. Let
x>y € I, then Problx>t € T] = Problz>y| - Probly>t] = \I‘cjil . I}I =3=,
Theorem 5. IIP does not violate the privacy constraint P; in other words, IIP
does not make Ty [QI] less k-anonymous.

Proof. Use the notations defined in the proof of Theorem 4. According to the
definition of IIP, 7} # 42 and v}, # 72.,. Define I. = v}[p] N ~?[q] such that
0 < |I] < k. Similar to the previous analysis, the following two conditions hold:

— L) C AL [p), where 1 < pf < |7k
— 2]q] € 12.4[¢], where 1 < ¢ < |72,

Define Io41 =721 [p'] N 211 1] If Ioqq is k-anonymous or |[I11] > k, then this
inference problem caused by I. is the same as FIP.

Now consider the case where |I.11| < k. Because 7/, computed from more
generalized data than i, I. C I.4q. If |I.| = |I.11|, the inference effect caused
by I. does not propagate to the equality test between ~} 11 and y2 - I L <
|Io11], define z € I.11 and y € I.. If = is not directly generalized from y, then
Problz>t € T] = 1., Pecause x is |Ic41|-anonymous. Nevertheless, if x >y,

then Problz>t € T| = Problx>y]- Probly>t] = |1|Ii|1| . ‘11‘ = 1+1‘.
Problx >t € T] is the same for all records in I.;;. The inference effect caused
by I. is independent from one equality test to the next one. Consequently, the

effect of IIP is the same as that of FIP. O

As a result,

The equality test between v} and 42 is not the focal point of this paper. It is
fairly simple to derive, so we do not provide any specifics about how to perform
the equality test. In addition, we note that if |I.| > k, the records in the I. do
not violate the privacy constraint due to the definition of k-anonymity.
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4 Conclusion / Future Work

Privacy of information in databases is an increasingly visible issue. Partitioning
data is effective at preventing misuse of data, but it also makes beneficial use
more difficult. One way to preserve privacy while enabling beneficial use of data
is to utilize k-anonymity for publishing data. Maintaining the benefits of parti-
tioning while generating integrated k-anonymous data requires a protocol that
does not violate the k-anonymity privacy constraint. In this paper, we have laid
out this problem and presented a two-party protocol DPP2GA that is proven to
preserve the constraint. It is a generic protocol in a sense that any k-anonymity
protocol can be used to compute locally k-anonymous data.

One disadvantage of DPP2GA is that it may not produce as precise data
(with respect to the precision metric defined in [8]) as other k-anonymity al-
gorithms do when data are not partitioned. For instance, DPP2;GA could be
modified to simulate Datafly. At Step 9 of Algorithm 2, when the equality does
not hold, only the party with the attribute that has most distinct values globally
should generalize the data. Then the equality test would be performed on the
newly computed I} -1 with previously used I'2. The data generated this way are
the same as those computed by Datafly.

Even though this approach may produce more precise data, it does introduce
additional inference problems because some ! +; may be compared more than
once. It is not obvious that this additional inference must (or can) violate k-
anonymity with respect to individual parties, but proving this formally is not an
easy task. One key design philosophy of DPP2GA is to provably eliminate such
inference problems, so DPP2GA sacrifices a certain degree of precision. More pre-
cise protocols with fewer or no inference problems are a worthwhile challenge for
future research. Another observation we have during the design of DPP>GA is
that more precise data can also be generated by removing already k-anonymous
data at the end of each round (resulting in different data being generalized to dif-
ferent levels). Again, providing a formal method to analyze the inference problem
might be very difficult, but this provides a valuable future research direction.

DPP>GA is not a SMC protocol because it introduces certain inference prob-
lems, such as FIP and ITP. However, based on our analyses, both FIP and IIP
do not violate the k-anonymity privacy constraint. Formally defining and un-
derstanding the differences between privacy-preserving and Secure Multiparty
Computation may open up many new opportunities for designing protocols that
preserve privacy.
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Abstract. Authentication based access control and integrity constraints
are the major approaches applied in commercial database systems to
guarantee information and data integrity. However, due to operational
mistakes, malicious intent of insiders or identity fraud exploited by out-
siders, data secured in a database can still be corrupted. Once attacked,
database systems using current survivability technologies cannot con-
tinue providing satisfactory services according to differentiated informa-
tion assurance requirements. In this paper, we present the innovative
idea of a database firewall, which can not only serve differentiated infor-
mation assurance requirements in the face of attacks, but also guarantee
the availability and the integrity of data objects based on user require-
ments. Our approach provides a new strategy of integrity-aware data
access based on an on-the-fly iterative estimation of the integrity level
of data objects. Accordingly, a policy of transaction filtering will be dy-
namically enforced to significantly slow down damage propagation with
minimum availability loss.

1 Introduction

Data integrity, availability and confidentiality are the three major issues that
have been paid much attention in database security research. To protect the data
integrity, multi-layer approaches are proposed, from hardware, OS, DBMS to
transaction level. Mainly, there are two research focuses. One is from-scratch, the
other is off-the-shelf. Approaches presented in [1],[2],[3] are to close the security
holes on hardware, OS and DBMS, respectively, from the from-scratch direction.
[4] and [5] propose techniques to deal with data corruption and storage jamming
effectively on OS-level intrusions. Unfortunately, these technologies can not be
applied to handle authorized but malicious transaction.

[6] introduces an intrusion-tolerant database (ITDB) system architecture on
the transaction-level. It is noticeable that ITDB architecture is complicated be-
cause of the specific database vulnerability known as damage spreading. That is,
the result of a transaction can affect the execution of some later transactions,
directly or indirectly, through read and write operations.

* This work was supported by NSF CCR-0233324, NSF ANI-0335241, and Department
of Energy Early Career PI Award.

S. Jajodia and D. Wijesekera (Eds.): Data and Applications Security 2005, LNCS 3654, pp. 178-192, 2005.
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Since infected data objects can cause more damage through read and write
operations, which, in turn, could lead to wrong decision and disastrous conse-
quences, data corruption becomes a severe security problem in critical data ap-
plications, such as air traffic control, banking and combat-field decision making
system. Furthermore, data corruption is not only an issue of data integrity issue,
but also a concern of data availability. For example, in some cases, the purpose
of an attack is just to deny the service. Generally, when the real-world database
application is under an attack, the services the system provides have to be shut
down to recover from the disaster. Thus, the system availability sacrificed in
order to maintain the data integrity. A vast majority of research has been done
on how to survive data corruption from malicious attacks and recover the data
integrity and availability in an off-line manner. However, limited attention has
been drawn to provide various database services in agreement with differentiated
information assurance requirements while the system is being healed.

In this paper, we present a novel idea of database firewall that, in contrast
to previous research, uses different strategies to prevent damage from spreading
to other territories of the database in terms of tables, records and columns.
The idea is to quickly estimate the integrity levels of data objects and use such
integrity levels to smartly filter off the transactions that would spread damage
according to a specific firewall policy upon the time a malicious transaction is
detected. A unique feature of our approach is that transaction filtering is not
universally enforced and the enforcement domain is dynamically adjusted so that
maximum availability can be provided without jeopardizing integrity. According
to a user requirement of quality of information assurance (QoIA), we not only
provide a significant improvement of data availability, but also guarantee the
integrity of data objects stored in the database. The database firewall framework
is illustrated in the context of the transaction level in ITDB architecture.

The rest of this paper is organized as follows. In section (2), we review the
background and related work. In section (3), we present the design issue of the
database firewall. In section (4), we propose our naive estimator model and
estimation algorithm. In section (5), we demonstrate some preliminary results.
In section (6), we conclude the paper and future work.

2 Background and Related Work

Intrusion detection system (IDS) has attracted many researchers ([8],[9],[10]). In
general, IDSs monitor system activities to discover attempts to gain illicit ac-
cess to systems or corrupt data objects in systems. Roughly, the methodologies
of IDS are in two categories, statistical profile and known patterns of attacks.
However, intrusion detection systems have a few noticeable limitations: (1) In-
trusion detection makes the system attack-aware but not attack-resistant. (2)
Achieving accurate detection is usually difficult or expensive. (3) The average
detection latency in many cases is too long to effectively confine the damage. To
overcome these limitations, a broader perspective has been introduced, namely
an intrusion tolerance database system [6].
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Other than the ITDB approach, traditional recovery mechanisms execute
complete rollbacks to undo the work of benign transactions as well as malicious
ones when the malicious transactions are detected. Therefore, although rolling
back a database to a previous checkpoint can remove all the corrupted data,
the work of all the legitimate transactions which commit after the checkpoint is
lost. This kind of approach would further exacerbate the situation of denial of
service. [11] provides a recovery algorithm that, given a specification of malicious,
unwinds not only the effects of each malicious transaction but also the effects
of any innocent transaction that is directly or indirectly affected by a malicious
transaction. A significant contribution of [11] is that the work of remaining
benign transactions is saved. However, the fact is that transaction execution
is much faster than detection and reparation. This indicates that the entire
process of recovery could both take a relatively long time to finish and also repeat
repairing certain data objects over and over again due to damage spreading.
Thus, the data availability could be significantly lost due to this long latency.

[12] present an innovative idea known as multiphase damage containment.
Upon the time a malicious transaction (denoted as B;) is detected, in contrast
to reactive damage containment, [12] uses one containing phase (denoted as
initial containment) to proactively contain the data objects that might have been
corrupted. In addition to this first phase, one or more later uncontaining phases
(denoted as containment relaxation) will release the objects that are mistakenly
contained during the first phase. This approach can guarantee that no damage
caused by malicious transaction B; will spread to any new update. However, an
inherent limitation of multiphase containment is that this method could cost
substantial data availability loss. Because the initial containment phase needs
to instantly confine every data object possibly infected by B; within a time
window starting upon the commit of the malicious transaction B; and ending at
the detection of B;, there is no time for the confining phase to precisely pinpoint
the set of damaged data objects.

To overcome the limitations of the multiphase containment approach and to
provide more data availability, delivering services by taking QolA requirements
into account seems to be a solution. In order to keep services available during
attacks, it will be beneficial to continue allowing access to confined data ob-
jects during the repair time window. However, this needs to be conducted very
carefully since a confined data object could have been corrupted. Thus, certain
security rules and policies of access are required to achieve this original inten-
tion. [13] has taken the first step towards this goal. In this paper, we extend
this topic and present database firewall technique as a solution to increase the
data availability without imposing risks to applications users and degrading the
system performance and data integrity.

3 Database Firewall Design

In this section, we first formalize several important concepts and the various
problems studied in this paper, and then present the framework of database
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firewall. The idea of a database firewall can be better described in the context
of an intrusion tolerant database system (ITDB) on the transaction level. Since
this framework is an extension of the ITDB architecture, it inherits the features
from ITDB that it could not directly defend against attacks from low level,
such as OS and DBMS level attacks. However, when most attacks come from
malicious transactions, our framework is effective. Moreover, the existing low
level mechanisms can be easily integrated into our database firewall framework.

3.1 Theoretical Model

A database system is a set of data objects, denoted as DB={01,09,...,0,}. A
transaction G; is a partial order with ordering relation <;, where

1. G; C {(ri]oz], wiloz])|ox is a data object} U(as, ¢;);
2. if r;[0.], wiloz] € Gy, then either 70| <; w;ioz], or w;[oz] <; 7i[0s];
3. a; € Gy iff ¢ ¢ G;.

and r,w,a,c relate to the operation of read, write, abort, and commit, respec-
tively. The (usually concurrent) execution of a set of transactions is modeled
by a structure called a history. Formally, let G = {G1,G2,...,Gpn} be a set
of transactions. A complete history H over G is a partial order with ordering
relation <y, where:

1. H= U?:IGi;
2. <yg2 U?:l <i-

Since aborted transactions have nothing to do with database firewalls, for
the sake of simplicity we assume every transaction commits. Two transactions
conflict if they both have an operation on the same object, and one of them
is write. Also, the correctness of a history is typically captured by the notion
of serializability[14]. One assumption is that strict two-phase locking (2PL) is
used to produce serializable histories where the commit order indicates the serial
order among transactions.

First, how an object is damaged is defined in a conservative way. That is,
every object updated by a malicious transaction is damaged, and that if a good
transaction reads a damaged object, then every object updated by the good
transaction is damaged. Next, a transaction dependent relation is denoted as
follows. In a history composed of only committed transactions, a transaction G;
is dependent upon another transaction G; if there exists an object o, such that
G; reads o, after G; updates it, and there is no transaction that updates o,
between the time G; updates o, and G reads o,. Finally, it is assumed that
every data object modified by G; will be read by G; first. Thus, there is no blind
writes.

3.2 DMotivation and Challenges

As networks enable more and more applications and are available to more and
more users, they become ever more vulnerable to a wider range of security
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threats. Thus, to combat those threats and ensure that applications are not
compromised, security technologies such as network firewalls play a critical role
in today’s networks. Likewise, a broad span of research from authorization, to
inference control, to multilevel secure database, and to multilevel secure trans-
action processing has addressed primarily on how to protect the security of a
database. However, a very important vulnerability of database security, known
as damage spreading, has been omitted by these researches. Database firewall
technique is needed not only because malicious transactions can compromise
data objects, but also because innocent transactions can accidentally spread the
damage. Formally, damage spreading occurs because any good transaction read-
ing a corrupted data object o, can spread the damage on o, to the data objects
it updates. In this way, the spreading can be exponential. Still, the effect caused
by a malicious transaction itself to a database is limited. Thus, it is the transac-
tions that spread the effect that matter. Efforts have been made in existing data
containment and damage assessment technologies to stop spreading and recover
systems. However, data containment and damage assessment take a substantial
amount of time. Thus, the loss of data availability is significant. Database fire-
wall technique takes a step further to reinforce the above approaches by filtering
the incoming transactions to simultaneously stop potential damage spreading at
the doorway and to improve the data availability according to a certain security
policy.

In sum, a database firewall should include at least three components: Integrity
Estimator, Firewall Manager and Access Policy Manager. One of the challenges
to guarantee the success of database firewalls is to design an efficient integrity
level estimation algorithm, which can quickly and accurately estimate the data
integrity without losing security. In this paper, a naive approach to achieve this
goal is presented.

3.3 Architecture of Database Firewall

To develop the database firewall framework that can provide more data avail-
ability, there are several fundamental issues needed to be addressed and solved.
First, how to formalize the integrity level model and estimate the data integrity
during attacks. Second, how to constitute the security policy and access rulesets
using estimated data integrity level. Third, how to manage the tradeoff between
performance and security.

Database Firewall Components. As shown in figure (1), the database fire-
wall architecture is built upon the top of a traditional ”off-the-shelf” DBMS.
Within the framework, Intrusion Detector (ID) identifies malicious transactions
based on the operation records stored in the log. Damage Assessor (DA) locates
the damage caused by the detected malicious transactions. Damage Repairer
(DR) repairs the located damage using some specific cleaning transactions. In-
tegrity Estimator (IE) estimates the integrity level of data objects. Access Policy
Manager (APM) works as a prozy for decision making of data objects access.
Firewall Manager (FM) functions when Intrusion Detector detects malicious
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Fig. 1. Database Firewall Architecture

transactions. After the firewalls are built up, Firewall Manager triggers Integrity
Estimator to start estimating the integrity of data objects and consequently force
Access Policy Manager to set up access rulesets to restrict the access to the data
items that are confined in firewalls according to a new policy. At each step of in-
tegrity estimation, the firewalls update themselves in co-response to the changes
of data integrity level. Accordingly, any new transaction submitted by a user
will comply with the new policy. Through several steps, Integrity Estimator will
finally converge to the final solution, which has either a set of precise integrity
of data objects or a set of approximate integrity of date objects.

3.4 Transaction Filtering Policies and Mechanism

In this section, an innovative mechanism for implementing security control which
guards the door of database systems and prevents potential damage spreading
from occurring is introduced. By conventional definition of firewall in network
domain, a firewall is a system or group of systems that enforce an access control
policy between two or more networks. Its operations are mainly based on three
technologies: packet filtering, proxy server and stateful packet filtering. Similarly,
in database security domain, particularly in our database firewall framework, a
firewall operates based on transaction filtering technique. In addition, unlike a
network firewall, which checks packet status, transaction filtering relies on the
integrity level of data objects.

Integrity Level Model. When a malicious transaction B; is detected, the data
objects in the database could be in several different situations. In this section,
an idea is presented to define the model illustrating the integrity of data objects.
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Data objects Integrity. A data object could be either good or corrupted
after the database system is attacked. Thus, it is straightforward to denote
that the integrity of an object o; (1 <14 < n) is good at particular time ¢ as
I(0;,t) € {G, B}, where G is Good and B is Bad for short. It is apparent
that when a malicious transaction is captured, any transaction whose commit
time is out of a time window, starting from the time point when B; enters
the database to the moment of its committing, is not infected, and the data
objects belonging to the transaction are regarded as good objects.

However, the status of those data objects that belong to transactions which
commit within the time window are a little more complicated. It is difficult
to attain such knowledge that data integrity can be precisely calculated in
a short period of time. Methods, such as [12], mentioned in previous sec-
tion (2), can precisely distinguish the integrity of each data object through
several phases. However, safety comes at the sacrifice of significant data avail-
ability. This contradicts the goal of database firewall framework. Therefore,
instead of deterministically marking the integrity of data objects, a practical
integrity model that uses probabilistic estimation is favored. This model is
applicable because the damage spreading is strongly related to the writeset
of the malicious transaction B;, denoted as Wp,, and also relies on the trans-
action arrival and dependency patterns. For this reason, previous histories
can be used to estimate the probability that a data object is good as the
data integrity during an attack.

Practical Integrity Model. In this model, a data object 0;’s integrity at
a particular time ¢ is shown in the equation.

Iont)=(1— _ ) x100%, R(t) > 1 (1)

1
R(t)
Where, R is the number of patterns matched with or similar to an attack pat-
tern. We call I(o0;,t) the data object o;’s integrity level, and 0 < I(o;,t) < 1.
Integrity level of data object o; indicates that the probability of o; is good
when a specific attack pattern occurs. For example, when R(t) = 1, I(0;,t) =
0, it means the identical patterns are found, and the data object o; is cor-
rupted. Thus, the integrity of a data object o; could be in one of the following
three categories:

100% t & [t&, %] estimated
I(0i,t) = ¢ 50% t € [th,t%] estimated (2)
0% t e[ty th] identified

Here, for the definition of tis, t,, please refer to section 3.4. With the above
analysis about data integrity, in order to estimate the integrity of a data ob-
ject, our research becomes to find answers to following three questions: What
is an attack pattern? How does the integrity estimator use the patterns? How
do we match two attack patterns? These concerns will be addressed in a later
section (4).
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Database Firewall Security Policy. A specific and strongly worded security
policy is vital to the pursuit of internal data integrity. This policy is a subset
of the database access contorl policy and never will rule over an access contorl
policy, such as authorization, but should govern everything from acceptance of
accessing data objects to response scenarios in the event a security incident
should occur, such as policy updating upon a new attack.

Ideally, a database firewall security policy dictates how transactions traffic
is handled and how filtering ruleset is managed and updated. Before a policy
is created, a risk analysis on the database system must be performed to gain
knowledge for the vulnerabilities associated with databases. For instance, we
know one of the vulnerabilities in database security is the damage spreading. It
is when a transaction, even if it is a legitimate one, accesses a corrupted data
object that the damage will be spread to any other data object this transaction
touches, directly or indirectly. Then, to limit the potential damage spreading,
firewall policy needs to create a ruleset to restrict the entrance of transactions
that could compromise other data objects while letting other transactions enter
to achieve maximum throughput.

For example, suppose a transaction G (¢, tp) = 71[0g]r1[0y]wi [0y] requires to
enter the database, where tp is transaction type. If it is known that the data ob-
ject o, has been corrupted at this momment, then our policy checker will screen
the transaction and be aware if the request can be granted using the ruleset.

Definition 1 : Integrity Filtering List, I= {il(ogg1 , 03127 o oilm),ig (o(ff1 , 0222, . ozzn),
..}, where i is a set with data objects on same integrity level, and o; is a data
object associated with the integrity level . The ruleset is defined as follows:
Rule 1 : V transaction G, if 3 data object o, € Rg, and Rg () I # 0, and if Wg
# (), DENY;

Rule 2 : V transaction G, if 3 data object o, € Rg, and Rg ) I £, and if Wg
=, and if i < @ then DENY, otherwise GRANT;

Rule 3 : V transaction G, if A data object 0, € R, and Rg () I =0, GRANT;
Here, @ is QolA required by applications. Rg, W¢ is the readset, writeset of a
transaction, respectively. What we have presented here is a sample ruleset. We
should be aware that firewall rulesets tend to become increasingly complicated
with age.

Transaction Filtering Mechanism. In many cases when an attack is de-
tected, not every data object in database is corrupted. Thus, simply applying
the firewall ruleset to screen every incoming transactions is not wise. Here, we
introduce a novel concept called firewall time window.

In the database firewall framework, for each detected attack, Firewall Man-
ager has a life cycle with three different phases: Firewall Generation, Firewall
Mergence and Firewall Withdraw. During the first phase, upon the time when
a malicious transaction B; is detected, Firewall Manager is notified to generate
a firewall. A firewall time window [t&, t%;] is denoted as 20;. Here, the [t&, %] is
defined as follows:
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Definition 2 : Firewall Time Window 20; of B;, denoted as [tk t%;], is defined as
follows: t is the time when B; starts; t%; is the time when malicious transaction
B; is detected.

For example, suppose a transaction G1(t,tp) = r1[oz]r1[oy|wi[0s]wi]o;] re-
quires to enter a database, if it is found that ¢ is within the scope of firewall
time window [tg,tg], the ruleset is further checked for security concerns. Oth-
erwise, the permission of entrance to the database can simply be granted. Here,
ty_ is the time when data object o, was updated.

Firewall Updating Mechanism. At phase two, if there are multiple malicious
transactions detected during a period of time, there might exist multiple fire-
walls, and Firewall Manager will force the multiple firewalls to merge together
according to certain rules. By doing this, Access Policy Manager can efficiently
manage multiple versions of access policy. A set of malicious transactions is de-
noted as Bj1, B2, ..., Bjx. For each firewall time window, the mergence rules are
defined as follows: o ‘
Mergence Rule 1 : Firewall time window [t%, t%;] is ahead of [t%, t};] if t% < t%.
Firewall time window 20; and 20; are overlap if no one is ahead of another. 20;
includes 20; if ¢ < ¢4 and t%; > t7,.
The rule of firewall mergence is defined as follows:
Mergence Rule 2 : A set of firewall time windows can be merged as one if for
any two time windows Wiy, and Wi,, (m < n), there is a sequence of firewall
time windows 20j, , 20j,, ..., Wie, ..., Wiy, such that they are within the set where
Wim and Wi, overlap, Wie and W ey ,) overlap, and W,y and W overlap.
By applying this firewall mergence ruleset, the framework dynamically ad-
justs the security policies and rulesets corresponding to the changes of firewalls.
In the third phase, there is a condition when it is satisfied, the Firewall Man-
ager will stop restricting access to any data objects within the firewall time win-
dows (That is, when Damage Repairer finishes repairing the located corrupted
data objects). In response to the withdraw of firewall, Access Policy Manager
will reset the access policy to the lowest level of restriction of data access, and the
database system performs in the normal way until the next malicious transaction
is detected.

4 Integrity Level Estimation

One critical issue to guarantee success of Integrity Level Estimation success is
timing. The more time the estimation algorithm spends, the more accurate the
estimation result can be, but the less data availability the database system can
provide. Thus, instead of releasing a final solution of integrity estimation at the
conclusion, the algorithm gives out several versions iteratively along the process.
Now, we propose our integrity estimator model and the first naive estimation
algorithm (1) that balances the tradeoff between performance and security.

Integrity Estimator. Figure (2) illustrates the details of estimator compo-
nent. Basically, there are two subcomponents: One is offline processor; the other
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3 Offline Processor

Online Processor —=APM

DB-FM

Fig. 2. Integrity Estimator Component

is online processor. Offline processor usually is executed after Damage Repairer
finishes repairing and then triggers the Database Firewall Manager to withdraw
the firewalls. In general, to gather knowledge about previous attacks and to save
time for online processor to quickly and precisely estimate the data integrity,
offline processor deals with all kinds of information it can obtain from history
logs, IDS reports, customer profiles and database schemes. In this paper, it is
assumed that offline processor only process the histories stored in database and
subtracts valuable attributes from them, such as the transaction dependency
graphes, attacking time and statistic data (the number of corrupted data ob-
jects, frequency of a data object being corrupted, the number of distinct values
and transaction types, for example). The above information is called an Attack-
ing Pattern, or Fingerprint. Once an attacking is detected, online processor in
Integrity Estimator starts estimating data integrity based on both the knowledge
the offline processor has obtained and the information of new attacking history.
We define Attacking Pattern and Spreading Pattern as follows:

Definition 3 : Attacking Pattern p = (R;, Wj, ajl-, a?, . ,ag’%l, aj’, ag’Hl, ce)e
Definition 4 : Spreading Pattern P is a dependency related sequence of trans-
actions, P; = {pB,,p1,D02,---sPn—1,Pn:Pn+1 --.}. Where, R;, W; is the readset,
writeset of a transaction, respectively; B; is a malicious transaction, and a; is a
valuable attribute that depicts a particular dimension of a transaction, such as
occurrence frequency of a special value or the number of distinct values. And,

Wn—l ﬂ Rn 7é @

Algorithm (1) describes the naive approach of how to estimate data object
integrity. In general, this algorithm is a pattern-match based approach. A vec-
tor containing spreading patterns is created by offline processor based on the
histories it obtains. Basically, this algorithm scans the spreading patterns to
compare the attacking pattern from a newly detected attack with the one in
each spreading pattern in the vector. If a match is found, the R will be increased
by one; otherwise, the unmatched spreading pattern is trimmed off the vector.
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In addition, the confined data set C and the number of matched patterns R up-
date correspondingly. Since this is a pattern-matched approach, an unavoidable
problem is what to do in the absence of a matched pattern. From the mathe-
matics perspective, R in equation 1 can not be zero. But, in the algorithm if R
is equal to zero, it indicates the newly detected attacking pattern is one that
had never occurred before. In this scenario, the algorithm stops estimating and
notifies Firewall Manager to reset the firewall time window because damage had
probably already been spread out by this moment. A possible solution to this
problem is to apply a containment approach, such as multi-pahse containment
method, to precisely distinguish the integrity of each data object, invoke the
offline processor to consume the new attack and add this pattern to the vector.

Algorithm 1 Integrity Level Estimation Algorithm Pseudo Code

Require: V[k] : spreading pattern vector. Pew:mewly detected attack > S is the
corrupted data objects of spreading pattern i in V

1: function ILESTIMATOR(V, Prew)
2: C=0,R=0 > C — Confined data objects set
3: for i — 1,n do > Scan the pattern vector
4: P — Prewli]
5: for j — 1,k do > Compare each spreading pattern
6: pv < V]
7 if p, = p then
8: R(t) «— (R(t)+ 1)
9: C—Cu SVU]
10: else
11: V—V -V > Trim the unmatched pattern off the vector
12: C—Cn SVU]
13: end if
14: end for
15: if R(t) =0 then
16: break;
17: else
18: Yo, € C — (1 — th)) > Set the integrity of data objects
19: end if > Mark the integrity of data objects
20: APM updates new policy

21: end for
22: end function

5 Experiments and Results

In this section, the experiment results are demonstrated . In order to measure
the effectiveness and performance of our proposed naive method, comprehensive
experiments have been conducted on synthetic data sets generated according to
a modified TPCC standard.
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5.1 Generation of Experimental Data

For the experiment, synthetic data set has been used. All data are generated
based on a modified TPCC dependency relationship, as shown in figure (3). Also,
the data sets have 1M transactions history. 300 different patterns are summa-
rized out of this history. For each pattern, the number of transactions varies in
a range from 2000 to 3500. Furthermore, there are two possible consequences
regarding an approaching attack. One, a new attack is a duplicate of a previous
one, which implies that there is a previous version recorded in the history. Thus,
it becomes a question whether or not identical twins can be found out of the
previous patterns. Two, a new attack is a mutant of an existing version of attack.
Thus, it becomes whether or not the similar ones can be distinguished. In addi-
tion, in these experiments, it is assumed there is only one malicious transaction
B; at each time. So, firewall mergence is not taken into consideration at current
stage.

5.2 Experiment Results

Figure (4-[a,b,c].1) illustrates the results of the first possible attack pattern,
which is a copy of a previous attack, from three different perspectives, objects
integrity, system availability and estimation validation, respectively. Figure (4-
a.1) presents the results of using our naive method. Obj A, Obj B and Obj C
are the representatives of three sets of data objects. Along the estimation pro-
cess, data objects in set Obj A are first marked as I = {1} because they are
those data objects that are not touched by transactions; thus, they do not be-
long to the patterns that are partials of or similar to the newly detected attack
pattern. Those data objects in set Obj B are assigned to be I = {1} later than
Obj A because the estimator distinguishes that these objects do not belong to
corrupted data set when more knowledge is obtained, and then remark their
integrity. Obj C' is the data object set with all corrupted data objects, and it

T2

T7 T5

T6

Fig. 3. Example Transaction Dependency Graph
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shrinks because some objects are remarked and moved to Obj A and Obj B
along the estimation process. Figure (4-b.1) shows the system availability in
terms of the number of accessible data objects with a QOIA requirement of
100%. Corresponding to Figure (4-a.l), it can be seen the system availability
increases as the integrity of data objects are remarked and moved to Obj A and
Obj B. At step 11, the estimator finds the final solution of data integrity, and
the availability reaches its highest level. Finally, when the system recovers itself
from attacking, the availability goes back to normal level. In this experiment,
it is assumed that applications only access data objects with marked integrity
equal to I = {1}. For some applications that are aggressive and are willing to
accept multiple levels quality of information assurance (QolA), the system avail-
ability will be even higher. Figure (4-c.1) illustrates the progress of estimation
validations. It can be seen that at the initial stage of estimation, because of
limited knowledge about the newly detected attack, estimation has a relatively
high estimation variance (normalized in the range of 0 to 1). However, it will
quickly converge to zero (the diagonal denotes the actual errors, which is zero)
as the procedure goes on.

Figure (4-[a,b,c].2) demonstrates the results of the second consequence of
an attack from the same three aspects. Similarly, Figure (4-a.2) presents the
results of data integrity using the naive method. In contrast to Figure (4-a.1),
Obj C does not drop down to zero because the estimator can only find out several
similar patterns instead of one, which indicates that a new type of attack is found.
Therefore, the estimator will be conservative and inform Firewall Manager to
reset firewall time window to contain data objects in Obj C' in order to prevent
damage leakage. Beyond the last step, the database will not continue rely on
estimation. Instead, [12] can take over and continue the work. In Figure (4-b.2),
corresponding to the changes of integrity of data objects, the system availability
increases accordingly. Figure (4-c.2) demonstrates from another perspective that,
unlike the convergence shown in Figure (4-c.1), the estimation error does not
decline to zero beyond a certain time point when the estimator could not be
more accurate on data object integrity. However, even this is a case, we still
achieve the goal of improving the system availability.

6 Conclusion and Future Work

This paper presents an innovative idea of database firewall. Unlike the traditional
recovery mechanisms, which shutdown the entire system and recovery itself in
an offline manner, our framework can help a database system continue delivering
services even when an attack is detected. We have developed a naive but effective
approach to use histories and attacking patterns to probabilistically estimate the
integrity level of data objects in the face of an attack, instead of deterministically
finding the data integrity. However, this naive approach assumes a relative simple
attacking pattern. In real world applications, this might be the case. In addition,
efficient estimation of data object integrity is also a great challenge. A quick and
accurate estimation algorithm is critical to the success of database firewalls.
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Fig. 4. Two different kinds of attacks from three aspects: integrity, availability, vali-
dation: 1. When a newly detected attack is matched with previous attacks. 2. When a
newly detected attack is similar to the previous attacks

In future work, we plan to formalize the model of the attacking pattern and
damage propagation, as well as redesign the integrity level estimation algorithm.
A number of further SQL and DBMS enhancements are needed to fully exploit
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this interesting topic. We have found that the estimation approach we present
may not work efficiently when there are several similar attack patterns or when
a new type attack is detected. One possible solution to this problem could be,
for example, using a sampling and similarity search technique to find out the
final data object integrity solution.
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Abstract. Firewalls are safety-critical systems that secure most private
networks. The function of a firewall is to examine each incoming and out-
going packet and decide whether to accept or to discard the packet. This
decision is made according to a sequence of rules, where some rules may
be redundant. Redundant rules significantly degrade the performance
of firewalls. Previous work detects only two special types of redundant
rules. In this paper, we solve the problem of how to detect all redundant
rules. First, we give a necessary and sufficient condition for identifying
all redundant rules. Based on this condition, we categorize redundant
rules into upward redundant rules and downward redundant rules. Sec-
ond, we present methods for detecting the two types of redundant rules
respectively. Our methods make use of a tree representation of firewalls,
which is called firewall decision trees.

Keywords: Firewall, Redundant Rules, Network Security.

1 Introduction

1.1 Firewall Basics

Serving as the first line of defense against malicious attacks and unauthorized
traffic, firewalls are crucial elements in securing the private networks of most
businesses, institutions, and even home networks. A firewall is placed at the point
of entry between a private network and the outside Internet so that all incoming
and outgoing packets have to pass through it. A packet can be viewed as a tuple
with a finite number of fields; examples of these fields are source/destination
IP address, source/destination port number, and protocol type. A firewall maps
each incoming and outgoing packet to a decision according to its configuration.
A firewall configuration defines which packets are legitimate and which are il-
legitimate by a sequence of rules. Each rule in a firewall configuration is of the
form
(predicate) — (decision)

The (predicate) in a rule is a boolean expression over some packet fields and the
physical network interface on which a packet arrives. The (decision) of a rule can
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be accept, or discard, or a combination of one of these decisions with other options
such as a logging option. For simplicity, we assume that the (decision) in a rule
is either accept or discard. Since the focus of this paper is firewall configuration,
later we use “firewall” to mean “firewall configuration” if not otherwise specified.

A packet matches a rule if and only if (iff ) the packet satisfies the predicate
of the rule. The predicate of the last rule in a firewall is usually a tautology to
ensure that every packet has at least one matching rule in the firewall. Firewall
rules often conflict. Two rules in a firewall conflict iff they not only overlap but
also have different decisions. Two rules overlap iff there is at least one packet that
can match both rules. Due to conflicts among rules, a packet may match more
than one rule in a firewall, and the rules that a packet matches may have different
decisions. To resolve conflicts among rules, for each incoming or outgoing packet,
a firewall maps it to the decision of the first (i.e., highest priority) rule that the
packet matches.

1.2 Redundant Rules

Firewalls often have redundant rules. A rule in a firewall is redundant iff removing
the rule does not change the function of the firewall, i.e., does not change the
decision of the firewall for every packet. For example, consider the firewall in
Figure 1, whose geometric representation is in Figure 2. This firewall consists of
four rules 1 through r4. The domain of field F is [1,100].

We have the following two observations concerning the redundant rules in
the firewall in Figure 1.

1. Rule 73 is redundant. This is because the first matching rule for all packets
where F; € [30,50] is r1, and the first matching rule for all packets where
Fy € [51,60] is ro. Therefore, there are no packets whose first matching

ri: Fy €[1, 50] — accept
ro: Fi € [40, 90] — discard
rz: F1 € [30, 60] — accept
ra: Fy € [51, 100] — discard

Fig. 1. A simple firewall

r 1I accept I50
40 discard 90
T2 ! L |
30 accept 60
r3 . e - 1
51 discard 100
T4 L |

Fig. 2. Geometric representation of the firewall in Figure 1
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rule is r3. We call r3 an upward redundant rule. A rule r in a firewall is
upward redundant iff there are no packets whose first matching rule is 7.
Geometrically, a rule is upward redundant in a firewall iff the rule is overlayed
by some rules listed above it.

2. Rule r9 becomes redundant after r3 is removed. Note that ro is the first
matching rule for all packets where F; € [51,90]. However, if we remove ro
(assuming that r3 has been removed), the first matching rule for all those
packets becomes r4 instead of ry. This does not change the function of the
firewall since both ro and r4 have the same decision. We call ro a downward
redundant rule. A rule r in a firewall is downward redundant iff for each
packet, whose first matching rule is r, the first matching rule below r has
the same decision as r.

Redundant rules significantly degrade the performance of firewalls. A fire-
wall maps a packet to the decision of the first rule that the packet matches
using packet classification algorithms. A packet classification algorithm maps
each packet to the right decision using an internal data structure built from a
firewall of a sequence of rules. The fewer the rules in a firewall are, the faster a
packet classification algorithm can map a packet to the right decision. To map a
given packet to the decision of the first rule that the packet matches, according to
the complexity bounds from computational geometry [15], the “best” software-
based packet classification algorithm uses either O(n?) space and O(logn) time
or O(n) space and O(log? ™" n) time, where n is the total number of rules and d
(d > 3) is the total number of fields that the firewall examines for every packet.
Clearly, for software-based packet classification algorithms, either space or run-
ning time grows quickly as the number of rules increases. Reducing the space
that a software-based packet classification algorithm needs also helps to reduce
the running time of the algorithm because small space consumption could enable
the use of very limited on-chip cache to store the data structure of the algorithm.
All in all, for software-based packet classification algorithms, it is advantageous
to reduce the number of rules in a firewall. For hardware-based packet classi-
fication algorithms, it is also advantageous to reduce the number of rules in a
firewall. Consider the example of a TCAM (Ternary Content Addressable Mem-
ory). A TCAM uses O(n) space and constant time in mapping a given packet
to the decision of the first rule the packet matches. Moreover, TCAM consumes
less power as the number of rules decreases.

1.3 Related Work

Previous work on firewalls has primarily focused on firewall design (see [5,6, 10,
13,8]) and firewall analysis (see [14,16,11,12,7]). None of these papers address
the issue of redundant rules. The problem of detecting redundant rules only
receives attention in [9,2,3,4].

In [9], two special types of redundant rules are identified: backward redundant
rules and forward redundant rules. A rule r in a firewall is backward redundant
iff there exists another rule 7’ listed above r such that all packets that match r
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also match 7’. Clearly, a backward redundant rule is an upward redundant rule,
but not vice versa. For example, rule r3 in Figure 1 is upward redundant, but not
backward redundant. A rule r in a firewall is forward redundant iff there exists
another rule 7’ listed below r such that the following three conditions hold: (1)
all packets that match r also match /, (2) r and ' have the same decision, (3)
for each rule r” listed between r and 7/, either r and r” have the same decision,
or no packet matches both r and r”. Clearly, a forward redundant rule is a
downward redundant rule, but not vice versa. For example, rule ro in Figure
1, assuming rs has been removed previously, is downward redundant, but not
forward redundant. It has been observed in [9] that 15% of the rules in real-life
firewalls are backward redundant or forward redundant.

The redundant rules identified in [2,3,4] are similar to those identified in [9],
except that for the case of backward redundant rules, they require that the two
rules r and 7' must have the same decision.

The bottom line is that the set of redundant rules identified by previous work
is incomplete. In other words, given a firewall, after we remove the redundant
rules identified in previous work, the firewall still possibly has redundant rules.
So, how to detect all the redundant rules in a firewall? This is a hard problem
and this problem has never been addressed previously.

1.4 Owur Contribution

In this paper, we solve the problem of detecting all redundant rules in a firewall.
First, we give a necessary and sufficient condition for identifying all redundant
rules. Based on this condition, we categorize redundant rules into upward re-
dundant rules and downward redundant rules. Second, we present methods for
detecting the two types of redundant rules respectively. Our methods make use
of a tree representation of firewalls, which is called firewall decision trees.

Note that removing redundant rules can be done by firewall software inter-
nally. Therefore, the external firewall configuration, i.e., the original sequence
of rules which is viewed by firewall administrators, would remain the same. In
other words, the procedure of removing redundant rules can be transparent to
firewall administrators. Also note that applying our procedure of removing re-
dundant rules does not prevent a firewall administrator from updating a firewall
configuration. When the configuration of a firewall is changed due to some rules
being inserted, deleted or modified, firewall software always needs to rebuild its
internal data structure from the new sequence of rules.

2 Firewall Redundant Rules

We define a packet over the fields Fi, - - -, Fy as a d-tuple (p1, - - -, pq) where each
p; is a value in the domain D(F;) of field F;, and each D(F;) is an interval
of nonnegative integers. For example, the domain of the source address in an
IP packet is [0,232 — 1]. We use X to denote the set of all packets over fields
Fi,---, Fy. It follows that X' is a finite set and |X| = |D(Fy)| X - -+ x |D(Fy)|.
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A firewall over the fields Fy,-- -, F; is a sequence of rules, and each rule is of
the following format:

(F1 € S))N--- A (Fyq € Sq) — (decision)

where each S; is a nonempty subset of D(F;) and (decision) is either accept or
discard. For simplicity, in the rest of this paper, we assume that all packets and
all firewalls are over the fields I, - - -, Fy, if not otherwise specified.

Some existing firewall products, such as Linux’s ipchains [1], require each
S; in a rule to be represented in a prefix format. An example of a prefix is
192.168.0.0/16, where 16 means that the prefix is the first 16 bits of 192.168.0.0.
In this paper we use “set”, instead of “prefix”, to describe firewall rules for two
reasons. First, sets and prefixes are algorithmically interconvertible. For example,
the set {2,3,---,8} can be converted to 3 prefixes: 001,01, 1000. Second, it is
easier to argue the mathematical properties of sets than those of prefixes.

A packet (p1,- -+, pq) matches arule (Fy € S1)A---A(Fy € Sq) — (decision)
iff (p1 € S1) A--- A (pa € Sq) holds.

A sequence of rules (r1,---,r,) is comprehensive iff for any packet p in X,
there is at least one rule in (rq, - - -, 7,,) that p matches. A sequence of rules needs
to be comprehensive for it to serve as a firewall. From now on, we assume that
each firewall is comprehensive. Henceforth, the predicate of the last rule in a
firewall can always be replaced by (F1 € D(F1)) A --- A (Fq € D(Fy)) without
changing the function of the firewall. In the rest of this paper, we assume that
the predicate of the last rule in a firewall is (Fy € D(Fy))A---A(Fq € D(Fy)). It
follows from this assumption that any postfix of a firewall is comprehensive, i.e.,
given a firewall (rq,r9, -, r,), we know that (r;, 741, --,75) is comprehensive
for each i, 1 <7 < n.

We use f(p) to denote the decision to which a firewall f maps a packet p.
Two firewalls f and f’ are equivalent, denoted f = f’, iff for any packet p in X,
f(p) = f'(p) holds. This equivalence relation is symmetric, self-reflective, and
transitive. Using the concept of equivalent firewalls, we define redundant rules
as follows.

Definition 1 (Redundant Rule). A rule r is redundant in a firewall f iff the
resulting firewall f’ after removing rule r is equivalent to f.

Before introducing our redundancy theorem, we define two important con-
cepts that are associated with each rule in a firewall: matching set and resolving
set.

Definition 2 (Matching Set and Resolving Set). Consider a firewall f that
consists of n rules (ry,rq, -, r,). The matching set of a rule r; in this firewall is
the set of all packets that match r;. The resolving set of a rule r; in this firewall
is the set of all packets that match r;, but do not match any r; where j < <.

For example, consider rule ro in Figure 1: its matching set is the set of all
the packets whose F field is in [40, 90]; and its resolving set is the set of all the
packets whose F field is in [51, 90].
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The matching set of a rule r; is denoted M(r;), and the resolving set of a
rule r; is denoted R(r;, f). Note that the matching set of a rule depends only on
the rule itself, while the resolving set of a rule depends both on the rule and on
all the rules listed above it in a firewall.

The following theorem states several important properties of matching sets
and resolving sets.

Theorem 1 (Resolving Set Theorem). Let f be any firewall that consists
of n rules: (r1,r9, -+, 7). The following four conditions hold:

1. Equality: U;zl M(r;) = U; L R(rj, f) foreach i, 1 <i <n

2. Dependency: R(r;, f) = M(r;) — UZ ! 1 R(rj, f) foreach i, 1 <i<n

3. Determinism: R(r;, f) N R(rj, f) = 0 for each i # j

4. Comprehensiveness: | J;_, R(r;, f) = X O

The redundancy theorem below gives a necessary and sufficient condition for
identifying redundant rules. Note that we use the notation (ri1, 72, -, 7 )(p)
to denote the decision to which the firewall (r;11, 742, -+, r,) maps packet p.

Theorem 2 (Redundancy Theorem). Let f be any firewall that consists of

n rules: (ri,re, -, r,). A rule r; is redundant in f iff one of the following two
conditions holds:
L. R(r’ia f) = ®7

2. R(r;, f) # 0, and for any p that p € R(r;, f), (riz1,Tit2, 7)) (p) yields

the same decision as that of r;. O

Note that removing rule r; from firewall f only possibly affects the decision of
the packets in R(r;, f). If R(r;, f) = (), then r; is clearly redundant. If R(r;, f) #
0, and for any p that p € R(r;, f), (Tit1,7it2, -+, Tn)(p) yields the same as that
of r;, then r; is redundant because removing r; does not affect the decision of
the packets in R(r;, f).

The redundancy theorem allows us to categorize redundant rules into upward
and downward redundant rules.

Definition 3. A rule that satisfies condition 1 in the redundancy theorem is
called upward redundant. A rule that satisfies condition 2 in the redundancy
theorem is called downward redundant.

Consider the example firewall f in Figure 1. Rule r3 is an upward redundant
rule because R(r3, f) = (0. Let f’ be the resulting firewall by removing rule r3
from f. Then rule ry is downward redundant in f’.

3 Firewall Decision Trees and Rules

In [8], Firewall Decision Diagrams are proposed as a useful notation for specify-
ing firewalls. In this paper, we use a special type of firewall decision diagrams,
called Firewall Decision Trees (FDTs), as the core data structure for detecting
redundant rules.
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Definition 4 (Firewall Decision Tree). A Firewall Decision Tree t over fields
Fy, .-+, Fyis a directed tree that has the following four properties:

1. Each node v in ¢ has a label, denoted F(v), such that

Fv) { {F1,--+,Fyq} if v is nonterminal,
{accept, discard} if v is terminal.

2. Each edge e in ¢ has a label, denoted I(e), such that if e is an outgoing edge
of node v, then I(e) is a nonempty subset of D(F(v)).

3. A directed path in ¢ from the root to a terminal node is called a decision path
of t. Each decision path contains d nonterminal nodes, and the i-th node is
labelled F; for each 7 that 1 <7 <d.

4. The set of all outgoing edges of a node v in ¢, denoted E(v), satisfies the
following two conditions:

(a) Consistency: I(e) N I(e') = O for any two distinct edges e
and ¢’ in E(v),
(b) Completeness: U, cp,) I(e) = D(F(v)) O

Figure 3 shows an example of an FDT over the two fields F; and F», where
D(Fy) = D(F») = [1,100]. In the rest of this paper, including this example, we

[P

use “a” as a shorthand for accept and “d” as a shorthand for discard.

Fig.3. An FDT

A decision path in an FDT ¢ is represented by (viey - - - vgegvg1) where vq
is the root of ¢, vi41 is a terminal node of ¢, and each e; is a directed edge from
node v; to node v; 41 in t. A decision path (vie; - vgervrt1) in an FDT defines
the following rule:

Frellen))AN---NF,€lle,) — F(vgsr)
For example, the leftmost path in Figure 3 defines the following rule:
F, €[1,19] U [51,100] A F5 € [1,100] — d

We use I'(t) to denote the set of all the rules defined by all the decision
paths in FDT ¢. If we use ¢ to denote the FDT in Figure 3, then I'(t) = {(F} €
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[1,19]U[51, 100])A(F> € [1,100]) — d, (F1 € [20,50])A(F> € [1,34]U[66,100]) —
d, (Fy € ]20,50]) A (F» € [35,65]) — a}.

For any packet p, there is one and only one rule in I"(¢) that p matches because
of the consistency and completeness properties of FDT ¢. The semantics of an
FDT t is that for any packet p in X', ¢ maps p to the decision of the only rule that
p matches in I'(t). We use ¢(p) to denote the decision to which an FDT ¢ maps
a packet p. An FDT ¢ and a sequence of rules f are equivalent, denoted t = f,
iff for any packet p, t(p) = f(p) holds. Clearly, given an FDT ¢, any firewall that
consists of all the rules in I'(¢) is equivalent to t. The order of the rules in such
a firewall is immaterial because there are no overlapping rules in I'(t).

In the process of checking upward redundant rules, the data structure that
we maintain is called a partial FDT. A partial FDT is a tree that may not have
the completeness property of an FDT, but has all the other properties of an
FDT. For example, Figure 4 shows a partial FDT.

Fig. 4. A partial FDT

We use I'(t) to denote the set of all the rules defined by all the decision paths
in a partial FDT ¢. For any packet p that p € UreF(t) M(r), there is one and
only one rule in I'(¢) that p matches. We use t(p) to denote the decision of the
unique rule that p matches in I'(t).

Given a partial FDT ¢ and a sequence of rules (ri,ra,---,rg) that may be
not comprehensive, we say ¢ is equivalent to (ri,rs,---,ry) iff the following two
conditions hold:

k
L. UreF(t) M(r) = U;—y M(r:),
2. for any packet p that p € U,.c ) M(r), t(p) is the same as the decision of
the first rule that p matches in the sequence (ry,ra,- -+, 7%).

For example, the partial FDT in Figure 4 is equivalent to the sequence of rules
((Fy € [20,50]) A (F> € [35,65]) — a, (Fy € [10,60]) A (F» € [15,45]) — d).

4 Removing Upward Redundancy

In this section, we discuss how to remove upward redundant rules. By definition,
a rule is upward redundant iff its resolving set is empty. Therefore, in order to
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remove all upward redundant rules from a firewall, we need to calculate resolving
set for each rule in the firewall. How to represent a resolving set? In this paper,
we represent the resolving set of a rule by an effective rule set of the rule. An
effective rule set of a rule r in a firewall f is a set of rules where the union of all
the matching sets of these rules is exactly the resolving set of rule r in f. More
precisely, an effective rule set of a rule r is defined as follows:

Definition 5. Let r be a rule in a firewall f. A set of rules {r},r5,---,7}} isan
effective rule set of r iff the following three conditions hold:

L R(r, f) = Uy M(r),
2. 7} and r have the same decision for 1 <7 < k. O

For example, consider the firewall in Figure 1. Then, {F; € [1,50] — accept}
is an effective rule set of rule r1, {F1 € [51,90] — discard} is an effective rule
set of rule r2, () is an effective rule set of rule r3, and {F; € [91,100] — discard}
is an effective rule set of rule r4. Clearly, once we obtain an effective rule set
of a rule r in a firewall f, we know the resolving set of the rule r in f, and
consequently know whether the rule r is upward redundant in f. Note that by
the definition of an effective rule set, if one effective rule set of a rule r is empty,
then any effective rule set of the rule r is empty. Based on the above discussion,
we have the following upward redundancy theorem:

Theorem 3 (Upward Redundancy Theorem). A rule r is upward redun-
dant in a firewall iff an effective rule set of r is empty. |

Based on the above upward redundancy theorem, the basic idea of our upward
redundancy removal method is as follows: given a firewall (ry,7r9,---,7,), we
calculate an effective rule set for each rule from r; to r,. If the effective rule set
calculated for a rule r; is empty, then r; is upward redundant and is removed.
Now the problem is how to calculate an effective rule set for every rule in a
firewall.

An effective rule set for each rule in a firewall is calculated with the help
of partial FDTs. Consider a firewall that consists of n rules (ry,rq, -, r,). We
first build a partial FDT, denoted ¢;, that is equivalent to the sequence (ri),
and calculates an effective rule set, denoted E7, of rule r1. Then we transform
the partial FDT t; to another partial FDT, denoted 2, that is equivalent to the
sequence (r1,r2), and during the transformation process, we calculate an effective
rule set, denoted E5, of rule r5. The same transformation process continues until
we reach r,,. When we finish, an effective rule set is calculated for every rule.

Here we use t; to denote the partial FDT that we constructed from the rule
sequence (r1,72,- -, 7;), and E; to denote the effective rule set that we calculated
for rule r;. By the following example, we show the process of transforming the
partial FDT ¢; to the partial FDT ¢;,1, and the calculation of E;;;. Consider
the firewall in Figure 5 over fields Fy and F», where D(Fy) = D(Fz) = [1,100].
Figure 6 shows the geometric representation of this firewall, where each rule is
represented by a rectangle. From Figure 6, we can see that rule r3 is upward



202 A.X. Liu and M.G. Gouda

1 (F1 € [20 ]) N (F; € [35,65]) —a
rg: (F1 € [10,60]) A (F> € [15,45]) — d
T3 (F1 € [30 40]) A (F; € [25,55]) —a
rq : (F1 € [1,100]) A (F2 € [1,100]) — d
Fig.5. A firewall of 4 rules
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Fig. 6. Geometric representation of the rules in Figure 5

redundant because r3, whose area is marked by dashed lines, is totally overlaid
by rules r; and 7. Later we will see that the effective rule set calculated by our
upward redundancy removal method for rule r3 is indeed an empty set.

Figure 7 shows a partial FDT ¢; that is equivalent to (r1) and the effective
rule set F; calculated for rule r;. In this figure, we use v; to denote the node
with label Fi, e; to denote the edge with label [20,50], and v2 to denote the
node with label F5.

Now we show how to append rule ro to t; in order to get a partial FDT
to that is equivalent to (rq,r2), and how to calculate an effective rule set Es
for rule ro. Rule 7o is (Fy € [10,60]) A (F» € [15,45]) — d. We first compare
the set [10,60] with the set [20,50] labelled on the outgoing edge of v;. Since
[10,60]—[20, 50] = [10, 19]U[51, 60], r2 is the first matching rule for all the packets
that satisfy Fy € [10,19] U [51,60] A F» € [15,45], so we add one outgoing edge
e to vy, where e is labeled [10,19] U [51,60] and e points to the path built from

€ [15,45] — d. The rule defined by the decision path containing e, i.e., Fy €
[10,19]U[51,60] A F5 € [15,45] — d, should be put in E because for all packets
that match this rule, ro is their first matching rule. Since [20, 50] C [10,60],
is possibly the first matching rule for a packet that satisfies F} € [20,50]. So we
further compare the set [35,65] labeled on the outgoing edge of vo with the set
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Ey = {Fy € [20,50] A F» € [35,65] — a}

Fig. 7. Partial FDT ¢; and the effective rule set E; calculated for rule r1 in Figure 5

[15,45]. Since [15, 45] —[35,65] = [15, 34], we add a new edge €’ to v, where €’ is
labeled [15,34] and ¢’ points to a terminal node labeled d. Similarly, we add the
rule, F; € [20,50] A Fy € [15,34] — d, defined by the decision path containing
the new edge e’ into Ey. The partial FDT t5 and the effective rule set Es of rule
ro is shown in Figure 8.

Es = {F, €[10,19] U[51,60] A F; € [15,45] — d
Fy € [20,50] A Fy € [15,34] — d}

Fig. 8. Partial FDT t2 and the effective rule set E2 calculated for rule r2 in Figure 5

Let f be any firewall that consists of n rules: (r1,r9,---,7,). The partial
FDT that is equivalent to (r1) consists of only one decision path that defines the
rule rq.

Suppose that we have constructed a partial FDT ¢; that is equivalent to the
sequence (r1, 72, -, 7;), and have calculated an effective rule set for each of these
i rules. Let v be the root of ¢;, and assume v has k outgoing edges e, e, - - -, ek.
Let rule r;4q1 be (F1 € S1) A (Fa € S2) A--- A (Fy € Sq) — (decision). Next we
consider how to transform the partial FDT ¢; to a partial FDT, denoted t;41, that
is equivalent to the sequence (ry,ra,---,7;,7i+1), and during the transformation
process, how to calculate an effective rule set, denoted F;41, for rule r;41.

First, we examine whether we need to add another outgoing edge to v. If
S1— (I(er)UlI(ea)U---Ul(ex)) # 0, we need to add a new outgoing edge ex1
with label S; — (I(e;) U I(e2) U--- U I(eg)) to v. This is because any packet,
whose Fy field satisfies S; — (I(e1) U I(e2) U--- U I(ex)), does not match any
of the first ¢ rules, but matches r;;; provided that the packet also satisfies
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(Fy € So) A (F5 € S3)A---A(Fgq € Sq). The new edge ej11 points to the root of
the path that is built from (Fy € S3) A (F3 € S3) A+ A (Fy € Sq) — (decision).
The rule r, (F; € S1 — (I(e1) UI(ea) U---UI(er))) A(Fo € So)A--- N (Fy €
Sq) — (decision), defined by the decision path containing the new edge ey has
the property M(r) C R(r;i+1, f). Therefore, we add rule r to F;.

Second, we compare S7 and I(e;) for each j (1 < j < k) in the following
three cases:

1. S1NI(ej) = 0: In this case, we skip edge e; because any packet whose value
of field F} is in set I(e;) doesn’t match 741.

2. S1NI(e;) = I(e;): In this case, for a packet p whose value of field F; is in set
I(ej), the first rule that p matches may be one of the first ¢ rules, and may be
rule 7;41. So we append (Fy € So) A (F5 € S3)A---A(Fy € Sq) — (decision)
to the subtree rooted at the node that e; points to in a similar fashion.

3. S1NI(e;)#0and Sy NI(ej)# I(ej): In this case, we split edge e into two
edges: €’ with label I(e;) — S1 and e” with label I(e;) NS1. Then we make
two copies of the subtree rooted at the node that e; points to, and let e’ and

" point to one copy each. Thus we can deal with e’ by the first case, and
" by the second case.

In the process of appending rule r;11 to partial FDT ¢;, each time that we
add a new edge to a node in t;, the rule defined by the decision path containing
the new edge is added to E; 1. After the partial FDT t; is transformed to ¢;41,
according to the transformation process, the rules in F;; satisfy the following
two conditions: (1) the union of all the matching sets of these rules is the resolving
set of r;11, (2) all these rules have the same decision as r;11. Therefore, F;11 is
an effective rule set of rule r;41.

By applying our upward redundancy removal method to the firewall in Figure
5, we get an effective rule set for each rule as shown in Figure 9. Note that E3 = (),
which means that rule r3 is upward redundant, therefore r3 is removed.

1: By = {F1 € [20,50] A F> € [35,65] — a}l;
2: Fy = {F) € [10,19] U [51,60] A Fy € [15,45] —d
Fy € [20,50] A F € [15,34] — d};
3:E3 =0;
4:Ey={
e [1,9] U [61,100] A F» € [1,100] —d
1 € [20,29] U [41,50] A Fz € [1,14] U [66,100] — d
| € [30,40] A Fs € [1,14] U [66, 100] —d
€l

10,19] U [51, 60] A F> € [1,14] U [46,100] — d}

Fig. 9. Effective rule sets calculated for the firewall in Figure 5
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5 Removing Downward Redundancy

One particular advantage of detecting and removing upward redundant rules
before detecting and removing downward redundant rules in a firewall is that an
effective rule set for each rule is calculated by the upward redundancy removal
method; therefore, we can use the effective rule set of a rule to check whether
the rule is downward redundant. Note that knowing an effective rule set of a
rule equals knowing the resolving set of the rule.

Our method for removing downward redundant rules is based on the following
theorem.

Theorem 4. Let f be any firewall that consists of n rules: (rq,ro,---,
rn). Let t; (2 < 4 < n) be an FDT that is equivalent to the sequence of
rules (r;,7i41,+-,7n). The rule r;_1 with the effective rule set F;_; is down-
ward redundant in f iff for each rule r in F;_; and for each decision path
(viervges - - - vgeqvg41) in ¢, where rule r overlaps the rule that is defined by this
decision path, the decision of r is the same as the label of the terminal node
Vd+1-

Now we consider how to construct an FDT t;, 2 < i < n, that is equivalent
to the sequence of rules (r;,r;y1,---,7r,). The FDT ¢/, can be built from rule r,
in the same way that we build a path from a rule in the upward redundancy
removal method.

Suppose we have constructed an FDT ¢, that is equivalent to the sequence of
rules (r;, 741, +, rn). First, we check whether rule r;_; is downward redundant
by Theorem 4. If rule r;_; is downward redundant, then we remove r;, rename the
FDT ¢ to be t;_,, and continue to check whether r;_o is downward redundant.
If rule r;_; is not downward redundant, then we append rule r;_; to the FDT
t; such that the resulting tree is an FDT, denoted t;_,, that is equivalent to the
sequence of rules (r;_1,7;,-+,7,). This procedure of transforming an FDT by
appending a rule is similar to the procedure of transforming a partial FDT in
the upward redundancy removal method. The above process continues until we
reach rq; therefore, all downward redundant rules are detected and removed.

Applying our downward redundancy removal method to the firewall in Figure
5, assuming 73 has been removed, rule 73 is detected to be downward redundant,
therefore rg is removed. The FDT in Figure 3 is the resulting FDT by appending
rule 1 to the FDT that is equivalent to (ry).

6 Concluding Remarks

We make two major contributions in this paper. First, we give a necessary and
sufficient condition for identifying all redundant rules, based on which we cat-
egorize redundant rules into upward redundant rules and downward redundant
rules. Second, we present methods for detecting the two types of redundant rules
respectively. Our methods make use of a tree representation of firewalls, which
is called firewall decis